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Abstract The present study deals with spatially homoge-
neous and totally anisotropic locally rotationally symmetric
(LRS) Bianchi type I cosmological model with variable G

and � in presence of imperfect fluid. To get the determinis-
tic model of Universe, we assume that the expansion (θ) in
the model is proportional to shear (σ ). This condition leads
to A = �Bn, where A, B are metric potential. The cosmo-
logical constant � is found to be decreasing function of time
and it approaches a small positive value at late time which
is supported by recent Supernovae Ia (SN Ia) observations.
Also it is evident that the distance modulus curve of derived
model matches with observations perfectly.

Keywords LRS Bianchi type I Universe · Bulk viscosity ·
Variable G and �

1 Introduction

Recent astronomical observations of type Ia supernovae
with redshift parameter z ≤ 1 (Perlmutter et al. 1997, 1998,
1999; Riess et al. 1998, 2004; Garnavich et al. 1998a,
1998b), Wilkison Microwave Anisotropy Probe (WMAP)
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(Spergel et al. 2003) etc. provide evidence that we may live
in low mass density Universe i.e. � ∼ 0.3 (Riess 1986).
The predictions of observations lead to a convincing be-
lief in modern cosmology that a part of Universe is filled
up with dark energy (� ∼ 0.7), which may be addressed
by suitable cosmological constant. There are significant ob-
servational evidence that the expansion of the Universe is
undergoing a late time acceleration (Perlmutter et al. 1997,
1998, 1999; Riess et al. 1998, 2004; Efstathiou et al. 2002;
Spergel et al. 2003; Allen et al. 2004; Sahni and Starobin-
sky 2000; Peebles and Ratra 2003; Padmanabhan 2003;
Lima 2004). This, in other words, amounts to saying that
in the context of Einstein’s general theory of relativity some
sort of dark energy, constant or that varies only slowly with
time and space dominates the current composition of cos-
mos. The origin and nature of such an accelerating field
poses a completely open question. The main conclusion of
these observations is that the expansion of the Universe is
accelerating.

Among many possible alternatives, the simplest and most
theoretically appealing possibility for dark energy is the en-
ergy density stored on the vacuum state of all existing fields
in the Universe, i.e., ρv = �

8πG
, where � is the cosmologi-

cal constant. However, a constant � cannot explain the huge
difference between the cosmological constant inferred from
observation and the vacuum energy density resulting from
quantum field theories. In an attempt to solve this prob-
lem, variable � was introduced such that � was large in
the early universe and then decayed with evolution (Dolgov
1983). Since the pioneering work of Dirac (1938), who pro-
posed a theory with a time varying gravitational coupling
constant G(t), a number of cosmological models with vari-
able G and � have been recently studied by several authors
(Arbab 2003; Sistero 1991; Sattar and Vishwakarma 1997;
Pradhan and Chakrabarty 2001; Singh et al. 2008).
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To describe the relativistic theory of viscosity, Eckart
(1940) made the first attempt. the theories of dissipation
in Eckart formulation suffers from serious short-coming,
viz., causality and stability (Hiskock and Lindblom 1985;
Hiskock 1986) regardless of the choice of equation of state.
The problem arises due to first order nature of the theory,
since it considers only first order deviation from equilib-
rium. It has been shown that the problems of the relativis-
tic imperfect fluid may be resolved by including higher
order deviation terms in the transport equation (Hiskock
and Salmonson 1991). Isreal and Stewart (1970) and Pavon
(1991) developed a fully relativistic formulation of the the-
ory taking into account second order deviation terms in the
theory, which is termed as “transient” or “extended” irre-
versible thermodynamics (EIT). The crucial difference be-
tween the standard Eckart and the extended Isreal-Stewart
transport equations is that the latter is a differential evolu-
tion equations, while the former is an algebraic relation. In
irreversible thermodynamics, the entropy is no longer con-
served, but grows according to the second law of thermo-
dynamics. Bulk viscosity arises typically in the mixtures ei-
ther of different species or of species but with different en-
ergies. The solution of the full causal theory are well be-
haved for all the times. Therefore the best currently avail-
able theory for analyzing dissipative processes in the Uni-
verse is the Full Isreal-Stewart theory (FIS). Several authors
(Kremer and Devecchi 2003; Singh and Beesham 2000;
Debnath et al. 2007; Singh and Kale 2009) and recently
Yadav (2010, 2011) have obtained cosmological models
with dissipative effects. Pradhan et al. (2004); Singh (2009);
Singh and Kumar (2009) and Bali and Kumawat (2008)
have studied matter filled imperfect fluid in different physi-
cal context.

The simplest of anisotropic models are Bianchi type-I ho-
mogeneous models whose spatial sections are flat but the
expansion or contraction rate are direction dependent. For
studying the possible effects of anisotropy in the early Uni-
verse on present day observations many researchers (Huang
1990; Chimento et al. 1997; Lima and Trodden 1996; Lima
and Maia 1994; Pradhan and Singh 2004; Pradhan and
Pandey 2006; Saha 2005, 2006a, 2006b) have investigated
Bianchi type-I models from different point of view. In this
paper, we present the exact solution of Einstein’s field equa-
tions with variable G and � in LRS Bianchi I space-time in
presence of imperfect fluid as a source of matter. The paper
has following structure. In Sect. 2, the metric and field equa-
tions are described. The Sect. 3 deals with the exact solution
of the field equations and physical behaviour of the model.
The distance modulus curve is described in Sect. 4. At the
end we shall summarize the findings.

2 The metric and field equations

We consider the LRS Bianchi type I metric of the form

ds2 = −dt2 + A2dx2 + B2(dy2 + dz2), (1)

where, A and B are functions of t only. This ensures that the
model is spatially homogeneous.

The energy-momentum tensor T i
j for bulk viscous fluid

is taken as

T i
j = (ρ + p + 	)vivj + (p + 	)gi

j , (2)

where p is the isotropic pressure; ρ is the energy density of
matter; 	 is the bulk viscous stress; vi = (0,0,0,1) is the
four velocity vector satisfying the relations

viv
i = −1. (3)

The bulk viscous stress is given by

	 = −ξ v
j

;i , (4)

where ξ is the bulk viscosity coefficient.
The Einstein’s field equations with cosmological constant

may be written as

Ri
j − 1

2
gi

jR − �g
j
i = −8πGT i

j . (5)

The Einstein’s field (5) for the line-element (1) lead to the
following system of equations

2
B44

B
+ B2

4

B2
= −8πG(p + 	) + �, (6)

A44

A
+ B44

B
+ A4B4

AB
= −8πG(p + 	) + �, (7)

B2
4

B2
+ 2

A4B4

AB
= 8πGρ + �. (8)

Here, and in what follows, sub indices 4 in A, B and else-
where indicates differentiation with respect to t .

In view of vanishing divergence of Einstein tensor, we
get

8πG

[
ρ4 + (ρ + p + 	)

(
A4

A
+ 2

B4

B

)]

+ 8πρG4 + �4 = 0. (9)

Using (4), the energy conservation equation (9) splits into
two equations

ρ4 + (ρ + p + 	)

(
A4

A
+ 2

B4

B

)
= 0, (10)
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and

8πρG4 + �4 = 0. (11)

The average scale factor (a) of LRS Bianchi type I model is
defined as

a = (AB2)
1
3 . (12)

The spatial volume (V ) is given by

V = a3 = AB2. (13)

We define the mean Hubble parameter (H ) for LRS Bianchi
I space-time as

H = a4

a
= 1

3

(
A4

A
+ 2

B4

B

)
. (14)

The expansion scalar (θ ), shear scalar (σ ) and mean ani-
sotropy parameter (Am) are defined as

θ = 3H = A4

A
+ 2

B4

B
, (15)

σ 2 = 1

2

(
3∑

i=1

H 2
i − 1

3
θ2

)
, (16)

Am = 1

3

3∑
i=1

(
Hi − H

H

)2

. (17)

3 Solutions of the field equations

The system of (6)–(8), (10) and (11) is employed to ob-
tain the cosmological solution. The system of equations is
not closed as it has seven unknown (A, B , ρ, P 	, G and
�) to be determined from five equations. Therefore, two ad-
ditional constraint relating these parameters are required to
obtain explicit solution of the system.

Firstly, we assume that the expansion (θ) in the model is
proportional to the shear (σ ). This condition leads to

A = �Bn, (18)

where � and n are constant of integration and positive con-
stant respectively.

Following Luis (1985), Johari and Kalyani (1994), Singh
and Beesham (1999) and recently Singh and Kale (2009),
we assume the well accepted power law relation between
gravitational constant G and scale factor a as

G = G0a
m, (19)

where G0 and m are positive constants.

Equations (6), (7) and (18) lead to

B44

B
+ (n + 1)

B2
4

B2
= 0. (20)

The solution of (20) is given by

B = (k1t + k0)
1

n+2 , (21)

where k0 and k1 are the constants of integration.
From (18) and (21), we obtain

A = �(k1t + k0)
n

n+2 . (22)

The rate of expansion in the direction of x, y and z are given
by

Hx = A4

A
= nk1

(n + 2)

1

(k1t + k0)
, (23)

Hy = Hz = k1

(n + 2)

1

(k1t + k0)
. (24)

The mean Hubble’s parameter (H), expansion scalar (θ) and
shear scalar (σ ) are given by

H = k1

3(k1t + k0)
, (25)

θ = k1

(k1t + k0)
, (26)

σ 2 = (n − 1)2k2
1

3(n + 2)2

1

(k1t + k0)2
. (27)

The spatial volume (V ), mean anisotropy parameter (Am),
and average scale factor (a) are found to be

V = �(k1t + k0), (28)

Am = 2(n − 1)2

(n + 2)2
. (29)

From (26) and (27), we obtain

σ

θ
= (n − 1)√

3(n + 2)
, (30)

a = [�(k1t + k0)] 1
3 . (31)

For specification of ξ , we assume that the fluid obeys the
equation of state of the form

p = γρ, (32)

where γ (0 ≤ γ ≤ 1) is a constant and it is termed as Equa-
tion of state parameter (EoS parameter).
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Differentiating (8), we obtain

8πGρ4 + 8πG4ρ + �4 = (2n + 1)k2
1

(n + 2)2(k1t + k0)2
. (33)

From (11), (19), (31) and (33), we obtain

ρ = 3(2n + 1)k1

8πG0�
1
3 m(n + 2)2(k1t + k0)

m+3
3

. (34)

Equations (6)–(8), (19), (21), (22), (31), (32) and (34) yield
exclusive expression for pressure (p), cosmological constant
(�), Gravitational constant (G) and bulk viscous stress (	)

as follows,

p = 3γ (2n + 1)k1

8πG0�
1
3 m(n + 2)2(k1t + k0)

m+3
3

, (35)

� = (2n + 1)k1

(n + 2)2

[
k1

(k1t + k0)2
− 3�

m−1
3

m(k1t + k0)

]
, (36)

G = G0[�(k1t + k0]m
3 , (37)

	 = − (2n + 1)k1

8πG0(n + 2)2[�(k1t + k0)]m
3

×
[

3(1 − γ )�
m−1

3

m(k1t + k0)
− 2k1

(k1t + k0)2

]
. (38)

We observe that model has singularity at t = − k0
k

which
can be shifted to t = 0, by choosing k0 = 0. This singularity
is of point type as all scale factors vanish at t = − k0

k
. The

parameter ρ, p and � start off with extremely large values.
From (28), it can be seen that the spatial volume is zero at
t = − k0

k
and it increases with cosmic time. The parameter

Hx , Hy , Hz, H , θ and σ 2 diverse at initial singularity. These
parameters decrease with evolution of Universe and finally
drop to zero at late time. Figure 1 depicts the variation of
gravitational constant G versus time. From (36), we observe
that �(t) is decreasing function of time and � > 0 for all
times. Figure 2 shows this behaviour of cosmological con-
stant �(t). Thus the nature of � in our derived model of the
Universe is consistent with recent SN Ia observations.

In EIT, the bulk viscous stress 	 satisfies a transport
equation given by

	 + τ	4 = −3ξH − ε

2
τ	

[
3H + τ4

τ
− ξ4

ξ
− T4

T

]
, (39)

where, τ is the relaxation coefficient of the transient bulk
viscous effects and T ≥ 0 is the absolute temperature of
the Universe. The parameter ε takes the value 0 or 1. Here
ε = 0, represents truncated Israel-Stewart theory and ε = 1,
represents full Isreal-Stewart (FIS) causal theory. One re-
covers the non-causal Eckart theory for τ = 0.

Fig. 1 Plot of gravitational constant (G) versus cosmic time (t)

Fig. 2 Plot of cosmological constant (�) versus cosmic time (t)

Maartens (1995) has pointed out that the Gibb’s integra-
bility condition suggest if the equation of state for pressure
is barotropic (i.e. p = p(ρ)) then the equation of state for
temperature should be barotropic (i.e. T = T (ρ)) and it may
be expressed as

T ∝
∫

dp(ρ)

ρ + p(ρ)
. (40)

From (31) and (34), we obtain

T = T0ρ
γ

1+γ , (41)

where T0 stands for a constant.
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Fig. 3 Plot of temperature (T ) versus cosmic time (t) for γ = 1
3

and γ = 1

Using (34) into (41), we obtain the expression for tem-
perature (T ) in terms of cosmic time (t) as

T = T0

[
3(2n + 1)k1

8πG0�
1
3 m(n + 2)2(k1t + k0)

m+3
3

] γ
1+γ

. (42)

From (42), it is evident that temperature is decreasing func-
tion of time. The variation of temperature versus cosmic
time for γ = 1

3 (radiation dominated era) and γ = 1 (stiff
fluid dominated era) has been graphed in Fig. 3. It is clear
that temperature of Universe decreases sharply for stiff fluid
and approaches to small positive value at late time, as ex-
pected.

Bulk viscosity in Eckart’s theory The evolution equation
(39) for bulk viscosity in non-causal Eckart’s theory reduces
to

	 = −3ξH. (43)

With help of (25), (38) and (43), we have the relation be-
tween bulk viscosity coefficient (ξ) and cosmic time (t) as

ξ = (2n + 1)

8πG0(n + 2)2[�(k1t + k0)]m
3

×
[

3(1 − γ )�
m−1

3

m
− 2k1

(k1t + k0)

]
. (44)

Bulk viscosity in truncated theory It has been already
pointed out that in truncated theory (i.e. ε = 0), the evolution
equation (39) for bulk viscosity reduces to

	 + τ	4 = −3ξH. (45)

Following, Singh and Kale (2009), the relation between τ

and coefficient of bulk viscosity ξ is given by

τ = ξ

ρ
. (46)

This relation is physically viable because the viscosity sig-
nals do not exceed the speed of light. Thus (45) leads to

	 + ξ

ρ
	4 = −3ξH. (47)

Using (25), (34) and (38) into (47), we obtain

ξ = k2[3(1 − γ )�
m−1

3 − 2k1(k1t + k0)m]
[�(k1t + k0)

m
3 ][k1k3(k1t + k0) − k4]

, (48)

where k2 = (2n+1)k1
8πG0m(n+2)2 , k3 = (m+3)(1−γ )+�

2
3

�
2
3

, k4 =
2m(m+6)k2

1

3�
m−1

3
.

Bulk viscosity in FIS causal theory Using (35) and (39),
the transport (39) reduces to

	 + ξ

ρ
	4 = −3Hξ − ξ	

2ρ

[
3H − (1 + 2γ )ρ4

(1 + γ )ρ

]
. (49)

Further, using (25), (34) and (38) into (49), one can easily
obtain the relation between bulk viscosity coefficient (ξ) and
cosmic time (t) as

ξ = mk1k2(K1t + k2)2ψ(t)

[�(k1t + k0)]m
3 [k1k3(k1t + k0)+k5(k1t + k0)2ψ(t) − k4]

,

(50)

where k5 = m[3(1+γ )−(1+2γ )(m+3)]
3(1+γ )�

m−1
3

ψ(t) = 3(1−γ )�
m−1

3

m(k1t+k0)
−

2k1
(k1t+k0)

2 .

4 Distance modulus curves

The distance modulus is given by

μ = 5 logdL + 25, (51)

where dL is the luminosity distance and it is defined as

dL = r1(1 + z)a0, (52)

where z and a0 represent red shift parameter and present
scale factor respectively.

For determination of r1, we assume that a photon emitted
by a source with co-ordinate r = r1 and ţ = ţ1 and received
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Table 1

Redshift (z) Supernovae Ia (μ) Our model (μ)

0.014 33.73 33.81

0.026 35.62 35.17

0.036 36.39 35.89

0.040 36.38 36.13

0.050 37.08 36.63

0.063 37.67 37.14

0.079 37.94 37.66

0.088 38.07 37.90

0.101 38.73 38.22

0.160 39.08 39.29

0.240 40.68 40.26

0.380 42.02 41.40

0.430 42.33 41.71

0.480 42.37 42.01

0.620 43.11 42.67

0.740 43.35 43.15

0.778 43.81 43.28

0.828 43.59 43.46

0.886 43.91 43.64

0.910 44.44 43.72

0.930 44.61 43.78

0.949 43.99 43.83

0.970 44.13 43.89

0.983 44.13 43.93

1.056 44.25 44.13

1.190 44.19 44.47

1.305 44.51 44.73

1.340 44.92 44.81

1.551 45.07 45.235

at a time ţ0 by an observer located at r = 0. Then we deter-
mine r1 from

r1 =
∫ ţ0

ţ1

d ţ

a
. (53)

Equation (31) can be rewritten as

a = �
1
3 ţ

1
3 , (54)

where ţ = k1t + k0.
Solving (51)–(54), one can easily obtain the expression

for distance modulus (μ) in term of red shift parameter (z)

as

μ = 5 log

[
k1

2H0(1 + z)
((1 + z)2 − 1)

]
+ 25. (55)

The observed value of distance modulus (μ(z)) at differ-
ent redshift parameters (z) given in Table 1 (SN Ia Data)

Fig. 4 Plot of distance modulus (μ) versus redshift (z) for Supernova
data (dotted line) and for our model (solid line)

are employed to draw the curve corresponding to the calcu-
late value of μ(z). Figure 4 shows the plot of observed μ(z)

(dotted line) and calculated μ(z) (solid line) versus redshift
parameters (z).

5 Concluding remarks

In this paper, we have presented exact solution of Einstein’s
field equations with variable G and � in LRS Bianchi type I
space-time in presence of imperfect fluid. The main features
of the work are as follows:

• The derived model represents the power law solution
which is different from other author’s solution. It seems
to describe the dynamics of Universe from big bang to
present epoch.

• The cosmological constant (�) is found to be decreasing
function of time and it approaches to small positive value
at late time. A positive value of � corresponds to nega-
tive effective mass density (repulsion). Hence we expect
that in the Universe with the positive value of �, the ex-
pansion will tends to accelerate. Thus the derived model
predicts accelerating Universe at present epoch. This is in
the favour of recent supernovae Ia observations.

• The temperature of Universe in derived model is infinitely
high at early stage of evolution of Universe but it ap-
proaches to small positive value at later stage. This means
that temperature is also decreasing function of time. The
same is predicted by CMBR observations.

• If we choose n = 1, the mean anisotropy parameter van-
ishes. Therefore isotropy is achieved in the derived model
for n = 1. Also we see that for � = 1 and n = 1, the direc-
tional scale factors vary as A(t) = B(t) = a(t), therefore
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metric (1) reduces to the flat FRW space-time. Thus � = 1
and n = 1, turn out to be the condition of flatness in the
derived model. It is important to note here that for n = 1,
shear scalar vanishes but the bulk viscosity contributes to
the expansion of Universe and for positive value of n, the
bulk viscosity coefficient (ξ) decreases with time.

• The distance modulus curve of derived model is in good
agreement with SN Ia data (see Fig. 4 and Table 1).

• The age of Universe is given by

T0 = 1

3
H−1

0 − k0

k1

Finally, the model presented in this paper is accelerating,
shearing and starts expanding with big bang singularity. This
singularity is of point type singularity.
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