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Abstract The exact solutions of the field equations in re-
spect of LRS Bianchi type-I space time filled with perfect
fluid in the framework of f (R,T ) gravity (Harko et al.,
arXiv:1104.2669v2 [gr-qc], 2011) are derived. The physi-
cal behavior of the model is studied. In fact, the possibility
of reconstruction of the LRS Bianchi type-I cosmology with
an appropriate choice of a function f (T ) has been proved in
f (R,T ) gravity.
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1 Introduction

In recent years, there has been a lot of interest in alterna-
tive theories of gravitation (Brans and Dicke 1961; Canuto
et al. 1977; Saez and Ballester 1985). In view of the late time
acceleration of the universe and the existence of the dark
matter and dark energy, very recently, modified theories of
gravity have been developed. Noteworthy amongst them are
f (R) theory of gravity formulated by Nojiri and Odintsov
(2003a) and f (R,T ) theory of gravity proposed by Harko
et al. (2011). Carroll et al. (2004) explained the presence
of a late time cosmic acceleration of the universe in f (R)

gravity. Caroll et al. proposed dark energy model for specific
(1/R) modified gravity. However, this model is non-realistic
because it does not pass Newton law. The first f (R) dark en-
ergy model which passes the Newton law was proposed by
Nojiri and Odintsov (2003a). Nojiri and Odintsov (2003b)

K.S. Adhav (�)
Department of Mathematics, Sant Gadge Baba Amravati
University, Amravati 444602, India
e-mail: ati_ksadhav@yahoo.co.in

demonstrated that phantom scalar in many respects looks
like strange effective quantum field theory by introducing
a non-minimal coupling of phantom field with gravity.

Nojiri and Odintsov (2004) first proposed a non-linear
matter-gravity coupling as asymptotic dark energy and cos-
mic speed-up. They have shown that the effective quintes-
sence naturally describes current cosmic speed-up. Alle-
mandi et al. (2005) proposed the Palatini formulation of non-
linear gravity-matter system. Using a scalar field Lagrangian
as matter, it is shown that the emerging FRW cosmology
may lead either to an effective quintessence phase (cos-
mic speed-up) or to an effective phantom phase. Here, the
gravity-matter coupling part is assumed to be f (R) theory-
like Lagrangian, non-minimally coupled with a scalar field
Lagrangian. Nojiri and Odintsov (2006a) developed the gen-
eral scheme for modified f (R) gravity reconstruction from
any realistic FRW cosmology. They proved that the mod-
ified f (R) gravity indeed represents the realistic alterna-
tive to general relativity, being more consistent in dark
epoch. Further, Nojiri et al. (2006) developed the general
programme of the unification of matter-dominated era with
acceleration epoch for scalar-tensor theory or dark fluid.
Nojiri and Odintsov (2003b) reviewed various modified
gravities which have been considered as gravitational alter-
native for dark energy. Specifically, they have considered the
versions of f (R), f (G), or f (R,G) gravity, model with
non-linear gravitational coupling or string-inspired model
with Gauss-Bonnet-dilation coupling in the late universe
where they lead to cosmic speed-up. It has been shown that
some of such theories may pass the Solar System tests, they
may naturally describe the effective (cosmological constant,
quintessence or phantom) late-time era with a possible tran-
sition from deceleration to acceleration and increase in grav-
itational terms with scalar curvature decrease. The possible
explanation of the coincidence problem as the manifestation
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of the universe expansion and the late time (quintessence
or phantom) universe filled with dark fluid with inhomoge-
neous equation of state are described. Later on, Bertolami et
al. (2007) studied the non-minimal f (R)-matter theory in-
troduced in Nojiri and Odintsov (2004) and Allemandi et al.
(2005). As a result of the coupling the motion of the massive
particles is non-geodesic, and an extra force, orthogonal to
the four-velocity, arises.

The connections with Modified Newtonian Dynamics
(MOND) and the Pioneer anomaly were also explored. This
model was extended to the case of the arbitrary couplings
in both geometry and matter by Harko (2008). The astro-
physical and cosmological implications of the non-minimal
coupling matter-geometry coupling were extensively inves-
tigated by Harko (2010). The Palatini formulation of the
non-minimal geometry-coupling models was considered by
Harko et al. (2010). Harko and Lobo (2010) proposed a
maximal extension of the Hilbert-Einstein action, by assum-
ing that the gravitational Lagrangian is given by an arbi-
trary function of the Ricci scalar R and of the matter La-
grangian Lm. A specific application of the latter f (R,Lm)

gravity was proposed by Poplawski (2006), which may be
considered a relativistically covariant model of interacting
dark energy, based on the principle of least action. Here, the
cosmological constant in the gravitational Lagrangian is a
function of the trace of the stress-energy tensor, and conse-
quently the model was denoted “�(T ) gravity”. Poplawski
(2006) argued that recent cosmological data favor a variable
cosmological constant, which is consistent with �(T ) grav-
ity, without the need to specify an exact form of the func-
tion �(T ). This �(T ) gravity is more general than the Pala-
tini f (R) gravity and reduces to the latter when we neglect
the pressure of the matter. For reviews of f (R) theories of
gravity, one can refer Lobo (2010), Capozziello and Faraoni
(2010), Nojiri and Odintsov (2010, 2011). Felice and Tsu-
jikawa (2010) as well as Nojiri and Odintsov (2011) pre-
sented a detailed reviews of a number of popular models of
modified f (R) gravity. Their properties and different repre-
sentations are also discussed in details. The occurrences of
Big Rip and other finite-time future singularities in modified
f (R) gravity are reviewed along with their solutions via the
addition of higher-derivative gravitational invariants.

Recently, Harko et al. (2011) developed f (R,T ) modi-
fied theory of gravity, where the gravitational Lagrangian is
given by an arbitrary function of the Ricci scalar R and of
the trace T of the stress-energy tensor. They have obtained
the gravitational field equations in the metric formalism, as
well as, the equations of motion for test particles, which fol-
low from the covariant divergence of the stress-energy ten-
sor. Generally, the gravitational field equations depend on
the nature of the matter source. They have presented the
field equations of several particular models, corresponding
to some explicit forms of the function f (R,T ).

In f (R,T ) gravity theory models, the field equations of
this theory are obtained from the Hilbert-Einstein type vari-
ational principle.

The action for this modified theory of gravity is given by

S =
∫ √−g

(
1

16πG
f (R,T ) + Lm

)
d4x. (1.1)

Here f (R,T ) is an arbitrary function of the Ricci scalar R

and of the trace T of the stress-energy tensor of the matter
Tμν . Lm is the matter Lagrangian.

The stress-energy tensor of matter is

Tμν = − 2√−g

δ(
√−gLm)

δgμν
. (1.2)

In the present paper, we use the natural system of units with
G = c = 1 so that the Einstein gravitational constant is de-
fined as k2 = 8π .

The corresponding field equations of the f (R,T ) gravity
are found by varying the action with respect to the metric
gμν :

fR(R,T )Rμν − 1

2
f (R,T )gμν + (gμν� − ∇μ∇ν)fR(R,T )

= 8πTμν − fT (R,T )Tμν − fT (R,T )�μν, (1.3)

where

fR ≡ δf (R,T )

δR
, fT ≡ δf (R,T )

δT
, � ≡ ∇μ∇μ,

∇μ is the covariant derivative and Tμν is the standard matter
energy-momentum tensor derived from the Lagrangian Lm.

One should note that when f (R,T ) ≡ f (R) then (1.3)
reduces to the field equations of f (R) gravity.

By contracting (1.3), we get

fR(R,T )R + 3�fR(R,T ) − 2f (R,T )

= 8πT − fT (R,T )T − fT (R,T )�. (1.4)

Generally, the field equations also depend on [through the
tensor �μν ] the physical nature of the matter field. Hence,
several theoretical models corresponding to different matter
sources in f (R,T ) gravity can be obtained.

If we assume that the function f (R,T ) is given by

f (R,T ) = R + 2f (T ), (1.5)

where f (T ) is an arbitrary function of the trace of the stress-
energy tensor.

From (1.3), we get the gravitational field equations in this
case as

Gij ≡ Rij − 1

2
Rgij

= 8πTij − 2f ′(T )Tij − 2f ′(T )�ij − f (T )gij , (1.6)

where the prime denotes a derivative with respect to the ar-
gument.
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Harko et al. (2011) have investigated FRW cosmologi-
cal models in this theory by choosing appropriate function
f (T ). They have also discussed the case of scalar fields
since scalar fields play an vital role in cosmology. The equa-
tions of motion of test particles and a Brans-Dicke type for-
mulation of the model are also presented.

Observations of microwave background radiation (CMB)
and experimental data suggest that the present day universe
is largely homogeneous and isotropic which is represented
by FRW model. However, at the early stages of evolution
of universe there are reasons to believe that the universe is,
in general, spatially homogeneous and anisotropic. It is well
known that spatially homogeneous and anisotropic cosmo-
logical models play a significant role in describing the large
structure and behavior of the universe. Such models have
been investigated in the framework of general relativity in
search of a realistic picture of universe in early stages. Also,
Bianchi type cosmological models are important in the sense
that these are homogeneous and anisotropic from which the
process of isotropisation of the universe is studied through
the passage of time. A complete discussion of Bianchi type
models is given in Kramer et al. (1980).

The purpose of present paper is to study different vi-
able cosmological models in the newly established exten-
sion of the standard general relativity which is known as
the f (R,T ) gravity theory. In this paper, we study a spa-
tially homogenous and anisotropic Bianchi type-I model in
f (R,T ) gravity (proposed by Harko et al. 2011) which
is straight forward generalization of the flat Friedman
Robertson-Walker (FRW) universe.

2 Metric and field equations

The LRS Bianchi-Type-I line element can be written as

ds2 = dt2 − A(t)2dx2 − B(t)2(dy2 + dz2), (2.1)

where A(t) and B(t) are the scale factors (metric tensors)
and functions of the cosmic time t only (non-static case).

The field equations in f (R,T ) theory of gravity for the
function f (R,T ) = R + f (T ) when the matter source is
perfect fluid are given by (Harko et al. 2011; Poplawski
2006)

Gij ≡ Rij − 1

2
Rgij

= 8πTij + 2f ′(T )Tij + [2pf ′(T ) + f (T )]gij , (2.2)

where the prime indicates the derivative with respect to the
argument.

The matter tensor for perfect fluid is

�μν = −2Tij − pgij = (ρ,−p,−p,−p), (2.3)

where Tij = (ρ + p)uiuj − pgij .

Now, choose the function f (T ) of the trace of the stress-
energy tensor of the matter so that

f (T ) = λT , (2.4)

where λ is constant.
The corresponding field (2.2) for metric (2.1) with the

help of (2.3) and (2.4) can be written as
(

Ḃ

B

)2

+ 2
ȦḂ

AB
= (8π + 3λ)ρ + 2pλ, (2.5)

(
Ḃ

B

)2

+ 2
B̈

B
= −8πp + λρ, (2.6)

B̈

B
+ ȦḂ

AB
+ Ä

A
= −8πp + λρ, (2.7)

where dot (·) indicates the derivative with respect to t .
These are three linearly independent equations (2.5)–

(2.7) with four unknowns A, B , ρ and p. In order to solve
the system completely, we impose a law of variation for the
Hubble’s parameter proposed by Bergman (1983). Accord-
ing to this law the variation of the mean Hubble parameter
for LRS Bianchi type-I metric may be given by

H = k(AB2)−m/3, (2.8)

where k > 0 and m ≥ 0 are constants.
The spatial volume is given by

V = a3 = AB2, (2.9)

where a is the mean scale factor.
The mean Hubble parameter H for LRS Bianchi type-I

metric may given by

H = ȧ

a
= 1

3

(
Ȧ

A
+ 2

Ḃ

B

)
. (2.10)

The directional Hubble parameters in the x, y and z respec-
tively may be defined as

Hx = Ȧ

A
and Hy = Hz = Ḃ

B
. (2.11)

The volumetric deceleration parameter is

q = −aä

ȧ2
. (2.12)

On integration, after equating (2.8) and (2.10), we get

V = AB2 = c1e
3kt for m = 0 (2.13)

and

V = AB2 = (mkt + c2)
3
m for m �= 0, (2.14)

where c1 and c2 are positive constants of integration.
Using (2.8) and (2.13) for m = 0, and with (2.14) for

m �= 0 mean Hubble parameters are

H = k for m = 0 (2.15)

H = k(mkt + c2)
−1 for m �= 0. (2.16)
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Using (2.13), (2.14) and (2.9) in (2.12), we get constant val-
ues for the deceleration parameter for mean scale factor as:

q = m − 1 for m �= 0 (2.17)

q = −1 for m = 0. (2.18)

In this paper, now we consider the model when m = 0
i.e. q = −1.

Using the mean Hubble parameter (2.10), and after sub-
traction of the (2.6) from (2.7), we get

d

dt

(
Ȧ

A
− Ḃ

B

)
+

(
Ȧ

A
− Ḃ

B

)
3H = 0. (2.19)

On integration of (2.19) and considering (2.15), we obtain
(

Ȧ

A
− Ḃ

B

)
= le−3kt , (2.20)

where l is constant of integration.
On integrating (2.20) and using (2.13) we get the exact

expression for the scale factors:

A(t) = κ2/3c
1/3
1 ekt− 2l

9k
e−3kt

, (2.21)

B(t) = κ−1/3c
1/3
1 ekt+ l

9k
e−3kt

, (2.22)

where κ is positive constant of integration.

3 Physical properties

The different physical quantities are given below:
The directional Hubble parameter

Hx = k + 2l

3k
e−3kt , (3.1)

Hy = Hz = k − λ

3k
e−3kt . (3.2)

The anisotropy parameter of the expansion 
 is defined
as


 = 1

3

3∑
i=1

(
Hi − H

H

)2

= 2l2

27k4
e−6kt , (3.3)

where Hi (i = 1,2,3) represents the directional Hubble pa-
rameters in the direction x, y and z respectively.

The expansion scalar θ is defined as θ = 3H and found
as

θ = 3k. (3.4)

The shear scalar σ 2 is defined as σ 2 = 3
2
H 2 and found

as

σ 2 = l2

9k2
e−6kt . (3.5)

Using (2.21) and (2.22), we obtain the value of pressure as

p = 1

(−8πχ + 2λ)

{
3k2 + l2

9k
(3 + χ)e−6kt

+ χ

[
k(k + 2) + 2l

3k
e−3kt

]}
(3.6)

and we obtain the energy density as

ρ = 6k2

3λ(1 + χ)

+ (24π − 2λ)

(3λ(1 + χ))(−8πχ + 2λ)

{
3k2 + l2

9k
(3 + χ)e−6kt

+ χ

[
k(k + 2) + 2l

3k
e−3kt

]}
. (3.7)

4 Discussion and conclusion

Equations (2.21) and (2.22) give solution of LRS Bianchi
type-I model with exponential volumetric expansion in
f (R,T ) gravity.

(i) These scale factors admit constant values at early times
of the universe [t → 0], after that scale factors start
increasing with the increase in cosmic time without
showing any type of initial singularity and finally di-
verge to ∞ as t → ∞.

This shows that at the initial epoch, the universe
starts with zero volume and expands exponentially ap-
proaching to infinite volume.

(ii) Moreover, the expansion scalar for these scale factors
exhibits the constant value i.e. θ = 3k.

This shows uniform exponential expansion from
t = 0 to t = ∞ i.e. universe expands homogeneously.

(iii) We have H = k, q = −1.
This indicates that the mean Hubble parameter is

constant whereas directional Hubble parameters are
dynamical. As time approaches from zero to infinity,
the directional Hubble parameters start reducing to-
wards the constant value of H and becomes equal as
t → ∞.

Also, the deceleration parameter appears with neg-
ative sign which implies accelerating expansion of the
universe as one can expect for exponential volumetric
expansion.

(iv) From (3.3), one can observe that at t = 0, the anisotropy
parameter measures a constant value while it vanishes
at infinite time of the universe. This indicates that the
universe expands isotropically at later times.

(v) From (3.6) and (3.7), we get that the matter pressure
and density are constant at early stages (t = 0) of the
universe and show monotonic behavior in the evolving
cosmic time.

Here we have studied the spatially homogeneous and
anisotropic LRS Bianchi type-I cosmological model with
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constant deceleration parameter in f (R,T ) theory of grav-
ity. We have considered the exponential model for m = 0
(q = −1) with negative deceleration parameter indicating
that the universe is accelerating which is consistent with the
present day observations. Perlmutter et al. (1999) and Riess
et al. (1998, 1999, 2004) proved that the decelerating pa-
rameter of the universe is in the range −1 ≤ q ≤ 0, and the
present day universe is undergoing accelerated expansion.

From (2.5) to (2.7), it is interesting to note that for par-
ticular choice of f (R,T ) the gravitational coupling be-
comes effective and time dependant coupling which is of the
form

G = Geff ± 2f ′(T ).

Thus, the term 2 f (T ) in the gravitational action modifies
the gravitational interaction between matter and curvature,
replacing G by a running gravitational coupling parameter
in LRS Bianchi type-I cosmology also.
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