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Abstract An axially symmetric space time is considered in
the presence of a perfect fluid source in Barbers (Gen. Rel-
ativ. Gravit. 14, 117, 1982) second self creation theory of
gravitation. An exact radiating cosmological model is pre-
sented using a relation between the metric potentials. Some
physical and kinematical properties of the model are also
discussed.
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1 Introduction

It is well known that in recent years there has been a
considerable interest in alternative theories of gravitation
which are viable alternatives to general relativity. Brans and
Dicke (1961) formulated a scalar tensor theory of gravitation
which incorporates Machs-principle in a relativistic frame
work. Barber (1982) produced two continuous creation the-
ories. The first is a modification of Brans Dicke theory and
the second is an adoption of general relativity to include con-
tinuous creation of matter and is within the limits of obser-
vation. These modified theories create the universe out of
self contained gravitational and matter fields.
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Several authors have investigated various cosmolog-
ical models in Barbers second self creation theory Pi-
mentel (1985), Soleng (1987), Singh (1984), Reddy (1987a,
1987b), Reddy et al. (1987), Reddy and Venkateswarlu
(1989), Shanti and Rao (1991), Reddy and Naidu (2008),
Pradhan and Vishwakarma (2002) are some of the authors
who have discussed various cosmological models in second
self creation theory. However axially symmetric cosmologi-
cal models in the presence of radiating perfect fluid have not
been investigated in second self creation theory proposed by
Barber. Radiating cosmological models are also important
to discuss the early stages of evolution of the universe.

In this chapter we obtain axially symmetric radiating cos-
mological model in the presence of perfect fluid source.

2 Metric and field equations

We consider the uniform, anisotropic and axially symmetric
(Bhattacharya and Karade 1993)

ds2 = dt2 − A2(t)[dχ2 + f 2(χ)dφ2] − B2(t)dz2 (2.1)

with the convention x1 = χ, x2 = φ, x3 = z, and x4 = t

and A and B are functions of the proper time t alone while
f is a function of the coordinate χ alone.

The non-vanishing components of Einstein tensor for the
space time (2.1) are
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Here

f1 = ∂f

∂χ
, A4 = ∂A

∂t

The field equations in Barber’s (1982) second self-creation
theory are

Rij − 1

2
gijR = −8πφ−1Tij (2.2)

and

�φ = φ
′k
jk = 8π

3
αT (2.3)

where T is the trace of energy-momentum tensor, λ is a
coupling constant to be determined from the experiment
(|λ| ≤ 0.1) and semi-colon denotes covariant differentiation.
In the limit as α → 0, this theory approaches the standard
general relativity theory in every respect and G = ∅−1.

The energy momentum tensor for perfect fluid distribu-
tion is given by

Tij = (ρ + p)uiuj − pgij (2.4)

where ρ is the rest energy density, p is the isotropic pres-
sure, ui is the four velocity of the matter, so that

uiui = 1, uiuj = 0 (2.5)

from (2.4) and (2.5), we have

T 1
1 = T 2

2 = T 3
3 = −p, T 4

4 = ρ (2.6)

using (2.4) and (2.5), the field equations of Barbers second
self creation theory for the metric (2.1) can be written as
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Here the suffixes 1 and 4 after an unknown function denote
partial differential with respect to X and t respectively.

The function dependence of the metric together with
(2.8) and (2.9) imply

f11

f
= k2, k2 constant (2.11)

If k = 0, then f (χ) = constantχ , 0 < χ < ∞. This constant
can be made equal to 1 by suitably choosing units for ∅.

Thus we shell have f (χ) = χ resulting in the flat model of
the universe (Hawking and Ellis 1976).

Now the field equations (2.7)–(2.10) reduced to

A44

A
+ B44

B
+ A4B4

AB
= 8πφ−1p (2.12)

2
A44

A
+

(
A4

A

)2

= 8πφ−1p (2.13)

(
A4

A

)2

+ 2
A4B4

AB
= 8πφ−1ρ (2.14)

φ44

φ4
+ 2

A4

A
+ B4

B
= 8π

3
φ−1α(ρ − 3p) (2.15)

Equations (2.12)–(2.15) are four independent equations in
five unknowns A, B , ρ, p, ∅. Hence to find a determinate
solution, we use the equation of state ρ = 3p which rep-
resents disordered radiation of matter distribution. Now the
field equation (2.12) to (2.15) take the form
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integrating (2.19), we get

φ4 · A2B = C1, where C1 is integral constant

⇒ φ4 = C1

A2B
(2.20)

To solve the non linear field equations (2.16) to (2.18), we
take a relation between the metric coefficients

A = Bn (2.21)

Using (2.20) and (2.21), the field equations (2.16) to (2.18)
admits the exact solution given by
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where T = C
1/3
2 t + C3, C2, C3 are integration constants.
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The corresponding string model of the solution can be writ-
ten, through a proper choice of constants of integration and
coordinates as

ds2 = dT 2 −
(
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3 Some physical properties of the model

Equation (2.26) represents axially symmetric radiating cos-
mological model in the frame work of second self-creation
theory of gravitation proposed by Barber (1982) in the pres-
ence of a perfect fluid source. We observe that the model has
no initial singularity for n �= 1

4 .
For the model (2.26) the physical and kinematical param-

eters which are important in the discussion of cosmology are

• Energy density
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• Expansion Scalar
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• Shear Scalar
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• Deceleration parameter

q = −3θ−2
[
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3
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]
= − (4 − 11n)

n + 1
(3.5)

Equation (3.2) shows the anisotropic expansion of the uni-
verse (2.26) with 4n − 1 > 0. The energy density ρ and the
isotropic pressure p tend to the zero as time increases in def-
initely. For this model the expansion scalar θ shear scalar σ

tend to zero as T → ∞. Since n > 0 we have a positive value
of the deceleration parameter q which shows that the model
decelerates in the standard way. However the model does not
admit rotation and acceleration. Hence the model (2.26) rep-
resents expanding, shearing, non-rotating and non-singular
universe which decelerate in the standard way. However the

scalar field diverges as T → 0. Also, since ltT →∞ σ 2

θ2 �= 0,
the model does not approach isotropy for large values of T .

4 Conclusions

It is well known that it is still a challenging problem to un-
ravel the secrets of the early stages of evolution of the uni-
verse. The radiating model and the presence of long range
scalar fields help to understand the evolution of early stages
of the universe.
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