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Abstract In this paper, we study quantum corrections to the
temperature and entropy of a regular Ayón-Beato-García-
Bronnikov black hole solution by using tunneling approach
beyond semiclassical approximation. We use the first law of
black hole thermodynamics as a differential of entropy with
two parameters, mass and charge. It is found that the leading
order correction to the entropy is of logarithmic form. In the
absence of the charge, i.e., e = 0, these corrections approx-
imate the corresponding corrections for the Schwarzschild
black hole.

Keywords Black holes · Semiclassical entropy · Quantum
tunneling

1 Introduction

General Relativity describes that black hole (BH) absorbs
all the light that hits the horizon, reflecting nothing, just like
a perfect black body in thermodynamics. Hawking (1974)
suggested that BH like a black body with a finite tem-
perature, emits radiation from the event horizon by using
quantum field theory in curved spacetime, named as Hawk-
ing radiation. Several attempts (Hartle and Hawking 1976;
Gibbons and Hawking 1977) have been made to visualize
the Hawking radiation spectrum by using quantum mechan-
ics of a scalar particle. However, tunneling (Parikh 2004;
Parikh and Wilczek 2000; Srinivasan and Padmanabhan
1999) provides the best way to visualize the source of radi-
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ation. The essential idea of the tunneling mechanism is that
a particle-antiparticle pair is formed close to the horizon in-
side a BH. According to this phenomenon, in the presence
of electric field, particles have the ability to penetrate en-
ergy barriers by following trajectories (not allowed classi-
cally).

When a particle with positive energy crosses the horizon,
it appears as Hawking radiation. When a particle with nega-
tive energy tunnels inwards, it is absorbed by the BH, hence
its mass decreases and ultimately vanishes. Similarly, mo-
tion of the particle may be in the form of outgoing or ingo-
ing radial null geodesics. For outgoing and ingoing motion,
the corresponding action becomes complex and real respec-
tively, whereas classically a particle can fall behind the hori-
zon. The emission rate of the tunneling particle from the BH
is associated with the imaginary part of the action which, in
turn, is related to the Boltzmann factor for the emission at
the Hawking temperature.

Cognola et al. (1995) investigated the first quantum cor-
rection to the entropy for an eternal 4D extremal Reissner-
Nordström (RN) BH by using the conformal transforma-
tion techniques. Bytsenko et al. (1998a) suggested that the
Schwarzschild-de Sitter BH could be generated due to back-
reaction of dilaton coupled matter in the early universe,
which is the solution of quantum corrected equations of mo-
tion. Bytsenko et al. (1998b) evaluated the first quantum cor-
rection to the Bekenstein-Hawking entropy by using Chern-
Simmons representation of the 3D gravity. Bytsenko et al.
(2001) calculated the first quantum correction to the finite
temperature partition function for a self-interacting mass-
less scalar field by using dimensional regularization zeta-
function techniques.

Elizalde et al. (1999) investigated the existence of a
quantum process (anti-evaporation) opposite to the Hawk-
ing radiation (evaporation) as an evidence for supersym-
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metry. Nojiri and Odintsov (1999a, 1999b, 2000, 2001)
studied quantum properties of 2D charged BHs and BTZ
BH. They found quantum corrected 2D charged BH solu-
tion. Also, they evaluated the quantum corrections to mass,
charge, Hawking temperature and BH entropy. They dis-
cussed quantum corrections to thermodynamics (and geom-
etry) of the Schwarzschild-(anti) de Sitter BHs by using
large N one-loop anomaly induced effective action for dila-
ton coupled matter. The same authors also discussed quan-
tum correction to the entropy of expanding universe.

There are two modifications of the tunneling approach,
namely, Parikh-Wilczek radial null geodesic method (Parikh
2004; Parikh and Wilczek 2000) and the Hamilton-Jacobi
method (Srinivasan and Padmanabhan 1999). Recently,
based on the Hamilton-Jacobi method, Banerjee and Majhi
(2008) developed a tunneling formalism beyond semiclassi-
cal approximation. They computed quantum corrections to
the Hawking temperature T = κ0

2π
and Bekenstein-Hawking

entropy SBH = A
4�

(Bekenstein 1972). The first law of ther-
modynamics also holds in the context of quantum correc-
tions. When quantum effects are considered, the area law of
BH entropy should undergo corrections using loop quantum
gravity, i.e.,

S = SBH + α lnSBH + · · · . (1.1)

Loop quantization reproduces the result of Bekenstein-
Hawking entropy of BH. This formalism has been applied
on various BHs (Banerjee and Modak 2009; Modak 2009;
Zhu et al. 2009a) and FRW universe model (Zhu et al.
2009b).

Banerjee and Modak (2009) gave a simple approach to
obtain the entropy for any stationary BH. Akbar and Sai-
fullah (2010, 2011) studied quantum corrections to entropy
and horizon area for the Kerr-Newmann, charged rotating
BTZ and Einstein-Maxwell dilaton-axion BHs. Recently,
Larrañaga (2011a, 2011b) extended this work for a charged
BH of string theory and for the Kerr-Sen BH. Majhi (2009)
with his collaborator (Majhi and Samanta 2010) analyzed
the Hawking radiation as tunneling of a Dirac particle, pho-
ton and a gravitino through an event horizon by applying the
Hamilton-Jacobi method beyond the semiclassical approxi-
mation.

Chen et al. (2011) investigated the corrected Hawking
temperature and entropy for various BHs, FRW universe
model and neutral black rings. Jamil and Darabi (2011) stud-
ied quantum corrections to the Hawking temperature, en-
tropy and Bekenstein-Hawking entropy-area relation for a
Braneworld BH by using tunneling approach beyond semi-
classical approximation. In a recent paper, we have explored
these quantum corrections for a Bardeen regular BH (Sharif
and Javed 2010). Also, we have discussed thermodynamics

of Bardeen BH in noncommutative space (Sharif and Javed
2011).

This paper investigates temperature and entropy correc-
tions for the Ayón-Beato-García-Bronnikov (ABGB) BH
which is a generalization of the entropy correction for the
Schwarzschild BH (Banerjee and Majhi 2008). The moti-
vation to study ABGB black hole is its feature to express
the location of the horizons in terms of Lambert function
which is used in the discussion of the extremal configura-
tions. Outside the event horizon, this BH solution closely
resembles with the RN geometry both in its local as well as
global structure. Matyjasek (2008) described this BH solu-
tion (exists as a perturbative solution and its various char-
acteristics acquire the correction) by using quadratic gravity
equations.

Here we skip the details of the formulation as it is given in
many papers, e.g. Sharif and Javed (2010) which consists of
basic material used to evaluate corrections to the entropy and
temperature. The plan of the paper is as follows; In Sect. 2,
we evaluate semiclassical thermodynamical quantities (tem-
perature and entropy) for the ABGB regular BH. Section 3
provides the corrections to these quantities. Finally, in the
last section, we summarize the results.

2 Thermodynamical quantities

When particles with positive energy tunnel across the hori-
zon, a BH loses its mass. The tunneling amplitude of parti-
cles emitted by a BH in the form of Hawking radiation can
be calculated for a charged regular BH. The general line el-
ement of a spherically symmetric BH is given by

ds2 = −Fdt2 + F−1dr2 + r2dθ2 + r2 sin2 θdφ2, (2.1)

where F = 1 − 2M(r)
r

. This metric can be reduced to well-
known BHs for the special choice of M(r). Ayón-Beato and
García (1999) and Bronnikov (2000) formulated a solution
of the coupled system of equations of non-linear electrody-
namics and gravity representing a class of the BHs. This is
given by

M(r) = m

[
1 − tanh

(
e2

2mr

)]
, (2.2)

where m is the mass and e is either electric or magnetic
charge. This solution describes a regular static spherically
symmetric configuration which reduces to the Schwarz-
schild solution for e = 0.

The ABGB regular BH solution has a spherical event
horizon at F(r+) = 0 or r+ = 2M , where r+ is the event
horizon. Replacing the value of M , F(r) will take the fol-
lowing form

F(r) = 1 − 2m

r

[
1 − tanh

(
e2

2mr

)]
, (2.3)



Astrophys Space Sci (2012) 337:335–341 337

whose roots are given in Matyjasek (2007, 2008) and its area
is (Larrañaga 2011a, 2011b)

A =
∫ √

gθθgφφdθdφ = 4πr2+. (2.4)

In terms of power series, the ABGB solution turns out to be

F(r) = 1 − 2m

r
+ e2

r2
− e6

12m2r4
+ O

(
1

r6

)
. (2.5)

Notice that F(r) differs from the RN solution by terms of or-
der O(e6). For small e, we can neglect terms of order O(e6)

and onward and hence exactly reduces to the RN solution.
Here we assume that the terms of order O( 1

r6 ) and the
higher orders can be neglected. Thus F(r) can be written as
follows

F(r) = 1 − 2m

r
+ e2

r2
− e6

12m2r4
. (2.6)

From this equation, F(r) = 0 leads to cubic equation in m,
i.e.,

m3 − r

2

(
1 + e2

r2

)
m2 + e6

24r3
= 0. (2.7)

Using Cardan’s solution (Nickalls 1993), we can evaluate
the only real root of this equation, i.e.,

m = r+
6

(
1 + e2

r2+

)
+

[
1

2

(
− e6

24r3+
+ 2r3+

216

(
1 + e2

r2+

)3

+
√√√√ e12

576r6+
− e6

1296

(
1 + e2

r2+

)3)] 1
3

+
[

1

2

(
− e6

24r3+
+ 2r3+

216

(
1 + e2

r2+

)3

−
√√√√ e12

576r6+
− e6

1296

(
1 + e2

r2+

)3)] 1
3

. (2.8)

For e = 0, this reduces to Schwarzschild case whose horizon
radius is r+ = 2m.

Now we simplify (2.8) by Taylor series up to first order
approximation. The term in (2.8) can be written as
√√√√ e12

576r6+
− e6

1296

(
1 + e2

r2+

)3

≈
√

5e6

72r3+
− e4

12
√

5r+
− e2r+

12
√

5
− r3+

36
√

5
. (2.9)

Consequently, the value of m will become

m ≈ r+
6

(
1 + e2

r2+

)
+ r+

(
1

216
− 1

72
√

5

) 1
3

×
[

1 + 1

3( 1
216 − 1

72
√

5
)

{
e6

r6+
×

(
− 7

432
+

√
5

144

)

+ e4

r4+

(
1

72
− 1

24
√

5

)
+ e2

r2+

(
1

72
− 1

24
√

5

)}]

+ r+
(

1

216
+ 1

72
√

5

) 1
3
[

1 + 1

3( 1
216 + 1

72
√

5
)

×
{
− e6

r6+

(
7

432
+

√
5

144

)
+ e4

r4+

(
1

72
+ 1

24
√

5

)

+ e2

r2+

(
1

72
+ 1

24
√

5

)}]
. (2.10)

Notice that if the term ( 1
216 − 1

72
√

5
)

1
3 is solved by Taylor

series (which is a divergent series) then the ABGB regu-
lar BH mass exactly reduces to the Schwarzschild BH mass
m = 0.5r , otherwise it can be defined as

m = 0.3r+ + 0.9e2

r+
− 0.8e6

r5+
+ 0.7e4

r3+
. (2.11)

For e = 0, this expression approximately leads to the
Schwarzschild BH mass.

The semiclassical Hawking temperature TH (Akbar
2007; Kothawala et al. 2007) is

TH = �F ′(r)
4π

∣∣∣∣
r=r+

= �

2π

(
m

r2+
− e2

r3+
+ e6

6m2r5+

)
, (2.12)

where F ′(r) denotes derivative of F with respect to r . The
values of F and m are given by (2.6) and (2.11) respectively.
Substituting this value of m in (2.12) and simplifying, it fol-
lows that

TH = �

2π

(
0.3

r+
− 0.1e2

r3+
+ 0.6999e4

r5+
+ O

(
1

r7+

))
. (2.13)

The electric potential is given by (Akbar and Siddiqui 2007)

� = ∂m

∂e

∣∣∣∣
r=r+

= −4.8
e5

r5+
+ 2.8

e3

r3+
+ 1.8

e

r+
. (2.14)

The semiclassical entropy has the form

S0(m, e) =
∫

dm

TH

= 2π

�

∫
dm

( 0.3
r+ − 0.1e2

r3+
+ 0.6999e4

r5+
)
. (2.15)

To evaluate this integral, we use (2.11) which yields

dm =
(

0.3 − 0.9e2

r2+
+ 4e6

r6+
− 2.1e4

r4+

)
dr+. (2.16)
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Inserting this value in (2.15), we obtain

S0 = 2π

�

∫ (
r+ − 2.6667e2

r+
− 10.3333e4

r3+

+ 18e6

r5+
+ O

(
1

r7+

))
dr+. (2.17)

Integrating this equation, it follows that

S0 = π

�

(
−5.3333e2 ln r+ + r2+ + 10.3333e4

r2+

− 9e6

r4+
+ O

(
1

r6+

))
. (2.18)

It is interesting to mention here that for e = 0 and � = 1,
we recover the Bekenstein-Hawking area law, i.e., S0 = A

4 .

3 Corrections to the thermodynamical quantities

Here we work out the corrected form of Hawking tempera-
ture and the corresponding entropy for the charged regular
BH by taking into account the quantum effects on the ther-
modynamical quantities.

3.1 Hawking temperature corrections

The expression for the semiclassical Hawking temperature
(2.13) can be written as

TH ≈ �

2π

(
0.3

r+
− 0.1e2

r3+
+ 0.7e4

r5+

)
. (3.1)

The corrected temperature is given by (Sharif and Javed
2010)

T = TH

(
1 − β�

m2

)
, (3.2)

where β is given by

β = − 1

360π

(
−N0 − 7

4
N 1

2
+ 13N1 + 233

4
N 3

2
− 212N2

)
,

(3.3)

Ns refers to the number of spin s fields (Banerjee and Majhi
2008). Inserting the value of m in (3.2), it follows that

T = TH

[
1− β�

0.09r2+

{
1−2

(
3e2

r2+
− 2.6667e6

r6+
+ 2.3333e4

r4+

)}]
.

(3.4)

Using (3.1) in (3.4), we obtain the quantum correction of
temperature T by neglecting the higher order terms

T ≈ �

2π

(
0.3

r
− 0.1e2

r3
+ 0.7e4

r5

)

− β�
2

0.18πr2

(
0.3

r
− 1.9e2

r3
− 0.1e4

r5

)
. (3.5)

For e = 0, this implies that T = 0.15�

πr
(1 − 11.11β�

r2 ), which
approaches to the corrected Hawking temperature of the
Schwarzschild BH.

3.2 Entropy corrections

Here, we evaluate the quantum corrections to the entropy
of the ABGB charged regular BH. The corrected form of
entropy is (Sharif and Javed 2010)

S(r, t) = S0(r, t)

(
1 +

∑
i

αi

�
i

m2i

)
. (3.6)

In terms of horizon radius, this can be written as

S(r,t) = S0(r,t)

(
1+

∑
i

αi�
i

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2i

)
,

(3.7)

where the semiclassical entropy can be written from (2.18)
as

S0 ≈ π

�

(
−5.3333e2 ln r+ + r2+ + 10.3333e4

r2+
− 9e6

r4+

)
.

(3.8)

The corrected form of the Hawking temperature is (Sharif
and Javed 2010)

T = TH

⎛
⎝1 +

∑
i

αi�
i

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2i

⎞
⎠

−1

.

(3.9)

Using the first law of thermodynamics, dm = T dS + �de,
we can write the condition for the exact differential as

∂

∂e

(
1

T

)
= ∂

∂m

(
−�

T

)
. (3.10)
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Inserting the value of corrected temperature, it follows that

∂

∂e

(
1

TH

)(
1 +

∑
i

αi�
i

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2i

)

= ∂

∂m

(
− �

TH

)

×
(

1+
∑

i

αi�
i

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2i

)
. (3.11)

Using the exact differential condition, the entropy in the
integral form is

S(m, e) =
∫

1

T
dm −

∫
�

T
de −

∫ (
∂

∂e

(∫
1

T
dm

))
de.

(3.12)

Substituting the value of corrected temperature, the corre-
sponding corrected entropy will become

S(m, e)

=
∫

1

TH

⎛
⎝1 +

∑
i

αi�
i

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2i

⎞
⎠dm

−
∫

�

TH

⎛
⎝1 +

∑
i

αi�
i

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2i

⎞
⎠de

−
∫ (

∂

∂e

(∫
1

TH

×
(

1 +
∑

i

αi�
i

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2i

)
dm

))
de.

(3.13)

We can simplify these complicated integrals by employ-
ing the exactness criterion (Sharif and Javed 2010). Con-
sequently, this reduces to

S(m, e)

=
∫

1

TH

⎛
⎝1 +

∑
i

αi�
i

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2i

⎞
⎠dm

(3.14)

which can be written in expanded form as

S(m, e) =
∫

1

TH

dm

+
∫

α1�

TH (0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2

dm

+
∫

α2�
2

TH (0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)4

dm

+
∫

α3�
3

TH (0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)6

dm + · · ·

= I1 + I2 + I3 + I4 + · · · . (3.15)

The first integral I1 has been evaluated in (2.18) and
I2, I3, . . . are corrections due to quantum effects. Thus

I2 = 2πα1

∫ (0.3 − 0.9e2

r2+
+ 4e6

r6+
− 2.1e4

r4+
)

( 0.3
r+ − 0.1e2

r3+
+ 0.7e4

r5+
)(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2

dr+, (3.16)

I3 = 2πα2�

∫ (0.3 − 0.9e2

r2+
+ 4e6

r6+
− 2.1e4

r4+
)

( 0.3
r+ − 0.1e2

r3+
+ 0.7e4

r5+
)(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)4

dr+. (3.17)

In general, we can write for k > 3

Ik = 2παk−1�
k−2

∫ (
(0.3 − 0.9e2

r2+
+ 4e6

r6+
− 2.1e4

r4+
)

( 0.3
r+ − 0.1e2

r3+
+ 0.7e4

r5+
)

1

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2(k−1)

)
dr+. (3.18)

Replacing all the values in (3.15), it follows that
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S(m, e) = 2π�
−1

∫ (0.3 − 0.9e2

r2+
+ 4e6

r6+
− 2.1e4

r4+
)

( 0.3
r+ − 0.1e2

r3+
+ 0.7e4

r5+
)

dr+ + 2πα1

∫ (0.3 − 0.9e2

r2+
+ 4e6

r6+
− 2.1e4

r4+
)

( 0.3
r+ − 0.1e2

r3+
+ 0.7e4

r5+
)(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2

dr+

+
∑
k>2

2παk−1�
k−2

∫ ⎛
⎜⎝

(0.3 − 0.9e2

r2+
+ 4e6

r6+
− 2.1e4

r4+
)

( 0.3
r+ − 0.1e2

r3+
+ 0.7e4

r5+
)

1

(0.3r+ + 0.9e2

r+ − 0.8e6

r5+
+ 0.7e4

r3+
)2(k−1)

⎞
⎟⎠dr+. (3.19)

This gives the quantum correction to the entropy for a
ABGB charged BH.

For e = 0, (3.19) reduces to

S = A

4�
+ πα1lnA

(0.3)2
− 4π2

�α2

(0.3)4A
+ · · · , (3.20)

where A is given by (2.4). This is approximately similar to
the corrected entropy of the Schwarzschild BH (Banerjee
and Majhi 2008). It is worth mentioning here that the first
term of (3.20) is the semiclassical Bekenstein-Hawking area
law, i.e., SBH = A

4�
, while the remaining terms are due to

quantum corrections. Thus, SBH is modified by quantum ef-
fects. Integrating (3.19), it follows that

S(m, e) = π�
−1

(
−5.3333e2 ln r+ + r2+

+ 10.3333e4

r2+
− 9e6

r4+

)

+ πα1

(
22.22 ln r+ + 96.22e2

r2+
+ 27.78e4

r4+

)

+ 2π�α2

(0.3)4

(
−0.5

r2+
+ 3.67e2

r4+

)
+ · · · . (3.21)

The entropy (3.19) in terms of A is given as follows

S(m, e) = �
−1

4

∫ (1 − 3e2

( A
4π

)
+ 13.3333e6

( A
4π

)3 − 7e4

( A
4π

)2 )

(1 − 0.3333e2

( A
4π

)
+ 2.3333e4

( A
4π

)2 )
dA

+ α1π

(0.3)2

∫ ⎛
⎜⎝

(1 − 3e2

( A
4π

)
+ 13.3333e6

( A
4π

)3 − 7e4

( A
4π

)2 )

(1 − 0.3333e2

( A
4π

)
+ 2.3333e4

( A
4π

)2 )

× 1

(1 + 3e2

( A
4π

)
− 2.6667e6

( A
4π

)3 + 2.3333e4

( A
4π

)2 )2

⎞
⎟⎠dA

+
∑
k>2

22k−4
�

k−2αk−1(π)k−1

(0.3)2k−2

×
∫ ⎛

⎜⎝
(1 − 3e2

( A
4π

)
+ 13.3333e6

( A
4π

)3 − 7e4

( A
4π

)2 )

Ak−1(1 − 0.3333e2

A
4π

+ 2.3333e4

( A
4π

)2 )

× 1

(1 + 3e2

( A
4π

)
− 2.6667e6

( A
4π

)3 + 2.3333e4

( A
4π

)2 )2k−2

⎞
⎟⎠dA.

(3.22)

S(m, e) = �
−1

4

∫ (
1 − 2.66666e2

( A
4π

)
− 10.3334e4

( A
4π

)2
+ 18e6

( A
4π

)3

+ O

(
1

A4

))
dA + α1π

(0.3)2

∫
1

A

(
1 − 8.6667e2

( A
4π

)

+ 5e4

( A
4π

)2
+ 60.8855e6

( A
4π

)3
+ O

(
1

A4

))
dA

+ 4α2π
2
�

(0.3)4

∫
1

A2

(
1 − 14.6667e2

( A
4π

)
+ 20.3335e4

( A
4π

)2

+ 103.775e6

( A
4π

)3
+ O

(
1

A4

))
dA + · · · . (3.23)

When we take e = 0, this equation leads to (3.20). Solving
(3.23), we obtain

S(m, e) = �
−1

4

(
A + 1631.78e4

A
− 17859.6e6

A2
+ O

(
1

A3

))

+ α1π

(0.3)2

(
lnA + 108.909e2

A
− 394.785e4

A2

+ O

(
1

A3

))
+ 4α2π

2
�

(0.3)4

(
− 1

A
+ 92.1536e2

A2

+ O

(
1

A3

))
+ · · · . (3.24)

4 Outlook

The semiclassical entropy and temperature of the BH should
be corrected due to quantum effects. The tunneling for-
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malism beyond semiclassical approximation is one of the
approaches which provides quantum corrections to these
thermodynamical quantities of a BH. In general, the cor-
rected form of entropy has a logarithmic leading order
term.

The entropy of the BH can be calculated by using var-
ious methods. For instance, Wald’s technique (Wald 1993;
Iyer and Wald 1994; Jacobson et al. 1994) is suitable for
higher curvature theories while some techniques (Whitt
1985; Audretsch et al. 1993; Jacobson et al. 1995) are based
on the field redefinition and Visser’s (1992, 1993a, 1993b)
Euclidean approach.

In this paper, we use quantum tunneling approach be-
yond semiclassical approximation to study the quantum cor-
rections of temperature and entropy for the ABGB charged
regular BH. For this purpose, first of all, we have evaluated
the semiclassical temperature and entropy that reduce to the
temperature and entropy of the Schwarzschild case (Baner-
jee and Majhi 2008) for e = 0. The quantum corrections to
the temperature and entropy approximate to the corrected
form of temperature (Banerjee and Majhi 2008) and en-
tropy (3.20) of the Schwarzschild case respectively for zero
charge.

It is interesting to mention here that the leading or-
der entropy correction of the charged regular BH turns out
to be a logarithmic term which is expected due to quan-
tum effects. The other terms involve ascending powers of
the inverse of the area (Banerjee and Majhi 2008). The
Bekenstein-Hawking entropy-area relationship also reduces
to the Schwarzschild when we take zero charge. It is worth-
while to note that quantum corrections to the thermodynam-
ical quantities, i.e., temperature and entropy, given by (3.5)
and (3.21) respectively, reduce to the classical temperature
and entropy ((2.13) and (2.18)) after the correction is disap-
peared.

We would like to point out here that semiclassical ther-
modynamical quantities and their corresponding corrections
has been evaluated by using Taylor’s expansion up to the
first order approximation. These approximations are valid
only for the specific ratio of e and r . Consequently, quantum
corrections of temperature and entropy with specific ratio of
e and r do not represent class of corrections corresponding
to semiclassical values of temperature and entropy. Hence
quantum corrections to the thermodynamical quantities are
not larger than the semiclassical thermodynamical quanti-
ties.

Finally, it is mentioned that the entropy of this BH so-
lution has also been discussed by Matyjasek. However, he
used Wald’s and Visser’s Euclidean approaches (Matyjasek
2008). In our work, we have analyzed the issue of quan-

tum corrections by using Hamilton-Jacobi method beyond
the semiclassical approximation.
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