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Abstract The well-known shock solutions of the Korteweg-
de Vries-Burgers equation are revisited, together with their
limitations in the context of plasma (astro)physical applica-
tions. Although available in the literature for a long time,
it seems to have been forgotten in recent papers that such
shocks are monotonic and unique, for a given plasma config-
uration, and cannot show oscillatory or bell-shaped features.
This uniqueness is contrasted to solitary wave solutions of
the two parent equations (Korteweg-de Vries and Burgers),
which form a family of curves parameterized by the excess
velocity over the linear phase speed.
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Among the paradigm nonlinear evolution equations crop-
ping up in various domains of physics, the Korteweg-
de Vries-Burgers (KdVB) equation,
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arises in physical media where nonlinearity, dispersion and
damping interact on slow timescales to produce solitary
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structures. More specifically, in plasma physics (1) typically
obtains by reductive perturbation analysis of a multi-fluid
model, through the use of coordinate stretching

ξ = ε1/2(x − λt), τ = ε3/2t, (2)

combined with expansions of the dependent variables like

ϕ = εϕ1 + ε2ϕ2 + · · · (3)

in addition to an appropriate scaling of the damping coef-
ficient, in many cases due to viscosity. Here x and t are
the original space and time coordinates, respectively, and ϕ

refers to the electrostatic potential of the solitary waves. In
the absence of damping (C = 0), the KdVB equation (1) re-
duces to the KdV equation, whereas in the absence of disper-
sion (B = 0), it recovers the Burgers equation, which bears
kink-shaped monotonic shock profile solutions. All this is
well known and has been in the literature for a long time,
but we will have to come back to these points later.

For a purely mathematical study of the properties of the
KdVB equation, (1) is given and its coefficients A, B and
C might be regarded as free parameters. However, the mo-
ment the KdVB equation is derived for a particular plasma
(astro)physical configuration, the precise and often elabo-
rate form of A, B and C has to be computed. Although
the intermediate details need not concern us here, we still
have to remind ourselves that A, B and C are functions
of the plasma compositional parameters, which also deter-
mine the linear phase velocity λ, and thus cannot be chosen
randomly. Moreover, in the process of deriving (1) one has
imposed/used that ϕ1 vanishes in the undisturbed medium,
upstream of the shock or soliton solutions, translated as
ϕ1 → 0 for ξ → +∞. All this has important consequences
for the discussion which follows.
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Once this is properly kept in mind, there are several ways
of deriving the stationary shock structure of (1), by changing
to a co-moving frame with coordinate

χ = κ(ξ − V τ), (4)

where κ and V are related to the inverse width and the speed
of the shock, respectively. Therefore, it is assumed that both
κ and V are positive. The shock solutions of the KdVB
equation have been in the literature for a long time, and
later rederived by the so-called “tanh” method, formalized
by Malfliet and Hereman (1996a, 1996b).

However, we have to come back in explicit detail to the
shock solution of the KdVB equation, in view of recent
misunderstandings about its validity and its applications, as
shown below. One also has to remember that for all solitary
waves, for which explicit analytical expressions have been
obtained, amplitude, width (inversely related to κ) and ve-
locity V are inherently linked. Usually, fixing one of these
parameters determines the others.

Now, when looking at several papers in the recent liter-
ature (Shah and Saeed 2009, 2011; Saeed and Shah 2010;
Pakzad 2011a, 2011b, 2011c, 2011d; Pakzad and Javidan
2011; Shah et al. 2011), one sees that κ = 1 is taken, whether
explicitly stated (Shah and Saeed 2009, 2011; Saeed and
Shah 2010; Shah et al. 2011) or only implicitly (Pakzad
2011a, 2011b, 2011c, 2011d; Pakzad and Javidan 2011),
by using the shock solution in the form given by Shah and
Saeed (2009). No justification at all is given as to why one
would be allowed to put κ = 1, nor is there any discussion
of the consequences. As we will see, taking κ = 1 is not
only needlessly stringent, but also erroneous, and in many
cases one is not even able to verify that it holds, given
the complexities in the expressions for A, B and C, ex-
cept for specific numerical choices of all plasma parame-
ters. Some other papers even leave κ undetermined, as if
it were a free parameter (Mahmood and Ur-Rehman 2010;
Akhtar and Hussain 2011).

When the transformation (4) is applied to (1), one finds

−κV
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dχ2
= 0. (5)

One of the popular methods of finding the shock structure
for (1) is through the tanh method, and we will follow the
original paper by Malfliet and Hereman (1996a), rather than
a vast array of newcomers. We are forced to do so, to point
out where the specific restrictions to plasma (astro)physics
applications play a role and to correct some uses in the lit-
erature which have strayed in this respect from the original
solutions (Malfliet and Hereman 1996a) already available.
Our treatment here is more general than that of Malfliet and
Hereman (1996a), because in their paper A = 1 has been
taken. While one can always rescale the absolute value of

some of the coefficients in (1), one cannot easily do away
with the sign, and we keep therefore A as determined by the
plasma model under consideration.

Using the transformation α = tanhχ in (5) and noting
that dα/dχ = 1 − tanh2 χ , we obtain
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Here one common factor κ and one common bracket
(1 − α2) have already been divided out, to simplify the sub-
sequent computations.

The idea is then to look for solutions ϕ1 as a finite power
series in α, which in this case (and in many others) will end
with the quadratic term (Malfliet and Hereman 1996a), thus

ϕ1 = β0 + β1α + β2α
2. (7)

The reason that the power series breaks off comes from
a balance between the highest nonlinearity and dispersive
terms in (6). Given that the different powers of α are func-
tionally independent, we get a system of algebraic equa-
tions,

α0: −Vβ1 + Aβ0β1 − 2Bκ2β1 − 2Cκβ2 = 0, (8)

α1: −2Vβ2 + 2Aβ0β2 + Aβ2
1 − 16Bκ2β2

+ 2Cκβ1 = 0, (9)

α2: 3Aβ1β2 + 6Bκ2β1 + 6Cκβ2 = 0, (10)

α3: 2Aβ2
2 + 24Bκ2β2 = 0, (11)

determining the as yet unknown coefficients β0, β1 and β2.
Solve first (11) for β2 to find

β2 = −12Bκ2

A
, (12)

and substitute this in (10). This allows now to obtain

β1 = −12Cκ

5A
. (13)

Solving next (8) yields

β0 = V

A
+ 12Bκ2

A
. (14)

Although all coefficients needed for (7) have now been de-
termined, there is still one condition to be satisfied before
the scheme can work, namely (9). This was apparently over-
looked or not deemed important (Shah and Saeed 2009,
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2011; Saeed and Shah 2010; Mahmood and Ur-Rehman
2010; Akhtar and Hussain 2011; Pakzad 2011b; Shah et al.
2011), while others (Pakzad 2011a, 2011c, 2011d; Pakzad
and Javidan 2011) just copied the erroneous solution, with-
out going through the algebra. Working out (9), one arrives
at

κ = C

10B
, (15)

where for simplicity we have taken both B and C positive,
as they usually are in most examples found in the literature.
Adopting other sign conventions can easily be incorporated
but would add nothing to the physics. Indeed, it is straight-
forward to see that minus signs can be handled in the general
solution by appropriate space and/or time reversals. Note in
passing that κ tanh[κ(ξ −V τ)] = −κ tanh[−κ(ξ −V τ)], for
any real κ .

At this stage it is clear how serious a restriction κ = 1 is,
for two separate reasons. First, all solitary wave character-
istics show an inherent link between amplitude, width (in-
versely related to κ) and velocity V of the structure, and ar-
bitrarily fixing one narrows the choices enormously. Second,
assuming κ = 1 means from (15) that C = 10B , a relation
which usually cannot be obeyed by inserting some numbers
in the rather complicated expressions B and C, as a glance at
the papers involved (Shah and Saeed 2009, 2011; Mahmood
and Ur-Rehman 2010; Saeed and Shah 2010; Akhtar and
Hussain 2011; Pakzad 2011a, 2011b, 2011c, 2011d; Pakzad
and Javidan 2011; Shah et al. 2011) will immediately re-
veal. Taken together, this implies that the resulting numer-
ics, graphs and discussions (Shah and Saeed 2009, 2011;
Mahmood and Ur-Rehman 2010; Saeed and Shah 2010;
Akhtar and Hussain 2011; Pakzad 2011a, 2011b, 2011c,
2011d; Pakzad and Javidan 2011; Shah et al. 2011) cannot
be trusted.

Using now (15) in the coefficients (12)–(14) shows that

β0 = V

A
+ 3C2

25AB
, β1 = − 6C2

25AB
,

(16)

β2 = − 3C2

25AB
.

At this stage the shock solution is

ϕ1 = 3C2

25AB
(1 − tanh2 χ) + V

A
− 6C2

25AB
tanhχ. (17)

Since B and C are assumed positive, it is the sign of A

which will be determining the polarity of the kink solution.
However, this only obeys the requirement that ϕ1 → 0 for
ξ → +∞ provided one takes

V = 6C2

25B
= 24Bκ2. (18)

Fig. 1 Typical KdVB shock profile, where the amplitude
3C2/(25AB) = 0.1 has been taken for the upper panel and
−0.1 for the lower panel

Also this inherent aspect of the correct solution has been
overlooked in some of the recent papers (Shah and Saeed
2009; Pakzad 2011a, 2011b, 2011c, 2011d; Pakzad and Javi-
dan 2011). The second expression for V in (18) clearly
shows the link between width (through κ) and velocity of
the structure, and for right propagating structures V is taken
positive, which therefore requires B to be positive.

Finally, we arrive at the shock solution as

ϕ1 = 3C2

25AB
[1 − tanh2 χ + 2(1 − tanhχ)], (19)

where in χ we have to insert (15) and (18), giving

χ = C

10B

(
ξ − 6C2

25B
τ

)
. (20)

The kink structure (19) is unique, since for a given plasma
configuration the compositional parameters fully determine
A, B and C, and hence there is one and only one shock so-
lution, the generic profile of which we illustrate in Fig. 1,
once for a positive (upper panel), once for a negative (lower
panel) polarity. This point has already been made before



248 Astrophys Space Sci (2012) 338:245–249

(Malfliet and Hereman 1996a), in a mathematical discus-
sion, almost in passing, without really stressing its conse-
quences for detailed plasma (astro)physics problems.

Further remarks are in order here. Since (19) can be
rewritten as

ϕ1 = 3C2

25AB
[4 − (1 + tanhχ)2], (21)

the kink is always monotonic, and no oscillatory part nor
peak or bell-shaped curve may appear in its graph, contrary
to what is found in recent papers (Shah and Saeed 2009;
Mahmood and Ur-Rehman 2010; Saeed and Shah 2010;
Akhtar and Hussain 2011; Pakzad 2011a, 2011b, 2011c,
2011d; Pakzad and Javidan 2011; Shah et al. 2011). There
may be physical situations where shocks including oscilla-
tory trails or precursors are observed, but these cannot be
described by the KdVB formalism.

Note that when C = 0, the whole shock structure disap-
pears. This is a direct consequence of the very delicate bal-
ance needed between a solitary wave (KdV) and a shock
wave (Burgers) to form the combined solution (Malfliet and
Hereman 1996a). To see this more explicitly, substitute in
(19) 1 − tanh2 χ = sech2χ , which is reminiscent of the typ-
ical KdV one-soliton solution. In addition, since reductive
perturbation analysis requires that ϕ1 be small enough to
neglect higher-order effects, 3C2/(25|AB|) should be rather
smaller than 1.

All this has to be contrasted to what happens when C = 0
and (1) reduces to the standard KdV equation, without dis-
sipation through viscosity, or when B = 0 and (1) becomes
the Burgers equation, in the absence of dispersion. Further-
more, when C = 0 the KdV sech2χ soliton cannot be di-
rectly recovered, contrary to what is claimed in the litera-
ture (Shah and Saeed 2009, 2011; Saeed and Shah 2010;
Pakzad 2011a, 2011b, 2011c, 2011d; Pakzad and Javidan
2011; Shah et al. 2011).

To see the differences, let us now first put C = 0, return
to (8)–(11) and go again through the motions. It turns out
that β2 is still given by (12), but β1 = 0 and (14) is replaced
here by

β0 = V

A
+ 8Bκ2

A
. (22)

Hence, to arrive at the typical KdV soliton solution in
sech2ξ = 1 − tanh2 ξ , obeying ϕ1 → 0 when ξ → ±∞, it
is required that

V = 4Bκ2, (23)

and now for each superacoustic soliton velocity V one finds
a soliton of the form

ϕ1 = 3V

A
sech2

[
1

2

√
V

B
(ξ − V τ)

]
. (24)

Here B > 0 is needed, which is usually the case, and the
soliton polarity is given by the sign of A.

Doing a similar exercise for the Burgers equation, with
B = 0, leads from (10) and (11) to β2 = 0, in other words,
(7) stops at the linear term (Malfliet and Hereman 1996a).
Now (8) and (9) give that

β0 = V

A
, β1 = −2Cκ

A
, (25)

and the proper solution needs

V = 2Cκ. (26)

Taking again V as the free parameter, the shock solution is
found as

ϕ1 = V

A

{
1 − tanh

[
V

2C
(ξ − V τ)

]}
. (27)

With the appropriate changes of notation, the solutions (24)
and (27) can be found in the original discussion by Malfliet
and Hereman (1996a).

To conclude, we have discussed the intricacies of the
proper derivation of the solitary shock structure and its limi-
tations in the context of plasma (astro)physical applications.
Although these results and restrictions have been in the liter-
ature for a long time (Malfliet and Hereman 1996a, 1996b),
it seems to have been forgotten in recent papers (Shah
and Saeed 2009, 2011; Mahmood and Ur-Rehman 2010;
Saeed and Shah 2010; Akhtar and Hussain 2011; Pakzad
2011a, 2011b, 2011c, 2011d; Pakzad and Javidan 2011;
Shah et al. 2011) that a shock modeled by (19) can only be
monotonic, without oscillations or peaks, and is, moreover,
unique.

This also holds for the coefficients A, B and C, once spe-
cific numbers have been assigned to the various composi-
tional parameters in the plasma model under consideration,
and therefore A, B and C cannot be treated as free param-
eters, as they might be in a purely mathematical discussion
of the properties of (1). But even then they determine V and
κ in a unique way.

One sees that the solitary wave solutions of the two parent
nonlinear equations, the KdV and the Burgers equations, are
different in character, as they form one-parameter families of
curves, dependent on the free choice of the excess velocity
V above the linear phase speed λ.
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