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Abstract The propagation of nonlinear waves in plasmas
consisting of cold electron fluid and superthermal hot elec-
trons and stationary ions is studied. The Korteweg-de Vries
(KdV) equation is derived using the reductive perturbation
theory. It is found that only the rarefractive solitons can be
created. Moreover, the linear dispersion relation and energy
of solitary waves in the presence of hot superthermal elec-
trons are derived. Our investigation is of wide relevance
to astronomers and space scientists working on interstellar
space plasmas.
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1 Introduction

The electron-acoustic wave, which is one of the basic wave
processes in plasmas, is a high-frequency (in comparison
with the ion plasma frequency) wave that occurs in plasmas
having, in addition to positively charged ions, two electron
components with widely disparate temperatures (Watanabe
and Taniuti 1977; Tokar and Gary 1984; Gary and Tokar
1985). The electron acoustic solitary waves (EASWs) can
also be generated by electron and laser beams (Gary and
Tokar 1985; Montgomery et al. 2001). Recently, a great
deal of interest has been shown in the studies on the propa-
gation of EASWs. They have been observed in space and

H.R. Pakzad (�)
Department of Physics, Bojnourd Branch, Islamic Azad
University, Bojnourd, Iran
e-mail: pakzad@bojnourdiau.ac

H.R. Pakzad (�)
e-mail: ttaranomm83@yahoo.com

laboratory plasmas. On the other hand, they are investi-
gated because of their importance in interpreting electro-
static component of the broadband electrostatic noise (BEN)
observed in the cusp region of the terrestrial magnetosphere
(Tokar and Gary 1984; Singh and Lakhina 2001), in the ge-
omagnetic tail (Schriver and Ashour-Abdalla 1989), in the
dayside auroral acceleration region (Dubouloz et al. 1977;
Pottelette et al. 1999) and etc. The propagation of EASWs
in a plasma system has been studied by several investiga-
tors in an unmagnetized two-electron plasma (Dubouloz et
al. 1977; Chatterjee and Roychoudhury 1995; Berthomier
et al. 2000; Mamun and Shukla 2002) as well as in magne-
tized plasmas (Mace and Hellberg 2001; Mamun et al. 2002;
Berthomier et al. 2003; Shukla et al. 2004). On the other
side, space plasma observations indicate clearly the presence
of electron populations which are far away from their ther-
modynamic equilibrium (Gill et al. 2006; El-Shewy 2007b;
Vasyliunas 1968; Leubner 1982; Younsi and Tribeche 2010;
Pakzad and Tribeche 2010; Sahu 2010b; Armstrong et al.
1983). Numerous observations of space plasmas (Feldman
et al. 1973; Formisano et al. 1973; Scudder et al. 1981;
Marsch et al. 1982) clearly prove the presence of superther-
mal electron and ion structures as ubiquitous in a variety
of astrophysical plasma environments. Superthermal parti-
cles may arise due to the effect of external forces acting on
the natural space environment plasmas or because of wave-
particle interactions. Plasmas with an excess of superther-
mal (non-Maxwellian) electrons are generally characterized
by a long tail in the high energy region. It has been found
that generalized Lorentzian of k distribution can be mod-
eled such space plasmas, better than the Maxwellian distri-
bution (Hasegawa et al. 1985; Thorne and Summers 1991;
Summers and Thorne 1991; Summers and Thorne 1994;
Mace and Hellberg 1995b). Kappa distribution has been
used by several authors (Hellberg and Mace 2002; Podesta
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2005; Abbasi and Pajouh 2007; Baluku and Hellberg 2008;
Hellberg et al. 2009; Sultana et al. 2010; Baluku et al. 2010)
in studying the effect of Landau damping on various plasma
modes. “Superthermal” plasma behavior was observed in
various experimental plasma contexts, such as laser matter
interactions or plasma turbulence (Magni et al. 2005). At
very large values of the spectral index k, the velocity distri-
bution function approaches a Maxwellian distribution, while
for low values of k, they represent a “hard” spectrum with a
strong non-Maxwellian tail having a power-law form at high
speeds. The motivation of the presented paper is therefore to
study the existence of EASWs in plasmas having stationary
ions, cold inertial electrons and hot superthermal electrons.

2 Basic equations

We consider a homogeneous, unmagnetized plasma consist-
ing of a cold electron fluid, hot electrons obeying a su-
perthermal distribution and stationary ions. The nonlinear
dynamics of the electron acoustic solitary waves is governed
by the continuity and motion equations for cold electrons,
and the Poisson’s equation (Younsi and Tribeche 2010;
Pakzad and Tribeche 2010; Sahu 2010b)
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In the above equations, nc(nh) is the cold (hot) elec-
tron number density normalized by its equilibrium value
nc0(nh0), uc is the cold electron fluid velocity normalized
by Ce = (kBTh/αme)

1/2, φ is the electrostatic wave po-
tential normalized by kBTh/e while kB is the Boltzmann’s
constant, e the electron charge, me electron mass and α =
nh0/nc0. The time and space variables are in units of the
cold electron plasma period ω−1

pc and the hot electron Debye
radius λDh, respectively.

nh is the superthermal hot electron density and it is given
by Pakzad and Tribeche (2010)

nh =
(

1 − φ

k − 1/2

)−k− 1
2

(2)

The parameter κ shapes predominantly the superthermal tail
of the distribution (Tribeche and Boubakour 2009) and the
normalization is provided for any value of the spectral index
κ > 1/2 (Boubakour et al. 2009). In the limit κ → ∞, (2) re-
duces to the well known Maxwell-Boltzmann electron den-
sity. Low values of k represent distributions with a relatively
large component of particles which their velocity are greater

than the thermal speed (“superthermal particles”) and an as-
sociated reduction in “thermal” particles, as one observes in
a “hard” spectrum. Such a very hard spectrum, with an ex-
treme accelerated superthermal component, may be found
near very strong shocks associated with Fermi acceleration
(Mace and Hellberg 1995a).

Now, we study the small but infinite amplitude waves
in dust plasmas with superthermal electrons by using the
reductive perturbation method. Firstly, we introduce the
stretched coordinates as, ξ = ε1/2(x −λt), τ = ε3/2t , where
ε is a small dimensionless expansion parameter and λ is the
wave speed normalized by Ce. Secondly, we expand depen-
dent variables as follows,
⎡
⎢⎣

nc = 1 + εn1c + ε2n2c + · · ·
uc = εu1c + ε2u2c + · · ·
φ = εφ1 + ε2φ2 + · · ·

(3)

Substituting (3) into (1) and collecting the terms in dif-
ferent powers of ε the following equations can be obtained
at the lower order of ε
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λ
,
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at the higher order of ε, we have
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Finally from (4) and (5) the KdV equation yields
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where the coefficients are

A = −
(

3α

2λ
+ 2k + 3

2k − 1
λ

)
, B = λ3

2
(7)

The above results can be compared with the results in
Younsi and Tribeche (2010) and Pakzad and Tribeche (2010)
for nonthermal and nonextensive hot electrons, respectively.
In order to study a stationary solitary wave solution of (6),
we assume that the stationary solution can be expressed as,
φ1 = φ1(χ), where χ = ξ −uτ . Substituting this expression
into (6), we can obtained the stationary solitary wave solu-
tion

φ1 = φ0 sech2
(

χ

w

)
(8)

where φ0 = 3u/A is the soliton amplitude and w = 2
√

B/u

is its width.
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Fig. 1 The variation of
nonlinear coefficient (A) respect
to k-parameter for different
values of α

Fig. 2 The variation of
dispersion coefficient (B)
respect to k-parameter

3 Discussion

We can investigate the properties of solitary waves with nu-
merical analysis of φ1 using (8). In order to study elec-
tron acoustic solitary waves, we can use (8) in our plasma
model. Equation (8) shows that the soliton amplitude de-
pends on both α and k, but the soliton width depends on
only k-parameter. It is seen that A is always negative and
therefore only the rarefactive solitons can be created. This is
congruent with the investigation of Sahu (2010a) which has
been done using the Sagdeev’s pseudopotential technique.
Figure 1 shows the variation of nonlinear coefficient (A) as
a function of superthermal parameter (k) for different values
of α.

We can find from Figs. 1 and 2 and also (8) that the am-
plitude and width of solitons increases with an increasing
in k. It is clear that the soliton amplitude decreases when α

increases. In Fig. 3, the profile of solitons has been plotted
with respect to χ for different values of k.

Because of using a weakly nonlinear analysis, the poten-
tial (φ1) has to ranging from 0 to −1. Therefore the soliton
amplitude (|φ1|) does not exceed 1 and we have to choose
the adequate parameters to maintain the weakly nonlinear
nature of our analysis. The variation of the soliton ampli-
tude as a function of k can be studied by plotting the ampli-
tude respect to k for the case of u = 1 and different values
of α. Figure 4 shows that for α1 = 0.4 the amplitude be-
comes more than 1 for k > kc1 = 1.47 as the soliton struc-
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Fig. 3 The variation of profile
of soliton (φ1) respect to χ for
different values of k-parameter

ture will be failed to exist, thus the values k > 1.47 are rule
out from our model. Also our results which have been plot-
ted in Figure 4, show that the admissible values of k are
respectively, smaller than 2.26 and 4.66 for α2 = 0.7 and
α3 = 1. The threshold superthermal parameters are shifted
toward higher values as α increases. It is also obvious that
for α4 = 1.5 there is no threshold value for superthermal
parameter (k). Thus, there is no limitation for k-parameter
with some values of α. It is also seen that the range of ad-
missible values of k-parameter increases when hot electron
density (α) increases. On the other hand, (8) shows that the
amplitude depends on soliton velocity (|φ0| = 3u

|A| ). It is ob-
vious that the threshold value of (kc) decreases for higher
values of “u”.

We now proceed to obtain the linear dispersion relation
for low frequency modes by using a variety of theoretical
models. According to the standard normal-mode analysis,
by linearization of dependent variables nd , φ and ud in term
of their equilibrium and perturbed parts (Annou 1998), we
have nd = 1 + n1d , φ = φ1d and ud = u1d . Assume that the
wave perturbations behave like ei(Kx−ωt) (K is the wave
propagation constant in the direction of x-axis), from (1),
we obtain the following equations

−iωn1 + iKu1 = 0

−iωu1 − iαKφ1 = 0

−
(

K2 + 2k + 1

2k − 1

)
φ1 = n1

α

Thus, we obtain the following dispersion relation for
EAWs

ω2 = K2

K2 + 2k+1
2k−1

(9)

For real values of ω, all of the variables oscillate har-
monically. If at least one of the ω’s has positive imag-
inary part, then the system is unstable since those nor-
mal modes will grow in time (Samanta et al. 2007). It
is observed that the dispersion relation given by (9) de-
pends upon the value of the superthermal parameter k. It
is seen that ω increases as the value of K increases. Also
one can show that ω is shifted towards higher values as
k → ∞, i.e., as the hot electron component evolves towards
its Maxwell-Boltzmann thermodynamic equilibrium. Thus
deviation from the Maxwellian distribution appears to de-
crease the energy of the wave.

The study of soliton energy is one of the ways to further
recognize solitary waves in the plasmas. One of the main
points of the paper is to study the effect of superthermal
electrons on the energy of electron acoustic waves. Soliton
energy is defined by the following integral (Singh and Hon-
zawa 1993)

E =
∫ +∞

−∞
u2

1(χ)dχ (10)

where χ = ξ − uτ . Thus we can obtain (El-Shewy 2007a)

E = 4

3
u2

mw = 24α2u2

A2
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)√
B

u
(11)

One can study the energy of the rarefactive solitary waves
using Fig. 5. This figure demonstrates that the energy of
solitons increases when superthermal parameter increases.
Thus, the soliton energy decreases in the presence of su-
perthermal electrons. We can also see that the energy of
solitons increases with increasing values of α. Therefore the
energy of solitons increases when density of hot electrons
increases.
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Fig. 4 The variation of the
soliton amplitude with respect
to k for u = 1 and different
values of α

Fig. 5 Energy of soliton respect
to k-parameter for u = 1 and
different values of α

4 Conclusion

To conclude, we have addressed the problem of electron-
acoustic oscillations in unmagnetized collisionless plasmas
comprising cold fluid electrons, superthermal hot electrons
and stationary ions. We have derived the linear dispersion
relation and also found that ω is shifted towards higher
values as the hot electron component evolves towards its
Maxwell-Boltzmann thermodynamic equilibrium. We have
also derived the KdV equation using the reductive perturba-
tion method. Our results show that solitary waves appear in
such plasmas and the effect of the superthermal hot electrons
modifies the structure of the waves. In a weakly nonlinear
analysis of solitary waves with superthermal hot electrons,
there is threshold value for k (kc), such that the acceptable
value of k-parameter is smaller than kc. In addition, the do-
main of allowable k-parameter shrinks as the relative num-

ber of hot electrons decreases. The energy of soliton and
linear dispersion relation have been derived and discussed
too. We have shown that increasing superthermal parame-
ter results in the increase of the angular frequency. We have
also found that the energy of compressive (rarefactive) soli-
tons, increases (decreases) in the presence of superthermal
electrons. It may be pointed out that the results of this in-
vestigation may be useful for understanding some nonlinear
behavior of electrostatic waves about the strong spiky wave-
forms which have been observed in auroral electric fields
(Ergun et al. 1998).
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