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Abstract A class of well behaved charged superdense star
models of embedding class one is obtained by taking perfect
fluid to be interior matter. In the process we come across the
models for white dwarf, quark and neutron stars. Maximum
mass of the star of this class is found to be 6.716998M�

with its radius is 18.92112 Km. In the absence of charge the
models reduce to Schwarzchild’s interior model with con-
stant density.

Keywords Exact solutions · Charged fluids · Superdense
stars · General relativity · Negative redshift

1 Introduction

1.1 Charged fluids

The presence of charge in a charged fluid has tendency to
resist the gravitational collapse. This property persuades the
research workers to work on the charged perfect fluid dis-
tributions. Many of the workers, charged the well known
uncharged perfect fluid solutions e.g. Kuchowicz (1968)
solutions by Nduka (1977), Adler (1974)–Wyman (1949)
solutions by Nduka (1976) and Singh and Yadav (1978),
Klein (1947)–Tolman (1939) solutions by Pant and Sah
(1979) Tikekar (1984) and Cataldo and Mitskievic (1992).
In addition to that Sharma et al. (2001), Gupta et al.
(2011) and Gupta and Kumar (2005b, 2005c) charged the
Vaidya–Tikekar type solutions (Mukherjee et al. 1997;
Vaidya and Tikekar 1982) and Buchdahl’s (1959) fluid
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spheres. In this context the work by Maharaj and Komathiraj
(2007a, 2007b, 2008), Maharaj and Thirukkanesh (2006a,
2006b, 2009). Maharaj and Hensraj (2006), may also be vis-
ited. Recently Gupta and Maurya (2010a, 2010b) charged
the Durgapal (1982), Durgapal and Fuloria (1985) Neeraj
Pant et al. (2010) charged the Heintzmann (1969) solutions.
Schwarzchild’s solution has also been charged by Banerjee
and Som (1981), Cohen and Cohen (1969), Grøn (1985),
Gupta and Gupta (1986), Florides (1983), Guilfoyle (1999)
and Gupta and Kumar (2005a). All the solutions mentioned
above are reducible to their neutral counterpart in the ab-
sence of charge.

1.2 Models of astrophysical interest

In the present paper the charged fluid spheres of embed-
ding class one are obtained and utilized to construct the
models of superdense star models with surface density
2×1014 gm/cm3. In this process we come across the vari-
ous astrophysical objects like white dwarf, quark and neu-
tron stars. The composition of the superdense matter in the
core remains uncertain. One model describes the core as su-
perfluid neutron-degenerate matter (mostly neutrons, with
some protons and electrons). More exotic forms of matter
are possible, including degenerate strange matter (contain-
ing strange quarks in addition to up and down quarks), mat-
ter containing high-energy pions and kaons in addition to
neutrons or ultra-dense quark-degenerate matter. We are ac-
customed to longevity in astronomy. The Sun has burned for
4.5 billion years, orbited by planets of equal age. Many of
the stars in our galaxy are over 10 billion years old. These
stars will eventually burn out and grow cold, but they will
change only slowly. But this is not the fate of all stars, for
some stars are vulnerable to a catastrophic collapse. Grav-
itational collapse produce supernovae from blue giants and
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degenerate dwarfs. Gravitational collapse sets a maximum
mass for both the degenerate dwarf and the neutron star.
Gravitational collapse is the creator of black hole. And grav-
itational collapse, whether of a blue giant, degenerate dwarf,
or a neutron star, in all cases has the same principal cause.
A typical neutron star has mass between 1.35 and 2.1 solar
mass. About radius 1.9 solar mass neutron star can have ra-
dius 10.7, 11.1, 12.1 or 15.1 Km. In general, compact stars
of less than 1.44 solar masses—the Chandrasekhar limit—
are white dwarfs, and above 2 to 3 solar masses (the Tolman-
Oppenheimer-Volkoff limit), a quark star might be created;
however, this is uncertain. Gravitational collapse will usu-
ally occur on any compact star between 10 and 25 solar
masses and produce a black hole. The equation of state for
superdense stars is not very certain so far.

1.3 Embedding class

The idea that our space-time can be considered as a four-
dimensional space embedded in a higher-dimensional flat
space is an old and recursive one (Eddington 1924). Re-
cently, due to a proposal by Randall and Sundram (1999)
and discussions by Anchordoqui and Bergila (2000), this
idea has again attracted much attention. It is well known
that the manifold Vn can always be embedded in Pseudo-
Euclidian space Em of m dimensions, where m = n(n+1)

2 .
The minimum extra dimension p of the Pseudo-Euclidian
space to embedded Vn in Em, is called the class of the
manifold Vn and must be less than or equal to the number
(m − n) i.e., n(n−1)

2 . In case of relativistic space time V4,
the embedding class p turns out to be 6. In particular the
class of spherical and plane symmetric space-time are 2 and
3 respectively. The famous Friedman-Robertson-Lemaitre
space-time, (1933) is of class 1, while the Schwarzschild’s
exterior and interior solutions are of class 2 and class 1
respectively. Moreover the famous Kerr metric of class 5,
(Kuzeev 1980). The postulates of general relativity do not
provide any physical meaning to higher dimensional em-
bedding space. However, it provides new characterizations
of gravitational field, which hopefully, can be connected to
physics. Some researchers are linked the group of motions of
flat embedding space to the internal symmetries of elemen-
tary particle physics (Rayski 1976). Some have utilized the
higher dimensions to study the singularity of the space-time.
Recently, Pavsic and Tapia (2001) have published an article
entitled “Resources letter on geometrical results for embed-
ding and Brane” where many references regarding the appli-
cations of embedding to general relativity, extrinsic gravity,
strings and membranes and new brane world are mentioned.

2 Charged fluids of embedding class one

Let us consider the metric to be

ds2 = −a(r)dr2 − r2(dθ2 + sin2 θdφ2) + c(r)dt2 (1)

which may represent space-time of embedding class one, if
it satisfies the Karmarker condition (1948)

R1414 = R1212R1414 − R1224R1334

R2323

with R2323 �= 0 (Pandey and Sharma 1981).
The above condition with reference to (1) yields the fol-

lowing differential equation

a′

a(1 − a)
= −2c′′

c′ + c′

c
+ a′

a
, a �= 1 (2)

if we set c = y2, the solution of the differential equation
gives rise

a = (
1 + Ky′2) (3)

In order to derive charged fluid solution a(r) and c(r) are to
satisfy the Einstein-Maxwell equations

Ri
j − 1

2
Rδi

j = −κ

[(
c2ρ + p

)
vivj − pδi

j

+ 1

4π

(
−F imFjm + 1

4
δi
jFmnF

mn

)]
(4)

where κ = 8πG

c4 , ρ,p and vi denote energy density, fluid
pressure and flow vector of the fluid, respectively and Fik

being the skew-symmetric electromagnetic field tensor sat-
isfying the Maxwell equations

Fik,j + Fkj,i + Fji,k = 0 (5)

∂

∂xk

(√−gF ik
) = −4π

√−gj i (6)

where j i = σvi represents the four-current vector of charged
fluid while the charged density is denoted by σ .

The field equation (4) with respect to the metric equation
(1) give (Dionysiou 1982)

−ν′

r
e−λ + (1 − e−λ)

r2
= −κp + q2

r4
(7)

−
[
ν′′

2
− λ′ν′

4
+ ν′2

4
+ ν′ − λ′

2r

]
e−λ = −κp − q2

r4
(8)

λ′

r
e−λ + (1 − e−λ)

r2
= κc2ρ + q2

r4
(9)
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where

q(r) = 4π

∫ r

0
σr2eλ/2dr = r2

√
−F14F 14

= r2F 41e(λ+ν)/2 (10)

represents the total charge contained within the sphere of
radius r . Equation (6) reduces to

∂

∂r

(
r2F 41e(λ+ν)/2) = −4πr2e(λ+ν)/2j4 (11)

here we have taken a(r) = eλ(r) and c(r) = eυ(r).
At the pressure free interface r = a the charged fluid

sphere is expected to join with the Reissner-Nordstrom met-
ric

ds2 = −
(

1 − 2m

r
+ e2

r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

+
(

1 − 2m

r
+ e2

r2

)
dt2 (12)

where m is the gravitational mass of the distribution such
that

m = μ(a) + ε(a)

while

μ(a) = κ

2

∫ a

0
ρr2dr, ε(a) = κ

2

∫ a

0
rσqeλ/2dr,

e = q(a)

(13)

ε(a) is the mass equivalence of the electromagnetic energy
of distribution while μ(a) is the mass and e is the total
charge inside the sphere (Florides 1983).

From (7)–(9) and (3), we get

y′

r2(1 + Ky′2)

(
Ky′ − 2r

y

)
= κp + q2

r4
(14)

1

y(1 + Ky′2)

[
Kyy′y′′

r(1 + Ky′2)
− y′

r
− y′′

(1 + Ky′2)

]

= κp − q2

r4
(15)

2Ky′y′′

r(1 + Ky′2)2
+ Ky′2

r2(1 + Ky′2)
= κc2ρ + q2

r4
(16)

If we subtract (15) from (14), we get the expression for
charge function as

(
Kyy′

r
− 1

)(
y′

ry(1 + Ky′2)
− y′′

y(1 + Ky′2)2

)
= 2q2

r4

(17)

In the absence of charge either of the two factors on the left
hand side of (17) has to be zero. It can be verified that the
vanishing of the fist factor and then the consistency of (14)
and (15) gives rise famous Kohler–Chao solution (1965)

ds2 = − (α + 2βr2)

(α + βr2)
dr2 − r2(dθ2 + sin2 θdφ2)

+ (
α + βr2)dt2 (18)

with the expression for pressure and density given as

κp = β

α + 2βr2
(19)

κc2ρ = β
(3α + 2βr2)

(α + βr2)2
(20)

Which cannot represent a compact star or sphere as is does
not posses zero pressure for any finite radius. However the
vanishing of the second factor gives rise ultimately the fa-
mous Schwarschild’s interior solution

ds2 = −
(

1 − r2

R2

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

+
(

α + β

√

1 − r2

R2

)2

dt2 (21)

with its pressure and density to be

κp = −
(3β

√
1 − r2

R2 ) + α

R2(α + β

√
1 − r2

R2 )

(22)

κc2ρ = 3

R2
(23)

provided α and R are non zero and β > 0.
Therefore it would be better to charge the Schwarzschild’s

interior solution.
In order to obtain the charge analogues of Schwarzschild’s

interior solution, let us consider

y = A +
√(

B + Cr2
)
, B > 0, C,A �= 0 (24)

Now form (14)–(16) and (24), we get the expression of pres-
sure, density and charge following as

κp = C

2(B + Cr2 + KC2r2)

×
[

(4B + 3Cr2)
√

(B + Cr2)(A + √
(B + Cr2))

− KC

− KBC

(B + Cr2 + KC2r2)

×
[

Cr2
√

(B + Cr2)(A + √
(B + Cr2))

+ 1

]]
(25)
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κc2ρ = C

[
KC

(B + Cr2 + KC2r2)
+ 2KBC

(B + Cr2 + KC2r2)2

+ Cr2(1 + KC)
√

(B + Cr2)

2(B + Cr2 + KC2r2)2

×
{

1

A + √
(B + Cr2)

− KC
√

(B + Cr2)

}]
(26)

q2 = −C2r6(1 + KC)
√

(B + Cr2)

2(B + Cr2 + KC2r2)2

×
{

1

A + √
(B + Cr2)

− KC
√

(B + Cr2)

}
(27)

The expressions for density and pressure gradient can be
written as

κc2 dρ

dr
= 2C2r(M1 + M2 + N3M4 + N4M3) (28)

where

M1 = − KC(1 + KC)

(B + Cr2 + KC2r2)2
,

M2 = − 4KBC(1 + KC)

(B + Cr2 + KC2r2)3

N3 = Cr2(1 + KC)
√

B + Cr2

2(B + Cr2 + KC2r2)2

M3 = (1 + KC)

2

[
(B + Cr2 + KC2r2)(2B + 3Cr2)

2
√

B + Cr2(B + Cr2 + KC2r2)3

− 4Cr2(1 + KC)(B + Cr2)

2
√

B + Cr2(B + Cr2 + KC2r2)3

]

N4 = 1

A + √
(B + Cr2)

− KC
√

(B + Cr2)

M4 = KC

2(B + Cr2)3/2

− 1

2
√

(B + Cr2)(A + √
(B + Cr2))2

κ
dp

dr
= 2C2r

[
P1

[{
Q2 − (P3Q4 + P4Q3)

}

× (B + Cr2) + (P2 − P3P4)
]

+ Q1
[
(P2 − P3P4)(B + Cr2) − KC

]]
(29)

where

P1 = 1

2(B + Cr2KC2r2)
,

P2 = (4B + 3Cr2)

(B + Cr2)3/2(A + √
B + Cr2)

P3 = KBC

(B + Cr2)(B + Cr2 + KC2r2)
,

P4 =
(

Cr2

√
B + Cr2(A + √

B + Cr2)
+ 1

)

Q1 = − (1 + KC)

2(B + Cr2 + KC2r2)2

Q2

= 3(B + Cr2)3/2(A + √
B + Cr2)

(B + Cr2)3(A + √
B + Cr2)2

− (4B + 3Cr2){ 3
2

√
B + Cr2(A +

√
B + Cr2) + (B+Cr2)

2 }
(B + Cr2)3(A +

√
B + Cr2)2

Q3

= −KBC[(1 + KC)(B + Cr2) + (B + Cr2 + KC2r2)]
(B + Cr2)2(B + Cr2 + KC2r2)2

Q4 = 2(B + Cr2)(A + √
B + Cr2)

2(B + Cr2)3/2(A + √
B + Cr2)2

− Cr2{C + (A + √
B + Cr2)}

2(B + Cr2)3/2(A + √
B + Cr2)2

The expression for velocity of sound
√

dp
dρ

can be had from
(28) and (29) as

dp

c2dρ
= dp/dr

c2dρ/dr
(30)

and the expression of mass read as

m(r) = r

2

[
1 − C2r4(1 + KC)

√
(B + Cr2)

2(B + Cr2 + KC2r2)2

×
{

1

A + √
(B + Cr2)

− KC
√

(B + Cr2)

}]
(31)

such that

e−λ = 1 − 2m(r)

r
+ q2(r)

r2

3 Physical conditions to be satisfied

For the well behaved charged fluid sphere (CFS) depends
upon the following conditions inside and on the sphere r = a

are required to be satisfied.

(i) ρ > 0, 0 ≤ r ≤ a,
(ii) p > 0, r < a,

(iii) p = 0, r = a,
(iv) dp/dr < 0, dρ/dr < 0, 0 < r < a
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(v) c2ρ ≥ p weak energy condition (WEC) or c2ρ ≥ 3p

strong energy condition (SEC) 0 ≤ r ≤ a.
(vi) The velocity of sound (dp/dρ)1/2 should be less than

that of light throughout the CFS (0 ≤ r ≤ a).
(vii) d

dr
(

p

c2ρ
) < 0.

(viii) d
dr

(
dp

c2dρ
) < 0.

(ix) The adiabatic constant γ = ((
c2ρ+p

p
)(

dp

c2dρ
)) > 4

3 .

(x) Red shift read as (e−ν/2 − 1) or 1
|y(r)| − 1 (in the

present case).

Beside the above the smooth joining with the Reissner-
Nordström metric, requires the continuity of eλ, eυ and q

across the pressure free interface r = a and we get,

(B + Ca2)

(B + Ca2 + KC2a2)
= 1 − 2m(a)

a
+ q2(a)

a2
= n (say)

(32)

y2(a) = 1 − 2m(a)

a
+ q2(a)

a2
(33)

q(a) = e (34)

p(r=a) = 0 (35)

After solving (32)–(35), we get

A = √
n

[
1 − a2(1 − n) − q2

2a2(n − t)

]

B = t[a2(1 − n) − q2]2

4a4(n − t)2

C = [a2(1 − n) − q2]2

4a6(n − t)

K = 4a6(1 − n)

[a2(1 − n) − q2]2

where

n = 1 − 2m(a)

a
+ q2(a)

a2
, t = 1 − 2q2(a)

m(a)a

or

n =
(

1 − Y + SY

2

)
, t = (1 − 2S)

where

S = q2(a)

ma
and Y = 2m

a
.

4 Numerical investigation of models

For numerical investigation of model let us assume that
S = q2(a)/ma, Y = 2m/a, and x = r/a.

Table 1 Y = .01
S = 0.001, Y = 0.01, Radius = 2.833771 Km, M = 0.014169M�, z0 = 0.007572, za = 0.005035,
White dwarf star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.000061 0.030045 0.029863 0 0.577882 0.00202 286.6403

0.2 0.000058 0.030041 0.029866 0.000051 0.577864 0.001939 298.5435

0.4 0.000051 0.030028 0.029875 0.000406 0.57781 0.001697 341.055

0.6 0.000039 0.030007 0.029891 0.001369 0.577721 0.001293 447.3339

0.8 0.000022 0.029978 0.029912 0.003245 0.577597 0.000728 794.513

1 0 0.02994 0.02994 0.006337 0.57744 0 Inf

Table 2 0 < Y ≤ 0.03
S = 0.0022, Y = 0.03, Radius = 4.902337 Km, M = 0.073535M�, z0 = 0.023171, za = 0.015329,
White dwarf star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.000596 0.090298 0.088511 0 0.85954 0.006598 131.1369

0.2 0.000572 0.09027 0.088555 0.000225 0.859447 0.006334 136.5445

0.4 0.0005 0.090187 0.088687 0.001799 0.859173 0.005543 155.8576

0.6 0.00038 0.090048 0.088906 0.006074 0.858724 0.004224 204.1417

0.8 0.000214 0.089853 0.089213 0.014407 0.85811 0.002377 361.875

1 0 0.089604 0.089604 0.028162 0.857349 0 Inf
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Table 3 0.03 ≤ Y ≤ 0.07
S = 0.005, Y = 0.07, Radius = 7.467404 Km, M = 0.261359M�, z0 = 0.05632, za = 0.036854,
White dwarf star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.003413 0.211591 0.201352 0 0.928835 0.01613 58.51206

0.2 0.003274 0.211442 0.201618 0.000785 0.928556 0.015486 60.88806

0.4 0.00286 0.210995 0.202415 0.006285 0.927734 0.013554 69.37456

0.6 0.002172 0.210253 0.203737 0.021243 0.92641 0.010332 90.59444

0.8 0.001217 0.209221 0.205571 0.050454 0.924651 0.005815 159.9263

1 0 0.207904 0.207904 0.098784 0.922559 0 Inf

Table 4 0.04 ≤ Y ≤ 0.12
S = 0.009, Y = 0.12, Radius = 9.737729 Km, M = 0.584264M�, z0 = 0.101865, za = 0.065677,
White dwarf star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.01058 0.364949 0.33321 0 0.933858 0.028989 33.14781

0.2 0.010145 0.364483 0.334049 0.001787 0.933272 0.027833 34.46451

0.4 0.008846 0.36309 0.336553 0.014321 0.931554 0.024363 39.16844

0.6 0.006701 0.360785 0.340681 0.048477 0.928826 0.018574 50.93457

0.8 0.00374 0.360785 0.34637 0.115348 0.9253 0.010459 89.39449

1 0 0.353539 0.353539 0.226284 0.921296 0 Inf

Table 5 0.09 ≤ Y ≤ 0.24
S = 0.02, Y = 0.24, Radius = 13.61761 Km, M = 1.634113M�, z0 = 0.235042, za = 0.145272,
Neutron star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.048972 0.7425 0.595584 0 0.978143 0.065955 15.80851

0.2 0.04688 0.740359 0.59972 0.005145 0.976278 0.06332 16.3944

0.4 0.040675 0.733986 0.61196 0.041411 0.970863 0.055417 18.49009

0.6 0.030568 0.723529 0.631827 0.141035 0.962448 0.042248 23.74348

0.8 0.016878 0.709226 0.658593 0.337891 0.952024 0.023797 40.95795

1 0 0.691392 0.691392 0.667124 0.941178 0 Inf

Table 6 0.2 ≤ Y ≤ 0.44
S = 0.05, Y = 0.44, Radius = 17.86688 Km, M = 3.930714M�, z0 = 0.579738, za = 0.323372,
Quark star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.219383 1.43 0.771852 0 0.976508 0.153414 7.341669

0.2 0.208849 1.419179 0.792632 0.013387 0.970367 0.147162 7.564246

0.4 0.178283 1.387388 0.85254 0.110086 0.952703 0.128503 8.366585

0.6 0.130551 1.336561 0.944908 0.384512 0.925796 0.097677 10.40395

0.8 0.069694 1.269638 1.060555 0.939981 0.893618 0.054893 17.17287

1 0 1.1902 1.1902 1.873894 0.862767 0 Inf
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Table 7 0.27 ≤ Y ≤ 0.52
S = 0.07, Y = 0.52, Radius = 19.00525 Km, M = 4.941364M�, z0 = 0.792823, za = 0.416766,
Quark star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.351432 1.750465 0.69617 0 0.955752 0.200765 5.716309

0.2 0.333142 1.73124 0.731814 0.017227 0.946962 0.19243 5.868038

0.4 0.280893 1.675319 0.83264 0.145407 0.921816 0.167665 6.419764

0.6 0.201736 1.587627 0.98242 0.52024 0.883875 0.127067 7.839833

0.8 0.105064 1.47535 1.160157 1.287547 0.838982 0.071213 12.62027

1 0 1.346696 1.346696 2.563948 0.796508 0 Inf

Table 8 0.62 ≤ Y ≤ 0.71
S = 0.2, Y = 0.66, Radius = 18.24272 Km, M = 6.020098M�, z0 = 1.221319, za = 0.569412,
Quark star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.524151 2.97 1.397547 0 0.322634 0.176482 2.15078

0.2 0.482194 2.839613 1.393031 0.061965 0.320912 0.16981 2.210748

0.4 0.373594 2.498422 1.377639 0.46976 0.315413 0.149532 2.424743

0.6 0.23661 2.057543 1.347713 1.42933 0.305313 0.114996 2.960289

0.8 0.105925 1.619202 1.301427 2.90727 0.289759 0.065418 4.719095

1 0 1.2408 1.2408 4.68664 0.268484 0 Inf

Table 9 0.36 ≤ Y ≤ 0.61
S = 0.1, Y = 0.61, Radius = 19.89809 Km, M = 6.068917M�, z0 = 1.125189, za = 0.542116,
Quark star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.580067 2.173125 0.432924 0 0.952213 0.266928 4.51952

0.2 0.545887 2.136982 0.49932 0.019744 0.939152 0.255448 4.615646

0.4 0.450692 2.033579 0.681503 0.18255 0.902198 0.221625 4.973029

0.6 0.313341 1.876545 0.936523 0.694896 0.847433 0.166978 5.922565

0.8 0.156715 1.684413 1.214269 1.758204 0.783773 0.093038 9.207976

1 0 1.4762 1.4762 3.475052 0.724092 0 Inf

Table 10 Y = 0.71
S = 0.2455, Y = 0.71, Radius = 17.71275 Km, M = 6.288026M�, z0 = 1.425009, za = 0.628327,
Quark star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.597172 3.671007 1.879491 0 0.2461 0.162672 1.758959

0.2 0.540588 3.441099 1.819334 0.093954 0.246099 0.157098 1.812636

0.4 0.4012 2.873917 1.670316 0.670531 0.245138 0.139601 2.001131

0.6 0.239735 2.210508 1.491303 1.880987 0.240828 0.108452 2.461411

0.8 0.100823 1.622972 1.320502 3.512058 0.230466 0.062123 3.940309

1 0 1.169754 1.169754 5.229087 0.212103 0 Inf
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Table 11 Y = 0.71
S = 0.2, Y = 0.71, Radius = 18.92112 Km, M = 6.716998M�, z0 = 1.535807, za = 0.664357,
Quark star

X (P ) (D) (D − 3P ) (q) dp/c2dρ P/D γ

0 0.794469 3.195 0.811594 0 0.478238 0.24866 2.401498

0.2 0.728437 3.056106 0.870795 0.051457 0.472532 0.238355 2.455008

0.4 0.559147 2.691579 1.014139 0.42894 0.455841 0.207739 2.650136

0.6 0.349403 2.218242 1.170033 1.413314 0.429314 0.157513 3.154885

0.8 0.154082 1.745112 1.282865 3.029494 0.394659 0.088294 4.864497

1 0 1.3348 1.3348 5.041689 0.354508 0 Inf

Where

D = 8πG

c2
a2ρ, P = 8πG

c4
a2p,

c = 2.997 × 1010 cm/s, G = 6.673 × 10−8 cm3/gs2,

M� = 1.475 km

also γ denotes the adiabatic constant and it is given by the expression γ = ((
c2ρ+p

p
)(

dp

c2dρ
)). z0 and za are

red shift at the centre and surface r = a respectively. q(r) stands for charge.

5 Conclusion

Problem of charged fluid sphere of embedding class one is
investigated fully. The charged fluids obtained satisfy the
well behaved conditions and reduces to Schwarzchild’s inte-
rior solution in the absence of charges. The maximum mass
of charged fluid is computed to be 6.716998M� with the
corresponding radius 18.92112 Km. Adiabatic constant is
found to be more than 4/3. Red shift of the model are found
to be 1.535807 and 0.664357 at the centre and surface re-
spectively. It can easily be observed from Tables 1–11 the
class of models are representing the models for neutron,
quark and white dwarf stars.
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