
Astrophys Space Sci (2012) 340:155–160
DOI 10.1007/s10509-012-1028-3

O R I G I NA L A RT I C L E

Fading Hawking radiation

Izzet Sakalli · Mustafa Halilsoy · Hale Pasaoglu

Received: 13 December 2011 / Accepted: 13 February 2012 / Published online: 29 February 2012
© Springer Science+Business Media B.V. 2012

Abstract In this study, we explore a particular type Hawk-
ing radiation which ends with zero temperature and entropy.
The appropriate black holes for this purpose are the linear
dilaton black holes. In addition to the black hole choice, a
recent formalism in which the Parikh-Wilczek’s tunneling
formalism amalgamated with quantum corrections to all or-
ders in � is considered. The adjustment of the coefficients
of the quantum corrections plays a crucial role on this par-
ticular Hawking radiation. The obtained tunneling rate in-
dicates that the radiation is not pure thermal anymore, and
hence correlations of outgoing quanta are capable of car-
rying away information encoded within them. Finally, we
show in detail that when the linear dilaton black hole com-
pletely evaporates through such a particular radiation, en-
tropy of the radiation becomes identical with the entropy
of the black hole, which corresponds to “no information
loss”.

Keywords Hawking radiation · Information paradox ·
Linear dilaton black hole · Tunneling formalism · Quantum
corrections

1 Introduction

Stephen Hawking (1974, 1975, 1976) and Bekenstein (1973)
showed in their seminal works that a black hole (BH) should
slowly radiate away energy with its characteristic tempera-
ture and entropy. But the semi-classical picture of the Hawk-
ing radiation has a thermal nature, which poses a funda-
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mental physical problem. Because, when the material en-
tering the BH is a pure quantum state, the transformation
of that state into the mixed state of Hawking radiation
would destroy information about the original quantum state.
However, this violates quantum mechanical unitarity and
presents a physical paradox—so called the information loss
paradox. For review of the topic and references on the BH
information loss problem the reader may refer to Preskill
(1992), Page (1994), Russo (2005).

There are various ideas about how the paradox could be
solved. Among them, may be the most elegant and com-
prehensible one is the Parikh and Wilczek (PW)’s quantum
tunneling formalism (Parikh and Wilczek 2000). Their tun-
neling formalism is based on the null geodesics together
with the WKB method. They showed explicitly how the in-
clusion of back-reaction effects, which guarantees the con-
servation of energy during a particle tunneling the horizon,
yields a non-thermal correction to the BH radiation spec-
trum. For a recent review of “tunneling methods and Hawk-
ing radiation” one may consult (Vanzo et al. 2011). On the
other hand, the form of their non-thermal correction had a
shortcoming since they did not consider the Planck-scale
(�) quantum corrections, which elicit correlations between
quanta emitted with different energies. The first attempt to
fix this shortcoming came from Arzano et al. (2005), who
proposed a modified version of the tunneling picture in
which a leading order Planck-scale quantum correction was
introduced. In addition to this, Banerjee and Majhi (2008)
have recently provided a general framework for studying
quantum corrections to all orders in � to the entropy of a BH.
When the effects of the quantum corrections are neglected,
one recovers the PW’s results of the BH (Parikh and Wilczek
2000). Although there are supportive studies, see for in-
stance Majhi (2009), Banerjee and Modak (2009), Zhu et al.
(2009), Akbar and Saifullah (2010), Mirza and Sherkat-
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ghanad (2011), Sheyki and Teimoori (2012), to Banerjee and
Majhi (2008), in recent times their work has been under crit-
icism by Yale (2011), who claimed that Banerjee and Ma-
jhi’s result assumes an incorrect definition of energy. Putting
aside these discussions, here we concentrate on the study
which has recently been published by Singleton, Vagenas,
Zhu and Ren (SVZR) (Singleton et al. 2010). They have at-
tempted to show that the quantum corrections to all orders
in � can be adjusted finely so much so that both entropy
and temperature of the Schwarzschild BH go to zero as the
mass of the BH is radiated away, i.e. S,T (M → 0) → 0.
But, immediately after it is understood that such a scenario
is not possible for the Schwarzschild BH (Singleton et al.
2011). In fact, the key idea of the present study is to exam-
ine whether the quantum corrected Hawking radiation with
S,T (M → 0) → 0 is possible for other types of BHs or not.

In this article, we consider a general class of 4-dimen-
sional (4D) metric which belongs to static, spherically sym-
metric linear dilaton black holes (LDBHs) (Clément et al.
2003, 2007) that constitute solutions to Einstein-Maxwell-
Dilaton (EMD), Einstein-Yang-Mills-Dilaton (EYMD) and
Einstein-Yang-Mills-Born-Infeld-Dilaton (EYMBID) theo-
ries (Mazharimousavi et al. 2009). The LDBHs are known
to be a special class of non-asymptotically flat (NAF) space-
times. The reason why we focus on the LDBHs is that by
using merely the PW’s quantum tunneling formalism one
can not modify their thermal character of the Hawking ra-
diation (Pasaoglu and Sakalli 2009). This means that the
original PW’s tunneling formalism fails to answer the in-
formation loss paradox appearing in the LDBHs. Because
of this, in addition to the back reaction effects we need to
take into account the quantum corrections to obtain a radi-
ation other than pure thermal (Sakalli et al. 2011). As an
extension of the study (Sakalli et al. 2011), here we con-
sider the general form of the quantum corrected temperature
given by SVZR, and apply it to the LDBHs in order to de-
rive specific entropy and temperature, both of which go to
zero with M → 0. Detailed calculations of these processes
are given in the next sections, and as a result we obtain the
above-mentioned radiation, and it is not pure thermal. The
behaviors of both the entropy and temperature of the LDBH
with the quantum correction parameters coming from String
Theory (ST) and Loop Quantum Gravity (LQG) are exam-
ined. We find that the results which have no any physical
ambiguity are possible only in the LQG case. Moreover, it is
highlighted that higher order quantum corrections which are
in conform with the back reaction effects provide the corre-
lations between the emitted quanta. Finally, we show that the
LDBHs are able to evaporate away completely with the en-
tropy conservation (initial BH entropy is equal to the entropy
of the radiation), which leads to the fact that information is
not lost.

Organization of the paper is as follows. In Sect. 2, we de-
rive the entropy and temperature providing S,T (M → 0)

→ 0 in quantum corrected LDBHs. Section 3 is devoted
to the entropy conservation argument and Sect. 4 completes
the paper with discussion and conclusion.

Throughout the paper, the units G = c = kB = 1 and
L2

p = � are used.

2 Quantum corrected entropy and temperature
expressions for 4D-LDBHs

As it was shown in Mazharimousavi et al. (2009), 4D-
LDBHs in EMD, EYMD and EYMBID theories are de-
scribed by the metric

ds2 = −f dt2 + dr2

f
+ R2d�2

2, (1)

with the metric functions

f = �̃(r − r+), R = A
√

r. (2)

It is obvious that metric (1) represents a static, non-rotating
BH with a horizon at r+. The dimensional constants �̃ and
A in the metric functions (2) take different values accord-
ing to the concerned theory (EMD, EYMD or EYMBID)
(Mazharimousavi et al. 2009). For r+ �= 0, the horizon hides
the naked singularity at r = 0. However, in the extreme case
of r+ = 0, the central null singularity at r = 0 is marginally
trapped in which it does not allow outgoing signals to reach
external observers. Namely, even in the extreme case of
r+ = 0, metric (1) maintains its BH property.

By using the definition of quasi-local mass M (Brown
and York 1993) for the NAF metric (1), one finds a relation
between the horizon r+ and the mass M as

r+ = 4M

�̃A2
. (3)

After some elementary dimensional analysis, one can see
that the units of M and A2 are Lp , while �̃ has the unit of
L−1

p so that r+ has the unit of Lp .
Recently, it has been shown that the temperature for a

general class of static, spherically symmetric BH with quan-
tum corrections to all orders in � (Singleton et al. 2010) is
given by

T = �κ

2π

(
1 +

∞∑
j=1

αj�
j

r
2j
+

)−1

, (4)

where κ is the surface gravity of the BH such that it be-

comes κ = �̃
2 for the LDBHs, and αj ’s—dimensionless

constants—stand for the quantum correction terms. In this
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expression �κ
2π

is nothing but the well-known Hawking tem-
perature TH . Here, we wish to highlight one of the important
features of the LDBHs that the Hawking temperature of the

LDBH, TH = ��̃
4π

, is independent of their quasi-local mass
M , and which is therefore a constant throughout the evapo-
ration process i.e. an isothermal process.

In general, the entropy (S) of a BH is found by

S =
∫

dM

T
. (5)

As we adopt the temperature with generic quantum correc-
tions from (4), the entropy to all orders in � can be found by
substituting (4) into (5), and by evaluating the integral. Thus,
for the LDBHs one obtains the following modified entropy
as a function of M

S(M) = M

TH

(
1 −

∞∑
j=1

αj

2j − 1
xj

)
, (6)

where x = ��̃2A4

16M2 is a dimensionless quantity.

As mentioned before, our ultimate aim is to find a specific
condition by which it leads to a complete radiation of the
LDBH with S,T (M → 0) → 0. This requirement implies
conditions on the αj ’s. It is remarkable to see that the only
possibility which satisfies S,T (M → 0) → 0 is,

αj = (−1)j+1(2j − 1)

j
α1. (7)

Inserting this into the sum of (6), we find the modified
LDBH entropy as

S(M) = M

TH

[
1 + α1 ln

(
16M2

16M2 + ��̃2A4

)]
, (8)

Now, it can be easily checked that S(M → 0) → 0
and S(M → ∞) → ∞. Although the result of the sum

in (8) stipulates that M >
√

��̃A2

4 , by making an analyt-
ical extension of the zeta function (Abramowitz and Ste-
gun 1965; Singleton et al. 2010), one can redefine the sum

via α1 ln( 16M2

16M2+��̃2A4 ) such that it becomes valid also for

M <
√

��̃A2

4 . We plot S(M) (8) versus M for the cases
of semi-classical and quantum corrections to all orders in
�, and display all graphs in Fig. 1. In all figures, we have
used two different α1 values such that α1 = − 1

2 is taken
as the representative of the LQG (Meissner 2004), while
the choice α1 = 1

2 stands for the ST (Solodukhin 1998;
Zweibach 2004). Here, physically inadmissible case belongs
to the ST’s one in which the behavior of the entropy is not
well-defined. Because, as seen in Fig. 1(b), just before the
complete evaporation of the LDBH, the entropy first de-
creases to a negative value and then increases from below
to become zero with M = 0.

Fig. 1 Entropy S(M) as a function of LDBH mass M . The relation is
governed by (8). Figures 1(a) and 1(b) stand for α1 = − 1

2 and α1 = 1
2 ,

respectively. The two curves correspond to the semi-classical entropy
(dotted curve) and entropy with quantum corrections to all orders in �

(solid curve)

Furthermore, if we apply the same condition (7) to (4), a
straightforward calculation of the sum shows that the tem-
perature reads

T (M) = TH

1 + α1[ 2��̃2A4

16M2+��̃2A4 + ln( 16M2

16M2+��̃2A4 )]
. (9)

It is obvious that removing the quantum corrections i.e.,
α1 = 0, leads T to the semi-classical result, TH . Signif-
icantly, one can easily verify that T (M → 0) → 0 and
T (M → ∞) → TH . As it can be seen from Fig. 2(a), when
α1 < 0 (the LQG case), the temperature does not take nega-
tive value, rather it remains always positive and goes to zero
with M → 0. On the other hand, for α1 > 0 (the ST case, see
Fig. 2(b)), the temperature does not exhibit well-behaved be-
havior as obtained in the LQG case. Because it first diverges
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Fig. 2 Temperature T (M) as a function of LDBH mass M . The rela-
tion is governed by (9). Figures 2(a) and 2(b) stand for α1 = − 1

2 and
α1 = 1

2 , respectively. The two curves correspond to the semi-classical
temperature (dotted curve) and temperature with quantum corrections
to all orders in � (solid curve)

for some finite value of M , then becomes negative and ap-
proaches zero from below.

As a final remark for this section, our results suggest
that the quantum corrected Hawking radiation of the LDBH
should be considered with the LQG term α1 < 0 in order to
avoid from any unphysical thermodynamical behavior. Be-
cause in the LQG case, both plots of S(M) and T (M) repre-
sent physically acceptable thermodynamical behaviors and
represent the deserved final; S,T (M → 0) → 0.

3 Entropy conservation of LDBHs in quantum
corrected Hawking radiation

In the WKB approximation, the tunneling rate for an outgo-
ing positive energy particle with a field quantum of energy
ω, which crosses the horizon from rin(M) to rout (M − ω),
is related to the imaginary part of the particle’s action Im(I )

in accordance with

� ∼ e−2 Im(I ). (10)

Here Im(I ) is equivalent to

Im(I ) = −1

2

[
S(M − ω) − S(M)

]
,

= −1

2
	S, (11)

which was uncovered in Parikh and Wilczek (2000). Let us
remark that 	S is the change in entropy of a BH. In short,
the relationship between the tunneling rate and the entropy
change satisfies

� ∼ e	S. (12)

By using (8), 	S becomes

	S = 1

TH

{
−ω + α1 ln

[(
M − ω

Ŷ (ω)

)M−ω(
M

Ŷ(0)

)−M]}
,

(13)

where

Ŷ (ω) =
√

(M − ω)2 + ��̃2A4

16
. (14)

After substituting (13) into (12), the tunneling rate with
quantum corrections to all orders in � is found as

�(M;ω) = exp

(
− ω

TH

)

×
[(

M − ω

Ŷ (ω)

)M−ω(
M

Ŷ(0)

)−M] 2α1
TH

. (15)

In this expression, the term exp(− ω
TH

) arises due to the back

reaction effects. The other term to the power 2α1
TH

represents
the quantum corrections to all orders in �, and significantly
it gives cause for a degeneracy in the pure thermal radia-
tion. In the absence of the quantum corrections (α1 = 0: the
semi-classical case) the radiation of the LDBH is pure ther-

mal since the rate (15) reduces to e
−ω
TH . The latter case was

studied in detail by Pasaoglu and Sakalli (2009) in which it
was stated that the Hawking radiation of the LDBH leads to
the information loss paradox. The essential annoyance in the
pure thermal radiation is that it never allows the information
transfer, which can be possible with the correlations of the
outgoing radiation. So it is prerequisite to keep the quan-
tum corrections in the tunneling rate (15) when the agenda
is about obtaining a spectrum which is not pure thermal, and
accordingly the correlations of the emitted quanta from the
LDBH. In general, the statistical correlation between two
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successive emissions is given by Zhang et al. (2009), Chen
and Shao (2009)

χ(ω1 + ω2;ω1,ω2) = ln

[
�(M;ω1 + ω2)

�(M;ω1)�(M;ω2)

]
, (16)

and from (15) and (16), one obtains the statistical correlation
as

χ(ω1 + ω2;ω1,ω2)

= 2α1

TH

ln

[
(M−ω1−ω2

Ŷ (ω1+ω2)
)M−ω1−ω2

(M−ω1

Ŷ (ω1)
)M−ω1(M−ω2

Ŷ (ω2)
)M−ω2

](
M

Ŷ(0)

)M

. (17)

This result shows that successive emissions are statistically
dependent if and only if the quantum correction parameter
α1 is non-zero. Since the amount of correlation is precisely
equal to mutual information between two sequentially emit-
ted quanta (Zhang et al. 2011), one can deduce that the sta-
tistical correlation enables the information leakage from the
LDBH during its evaporation process.

Now, one can assume that the quasilocal mass of a LDBH
is a combination of n-particles with energies (masses)
ω1,ω2, . . . ,ωn, M = ∑n

j=1 ωj in which ωj is the energy
of the j th emitted field quanta (particle). Namely, the whole
radiation process constitutes of successively emitted quanta
(ω1,ω2, . . . ,ωn) from the BH, so that the LDBH loses its
mass M during its evaporation, and at the final state of the
evaporation we find S,T (M → 0) → 0.

The probability of a radiation composed of correlated
quanta is given by the following product of the tunneling
rates (Zhang et al. 2009, 2011)

Prad = �(M;ω1) × �(M − ω1;ω2)

× · · · × �

(
M −

n−1∑
j=1

ωj ;ωn

)
, (18)

where the probability of emission of each radiation of en-
ergy ωj is given by

�(M;ω1) = exp

(
−ω1

TH

){[
M − ω1

Y(ω1)

]M−ω1
[

M

Ŷ(0)

]−M} 2α1
TH

,

�(M − ω1;ω2) = exp

(
− ω2

TH

)

×
{[

M − ω1 − ω2

Y(ω2)

]M−ω1−ω2

×
[
M − ω1

Y(ω1)

]−(M−ω1)
} 2α1

TH

,

. . . . . . , (19)

�

(
M −

n−1∑
j=1

ωj ;ωn

)

= exp

(
− ωn

TH

)
×

{[
M − ∑n

j=1 ωj

Y (ωn)

]M−∑n
j=1 ωj

×
[
M − ∑n−1

j=1 ωj

Y (ωn−1)

]−(M−∑n−1
j=1 ωj )

} 2α1
TH

,

= exp

(
− ωn

TH

)[
ωn

Y (ωn−1)

]− 2α1
TH

ωn

,

in which

Y(ωk) =

√√√√√
(

M −
k∑

j=1

ωj

)2

+ ��̃2A4

16
. (20)

Here, �(M − ω1 − ω2 − · · · − ωj−1;ωj ) is the conditional
probability of an emission with energy ωj following the
emission before the energy ω1 + ω2 + · · · + ωj−1.

We can now substitute (19) into (18), and calculate the
total probability for the whole radiation, which turns out to
be

Prad = exp

(
− M

TH

)(
M

Ŷ(0)

)− 2α1M

TH

. (21)

According to the statistical mechanics, we recall that all mi-
crostates are equally likely for an isolated system. Since the
radiation of a BH can be considered as an isolated system,
the number of microstates � in the system is 1/Prad. Thus,
one calculates the entropy of the radiation Srad from the
Boltzmann’s definition as

Srad = ln(�) = ln(1/Prad),

= M

TH

+ 2α1M

TH

ln

(
M

Ŷ(0)

)
,

= M

TH

[
1 + α1 ln

(
16M2

16M2 + ��̃2A4

)]
. (22)

Clearly, the total entropy of the radiation Srad is equal to the
entropy of the initial LDBH S(M) (8). We deduce therefore
that the entropy is conserved—the entropy of the original
LDBH (before radiation, initial state) is equal to the entropy
of the radiation (after radiation, final state). From the mi-
croscopic point of view of the entropy, this result shows that
the number of microstates of initial and after states are same.
The latter remark implies also that under specific conditions
it is possible to save the information during the Hawking
radiation of the LDBHs. In this way, unitarity in quantum
mechanics of the Hawking radiation is also restored.
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4 Summary and conclusions

In this article, we have used SVZR’s analysis (Singleton
et al. 2010, 2011) in order to obtain a specific radiation
which yields both zero temperature and entropy for the
LDBH when its mass is radiated away, i.e. S,T (M → 0)

→ 0. According to this analysis, the complete evaporation
of a BH is thought as a process in which both back reac-
tion effects and quantum corrections to all orders in � are
taken into consideration. For this purpose, in Sect. 2 we im-
posed a condition on αj ’s which are the parameters of the
quantum corrections to all orders in �. Unless the quantum
corrections are ignored, the choice of αj ’s works finely in
the LDBHs to end up with S,T (M → 0) → 0.

Upon using the specific form of the entropy (8), we de-
rived the tunneling rate (15) with quantum corrections to all
orders in �. Then, it is shown that this rate attributes to the
correlations between the emitted quanta. Afterwards, exis-
tence of the correlations of the outgoing radiation allowed
us to make calculations for the entropy conservation. Thus
we proved that after a LDBH is completely exhausted due
to its Hawking radiation, the entropy of the original LDBH
is exactly equal to the entropy carried away by the outgoing
radiation. The important aspect of this conservation is that it
provides a possible resolution for the information loss para-
dox associated with the LDBHs. Another meaning of this
conservation is that the process of the complete evaporation
of the LDBH is unitary in regard to quantum mechanics. Be-
cause, it is precisely shown that the numbers of microstates
before and after the complete evaporation are the same.

When we analyze the Figs. 1 and 2 which are about the
scenario of S,T (M → 0) → 0 in the quantum corrected
Hawking radiation of the LDBH, it is seen that our specific
choice of αj ’s (7) with α1 = 1

2 from ST led to unacceptable
behavior for the entropy (8) in which it gets negative values
for some M values. In addition to this, the behavior of the
temperature (9) in the ST case is not well-behaved compared
to the LQG case. On the other hand, we have no such un-
physical thermodynamical behaviors in the LQG case. So,
for the scenario of S,T (M → 0) → 0, we conclude that
only the quantum correction term α1 coming from the LQG
should be taken into consideration.

In conclusion, we show in detail that the scenario of
S,T (M → 0) → 0 in the quantum corrected Hawking radi-
ation is possible for the LDBHs. Furthermore, the informa-
tion is conserved, and unitarity in quantum mechanics is re-
stored in the process of complete evaporation of the LDBHs.
By employing SVZR’s analysis, we also confirm that quan-
tum corrections with the back reaction effects remain crucial
for the information leakage. Therefore, it should be stressed

that the present study is supportive to the novel idea intro-
duced by SVZR (Singleton et al. 2010). Finally, we point out
that since the LDBHs are conformally related to the Brans-
Dicke BHs (Cai and Myung 1997), SVZR’s analysis might
work for those BHs as well. This is going to be our next
problem in the near future.
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