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Abstract We study some properties of the early evolution
of the universe with particle creation in the framework of
the flat Friedmann-Robertson-Walker line element. The field
equations are solved by using “gamma-law” equation of
state p = (γ − 1)ρ, where the parameter γ varies with cos-
mological time. A unified description of the early evolution
of the universe is presented in which an inflationary phase
is followed by a radiation-dominated phase. Exact expres-
sions for the lookback time, proper distance, luminosity dis-
tance and angular diameter distance versus redshift are de-
rived and their meaning discussed in detail. It is found that
the negative pressure due to the particle creation may play
the role of an accelerating universe.

Keywords Cosmology · Exact solutions ·
Thermodynamics · Particle creation

1 Introduction

The creation of particle remains one of the most unsolved
problem in cosmology. Many authors have tried to under-
stand the particle creation phenomena and its effects on the
evolution of the universe. Bondi and Gold (1948), Hoyle
(1948), and Hoyle and Narlikar (1962) studied the creation
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of particle during the expansion of the universe. The ap-
proach of Bondi and Gold was based on the Perfect Cos-
mological Principle whereas Hoyle and Narlikar introduced
a scalar field and gave the action for their theory based on
the creation field.

Many attempts to treat the particle creation process at a
phenomenological macroscopic level have also long been
considered in literature based on bulk viscosity. The basic
idea is that bulk viscosity (particle creation) contributes at
the level of the Einstein field equations (EFE’s) as a negative
pressure term. Specifically, Barrow (1986, 1988) introduced
this idea in the framework of new inflationary scenario.

However, Prigogine et al. (1989) pointed out that the bulk
viscosity and particle creation are not only two independent
processes but, in general, lead to different histories of the
evolution of the universe. They presented a new type of cos-
mological history that includes large-scale entropy produc-
tion. The phenomenological macroscopic approach of Pri-
gogine et al. allows for both particle creation and entropy
production. They argued that, at the expense of the grav-
itational field, particle creation can occur only as an irre-
versible process constrained by the usual requirements of
non-equilibrium thermodynamics. The basic idea of this for-
mulation is to modify the usual energy momentum conser-
vation law in ‘open’ system in the framework of cosmology,
which adds a balance equation for the number density of the
created particles to the dynamic equations of the universe. In
this framework, the thermodynamic second law leads natu-
rally to a reinterpretation of the energy momentum tensor
corresponding to an additional stress term (creation pres-
sure), which in turn depends on the particle creation rate,
and may considerably alter several predictions of the stan-
dard big bang cosmology.

A detailed study of the thermodynamics of the particle
creation with changing specific entropy have been discussed
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by Lima et al. (1991), Calvão et al. (1992), Lima and Ger-
mano (1992) and Lima et al. (1996). Zimdahl et al. (1996)
have studied the back reaction of particle creation process
on the cosmological dynamics. They found that the adia-
batic creation of massive particles implies power-law infla-
tion. Sudharsan and Johri (1994), Johri and Desikan (1996),
Desikan (1997), Singh and Beesham (1999), and Singh et
al. (2002) have studied cosmological models with particle
creation using Prigogine et al.’s hypothesis in general rela-
tivity and some of its modified theories. After the discovery
of the accelerating universe, this model was reconsidered to
explain it and got some unexpected results. The particle cre-
ation pressure, which is negative, might play the role of dark
energy component. Lima and Alcaniz (1999), and Alcaniz
and Lima (1999) tested the models through kinematics tests.
It was shown that the models are consistent with the observa-
tional data. Zimdahl et al. (2001) tested the particle creation
with SNe Ia data and got the result of accelerating universe.
Recently, Qiang et al. (2007) have studied the universe with
adiabatic particle creation and showed that the model is con-
sistent with SNe Ia data.

In the standard model, the history of the universe be-
gins with the radiation phase and then evolves to the present
matter-dominated era. In order to overcome some of the
difficulties met by standard model, Guth (1981) proposed
an inflationary phase and this would happen prior to the
radiation-dominated phase. In general, the field equations
are solved separately for the different epochs. However,
Some authors have tried to solve the field equations in a
unified manner. Madsen and Ellis (1988) presented the evo-
lution of the universe for inflationary, radiation and matter-
dominated phases in a unified manner by assuming gamma
(γ ) of “gamma-law” equation of state p = (γ − 1)ρ as a
function of scale factor of the FRW metric. Later on, Israelit
and Rosen (1989, 1993) used a different equation of state to
describe the transition from pre-matter to radiation and then
radiation to matter-dominated phase in a unified manner.

In a similar way, Carvalho (1996) studied flat Friedmann-
Robertson-Walker (FRW) model in general relativity by us-
ing the “gamma-law” equation of state where γ varies with
cosmic time to describe the early phases (inflation and ra-
diation) of the evolution of the universe in a unified man-
ner. Therefore, it is not realistic to assume γ as a constant
throughout the history of the universe. We can obtain a rea-
sonably realistic model if we assume the universe evolves
through the epoches each of which γ is constant. Singh et al.
(2007) studied flat viscous FRW model with variable gravi-
tational and cosmological constant with varying γ , and the
possibility that the present acceleration of the universe is
driven by viscous fluid, is studied. These works motivates
us to consider for further work in some of the modified the-
ories or modified energy momentum tensor.

The aim of this paper is to extend Carvalho’s work to in-
clude the theory of particle creation. We study a flat FRW

model with perfect fluid and particle creation pressure in
Einstein’ theory of gravitation. We discuss the evolution
of the universe as it goes from an inflationary phase to a
radiation-dominated phase. The similarities and differences
among solutions with particle creation have been analyzed
from both formal and observational points of view. Exact ex-
pressions for the lookback-time, age of the universe, proper
distance, luminosity distance and angular diameter distance
versus redshift are derived and their meaning are discussed
in detail.

2 Thermodynamics of particle creation

In the standard model, the universe is considered as a
‘closed’ system and the corresponding laws of thermody-
namics have the form

d(ρV ) = dQ − pdV, (1)

and

T dS = d(ρV ) + pdV, (2)

where ρ is the energy density, p the thermodynamic pres-
sure, V the volume containing N particles, Q is the heat
during the cosmic time t , T the temperature and S is the
entropy of the system.

From (1) and (2), we see that the entropy production is
given by

T dS = dQ. (3)

Consequently, for a closed adiabatic system (dQ = 0), the
entropy remains constant. If one treats, following Prigogine
et al. (1989) that, the expansion is described by an ‘open’
thermodynamic system, allowing for irreversible particle
creation from the energy of gravitational field, one can ac-
count for entropy production right from the beginning and
the second law of thermodynamics is also incorporated into
the evolutionary equations in a more meaningful manner. In
this case the number of particles N in a given volume V is
not to be a constant.

Thus allowing for particle creation, the modification
of (1), into account of variation of particle number, leads
to

d(ρV ) = dQ − pdV + h

N
dN, (4)

where h = (ρ + p)V is the total enthalpy of the system. For
open system, adiabatic transformations (dQ = 0) reduce (4)
to

d(ρV ) + pdV − h

N
dN = 0. (5)
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Equation (5) can be rewritten as

d(ρV ) + (p + pc)dV = 0, (6)

where

pc = − (ρ + p)V

N

dN

dV
. (7)

Thus, the creation of particle corresponds to a supplemen-
tary pressure pc. It is noted that (6) is equivalent to the con-
servation equation with additional pressure due to the parti-
cle creation and therefore this supplementary pressure must
be considered as a part of the cosmological pressure enter-
ing into the Einstein field equations. pc is negative or zero
depending on the presence or absence of particle creation.
In such a transformation the thermal energy received by the
system is entirely due to the change of the number of par-
ticles. This change is due to the transfer of energy from the
gravitational field of matter. Hence, the creation of particle
acts as a source of internal energy.

Now, the entropy change dS, given in (2) in an ‘open’
system becomes

T dS = d(ρV ) + pdV − μdN, (8)

where μ = h−T S
N

� 0 is the chemical potential associated to
the non conservation of the particle number. Therefore, from
(5) and (8), we get

dS

S
= dN

N
. (9)

The second law of thermodynamics requires that dS � 0.
We regard the second law of thermodynamics as one of
the most fundamental laws of physics and it should hold
whether creation of particle takes place or not. Therefore,
from (9), we must have

dN � 0. (10)

This inequality implies that the space-time can produce par-
ticle.

3 Model and field equations

We start with the homogeneous and isotropic flat Friedman-
Robertson-Walker (FRW) line element (c = 1)

ds2 = dt2 − R2(t)[dr2 + r2(dθ2 + sin2 θdφ2)], (11)

where r , θ , and φ are dimensionless comoving coordinates
and R is the scale factor. The Einstein’s field equations are
given by

Rij − 1

2
gijR = 8πGTij , (12)

where Tij is the effective energy momentum tensor of the
cosmic fluid in the presence of the particle creation, and is
given by

Tij = (ρ + p + pc)uiuj − (p + pc)gij , (13)

where pc is the particle creation pressure given by (7).
In context of ‘open’ system with adiabatic creation, the

non-trivial Einstein’s field equations for a fluid endowed
with matter creation can be written as

3
Ṙ2

R2
= 8πGρ, (14)

2
R̈

R
+ Ṙ2

R2
= −8πG(p + pc). (15)

In models with adiabatic creation, the balance equation for
the particle number density (see, Calvão et al. 1992; Lima
and Germano 1992) is given by

ṅ

n
+ 3

Ṙ

R
= ψ(t)

n
= Ṅ

N
, (16)

where n = N
V

is the particle number density and ψ(t) is the
matter creation rate (ψ > 0 corresponds to particle creation
while ψ < 0 to particle decay). The creation pressure pc de-
pends on the particle creation rate. A dot denotes derivative
with respect to cosmic time t . Equations (14) and (15) lead
to the continuity equation

ρ̇ + 3(ρ + p)
Ṙ

R
= −3pc

Ṙ

R
, (17)

which is same as described in (6). Now, We suppose that
the pressure p and energy density ρ are related through the
“gamma-law” equation of state

p = (γ − 1)ρ. (18)

Substituting this into (15) and using (14) and (7), we finally
obtain

2Ḣ + 3γH 2 = γH
Ṅ

N
, (19)

where H = Ṙ/R is the Hubble parameter. Equation (19)
shows that the rate of expansion is related to the rate of cre-
ation of particles in the universe. To proceed further it is
necessary to assume a physically reasonable expression to
the particle creation rate. We need to know the exact form
of the function ψ the one which is determined from a more
fundamental theory than involves quantum processes.

In this work we take the simple phenomenological ex-
pression of the particle creation rate (Lima and Alcaniz
1999)

ψ(t) = 3βnH. (20)
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Thus, we get

Ṅ

N
= 3βH, (21)

where the parameter β is a dimensionless constant, defined
on the interval [0, 1]. The most interesting situations emerge
during phase in which β ≈ 1, i.e., of order of unity.

Using (20) into (19), we get

Ḣ + 3

2
(1 − β)γH 2 = 0. (22)

In general, the value of γ is taken to be constant and lying
in the interval 0 ≤ γ ≤ 2. But our aim in this paper is to let
the parameter γ depends on scale factor R to describe the
early phases, inflationary and radiation-dominated evolution
of the universe in a unified manner. We assume, following
Carvalho (1996) that, the functional form of γ as

γ (R) = 4

3

A(R/R∗)2 + (a/2)(R/R∗)a

A(R/R∗)2 + (R/R∗)a
, (23)

where A is a constant and ‘a’ is free parameter related to the
power of the cosmic time t during the inflationary phase.
Here, R∗ is a certain reference value of R. The function
γ (R) is defined in such a manner that when the scale fac-
tor R is less than R∗, i.e., when R � R∗, an inflationary
phase (γ ≤ 2a/3) can be obtained and for R � R∗ we have
a radiation-dominated phase (γ = 4/3). The expression of
γ (R) in (23) is an increasing function of R. In the limit
R → 0, γ (R) = 2a/3. Thus, 1 is the maximum value of ‘a’
for an inflation epoch to exist. As ‘a’ approaches to zero we
have an exponential inflation (γ = 0). Therefore, a must lie
in the interval 0 ≤ a < 1.

To solve (22), we rewrite it in the form

H ′ + 3

2
(1 − β)γ (R)

H

R
= 0, (24)

where H ′ = dH/dR.

4 Solution of the field equations

Substituting (23) into (24) and integrating, we get

H = C

[A(R/R∗)2 + (R/R∗)a](1−β)
, (25)

where C is a constant of integration. If H = H∗ for R = R∗,
we have a relation between constants A and C as

C = H∗(1 + A)(1−β). (26)

An important observational quantity is the deceleration pa-
rameter q = −RR̈

R2 . A unified expression of q for both infla-
tionary and radiation-dominated phases can be expressed as

a function of scale factor R as

q = (1 − 2β)A(R/R∗)2 + (a(1 − β) − 1)(R/R∗)a

A(R/R∗)2 + (R/R∗)a
. (27)

Integrating (25) for H = Ṙ/R, an expression for t in terms
of the scale factor R, in case of (a 	= 0), is given by

Ct =
∫ [A(R/R∗)2 + (R/R∗)a](1−β)

R
dR. (28)

It is difficult to integrate (28) for a general power of (1 −β).
In the following subsections, we solve (28) for two early
phases of the evolution of the universe according as R � R∗
or R � R∗.

4.1 Inflationary phase

For inflationary phase (R << R∗), the second term of the
integral in (28) on right hand side dominates which gives
the power-law solution of the scale factor (a 	= 0) as

R = R∗[a(1 − β)Ct] 1
a(1−β) , (29)

which shows that the dimension of the universe increases ac-
cording to power-law inflation R ∝ t

1
a(1−β) , where 0 ≤ β <

1. For β = 0, the above (29) reduces to the standard FRW
model (see, Carvalho 1996).

The Hubble parameter in terms of t is given by

H = 1

a(1 − β)

1

t
. (30)

Using (29) we may obtain energy density, the particle cre-
ation pressure and the particle number density as functions
of the scale factor R. For a > 0, inserting (29) into (14), we
get

ρ = ρ0i

( R

R∗

)−2a(1−β)

, (31)

where ρ0i = 3C2

8πG
is the present observed value during in-

flationary phase. It is found that the explicit dependence of
the energy density on the scale factor is slightly modified
in comparison with the standard case. We observe that as
R → 0, ρ → ∞. The expanding model has the singularity
at t = 0.

From (31) and (7), the pressure due to particle creation
can be written as

pc = −2a

3
βρ0i

( R

R∗

)−2a(1−β)

. (32)

The particle number density is given by

n = n0i

( R

R∗

)−3(1−β)

. (33)
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We note from (33) that the effect of particle creation is mea-
sured by the parameter β . The particle density N = nR3 is
given by

N = N0i

( R

R∗

)3β

. (34)

In the above expressions the subscript ‘0i’ refers to the
present observed values of the parameters during inflation-
ary phase. It follows from (34) that N increases as a power
of R. For β = 0, N would remain constant throughout the
evolution of the universe and we would recover the standard
FRW model of the universe. In this case the cosmic expan-
sion is due to the big bang impulse and there is no creation
of particle. The solutions identically satisfy the conservation
equation (17).

Let us consider the entropy behavior during the inflation-
ary phase. From (9) and (34), one may write the entropy as

S = S0i

( R

R∗

)3β

. (35)

The entropy increases with the increase of the rate of cre-
ation of particle. It is readily seen from (27) that the decel-
eration parameter q in inflationary phase is given by

q = a(1 − β) − 1. (36)

Therefore, for 0 ≤ a < 1 and 0 ≤ β < 1, the deceleration
parameter with matter creation is always negative.

4.2 Radiation-dominated phase

For radiation-dominated phase (R � R∗), the first term of
the integrand in (28) on right hand side dominates over first
term, which gives the power-law solution of the scale factor
as

R = R∗
[2(1 − β)

A(1−β)
Ct

] 1
2(1−β)

, (37)

which shows that the dimension of the universe increases ac-
cording to the law R ∝ t

1
2(1−β) , where 0 ≤ β < 1. For β = 0

(no particle creation), the above (37) reduces to the standard
FRW model. The Hubble parameter in terms of t is given by

H = 1

2(1 − β)

1

t
. (38)

It is straight forward to obtain the energy density, creation
pressure, particle number density, particle number and en-
tropy production as functions of the scale factor R and of
the β parameter. These quantities are, respectively, given by

ρ = ρ0r

( R

R∗

)−4(1−β)

, (39)

pc = −4βρ0r

( R

R∗

)−4(1−β)

, (40)

n = n0r

( R

R∗

)−3(1−β)

, (41)

N = N0r

( R

R∗

)3β

, (42)

S = S0r

( R

R∗

)3β

, (43)

where ρ0r = 3C2

8πGA2(1−β) is the present observed value of en-
ergy density during radiation-dominated phase.

The deceleration parameter is given by

q = 1 − 2β. (44)

Therefore, for a given value of β , q with particle creation
is always smaller than the corresponding one of standard
flat FRW model. The critical case (β = 1/2, q = 0), de-
scribes a “coasting cosmology”, i.e., marginal inflation. For
0 ≤ β < 1/2, we have q > 0 whereas for β ≥ 1/2, one get
q ≤ 0. The later result is in line of the recent measurements
of q using Type Ia supernovae (see, Perlmutter et al. 1998;
Riess et al. 1998; Garnavich et al. 1998). Such observations
indicate that the universe may be accelerating. In the present
framework, this is due to the negative creation pressure that
provides the additional acceleration measured by negative q

and not an exotic equation of state.
The energy density is decreasing function of R. As R →

0, ρ → ∞, thus the model has singularity at t = 0. Equa-
tions (31) and (39) show that the densities in inflation and
radiation, respectively, as ρ ∝ R−2a(1−β) and ρ ∝ R−4(1−β).
The solutions identically satisfy the conservation equation
(17). Hence, in a model with inflation and radiation, the
transition from inflation to a radiation-dominated phase, in
course of expansion, happens exactly as in the standard
model. We also observe that the same expressions describe
the evolution of the particle number density, number of par-
ticle and entropy production either for inflationary phase or
radiation-dominated phase

5 Particular case

We now study the solution in the limit a → 0. In this case,
(25) becomes

H = Hi

[A(R/R∗)2 + 1](1−β)
, (45)

where Hi is the initial value of H at R = 0. A unified ex-
pression for deceleration parameter in terms of scale factor
has the form

q = (1 − 2β)A(R/R∗)2 − 1

A(R/R∗)2 + 1
. (46)
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Integrating (45), we get

Hit =
∫ [A(R/R∗)2 + 1](1−β)

R
dR. (47)

Again, in the limit of very small R (R � R∗), we get

R = R∗ exp(Hit), (48)

which corresponds to de Sitter expansion driven by creation
of particles. As t → −∞, R → 0, which shows that the uni-
verse is infinitely old. There is no physical singularity as the
energy density assume a finite value. These solutions help
to resolve several cosmological problems (flatness, horizon,
monopole etc.) associated with the standard model. In this
case there exists an event horizon, which is given by

RE = R(t0)

∫ ∞

t0

dt

R(t)
= 1

Hi

. (49)

This implies that no observer beyond this proper distance at
t = t0 can communicate with another observer.

The energy density is constant during inflationary phase.
The particle creation pressure pc is zero. The exponential in-
flation is due to the vacuum energy density (p = −ρ). Thus
the cosmological constant may be considered to give rise
the exponential expansion in the absence of negative cre-
ation pressure. Also the particle number density, number of
particles and entropy are given by

n = n0 exp[−3(1 − β)Hit], (50)

N = N0 exp(3βHit), (51)

S = S0 exp(3βHit). (52)

Hence, particle number density decreases whereas the num-
ber of particles and entropy increase exponentially in this
phase. As such this model represents a steady-state inflation-
ary universe. It is noteworthy that this model is analogous to
the steady-state model of the universe [3].

In the limit of very large R (R � R∗), when the universe
inters to radiation-dominated phase, we obtain

R = R∗
[2(1 − β)

A(1−β)
Hit

] 1
2(1−β)

. (53)

The other results for various parameters are the same as ob-
tained in Sect. 4.2. We see from (46) that the deceleration
parameter varies from q = −1 at R = 0 to q = (1 − 2β) for
radiation-dominated phase.

6 Kinematics tests

Now we derive some observable tests of the models in
radiation-dominated phase as proposed in the preceding sec-
tion.

Fig. 1 Lookback time vs. redshift for selected values of β in unit of
H−1

0

6.1 Lookback time-redshift

The lookback time, 	 = t0 − t (z), is the difference between
the age of the universe at the present time (z = 0) and the age
of the universe when a particular light ray at redshift z was
emitted. For a given redshift z, the expansion scale factor of
the universe R(tz) is related to R0 by 1 + z = R0/R, where
R0 is the present scale factor. Therefore, from (37), we get

1 + z =
( t0

t

) 1
2(1−β)

, (54)

which can be rewritten as

t0 − t (z) = H−1
0

2(1 − β)
[1 − (1 + z)−2(1−β)], (55)

where H0 is the Hubble constant at present in km s−1 M pc−1

and its value is believed to be some where between 50 and
100. However, H0 is dimensionally similar to the recipro-
cal of time t . The reciprocal of Hubble constant is called
the Hubble time TH : TH = H−1

0 , where TH is expressed in
s and H0 in s−1. If H0 is expressed in km s−1 M pc−1 and
TH in gigayears, then TH = 977.8/H0. In Fig. 1 we plot the
lookback time as a function of the redshift for selected val-
ues of β in unit of H−1

0 . We observe that the lookback time
increases for higher values of β . For lower redshift, all mod-
els coincide since they follow the same behavior. Therefore,
the models with larger matter creation rate are older.

For small z, (55) gives

(t0 − t (z))H0 = z − (1 − 2β)

2
z2 + · · · . (56)

The solution of age problem depends on the parameter β .
Taking limit z → ∞ in (55), the present age of the universe
is

H0t0 = 1

2(1 − β)
= 1

(1 + q)
. (57)
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Fig. 2 Proper distance vs. redshift for selected values of β in unit of
H−1

0

It is seen from (57) that for a given H0 the age t0 is always
larger than H−1

0 /2. It is exactly H−1
0 for β = 1/2, i.e., coast-

ing cosmology. In standard flat model (β = 0), one would
obtain exactly t0 = H−1

0 /2. We may conclude that the parti-
cle creation changes the predictions of the standard cosmol-
ogy. For β = 1/4, (55) becomes

t0 − t (z) = 2H−1
0

3
[1 − (1 + z)−3/2], (58)

which can be rewritten as

t0 − t (z) = 2

3
TH [1 − (1 + z)−3/2], (59)

which gives the well-known lookback time in Einstein-de
Sitter universe. In the limit as z → ∞, we obtain the present
age of the universe as t = (2/3)TH .

6.2 Proper distance-redshift

The radial coordinate distance r(z) of the object at light
emission as a function of redshift is given by

r(z) =
∫ t0

t

dt

R
= H−1

0 R−1
0

(1 − 2β)
[1−(1+z)(2β−1)], (β 	= 1/2).

(60)

Therefore, the proper distance d(z) between the source and
the observer as a function of redshift is given by

d(z) = r(z)R0 = H−1
0

(1 − 2β)
[1 − (1 + z)(2β−1)]. (61)

In Fig. 2 the proper distance as a function of redshift and for
different values of the parameter β is shown. For small z,
expanding (61) we get

H0d(z) = z − (1 − β)z2 + · · · , (62)

Fig. 3 Luminosity distance vs. redshift for selected values of β in unit
of H−1

0

which depends on the particle creation β . Taking z → ∞,
we obtain

d(z = ∞) = H−1
0

(1 − 2β)
. (63)

6.3 Luminosity distance-redshift

The luminosity distance of a light source is defined as the
ratio of the detected energy flux l and the apparent luminos-
ity L, i.e., d2

l = l/4πL. In the standard FRW model, it takes
the form

dl = R0r(z)(1 + z) = d(z)(1 + z). (64)

From (61) and (64), we get

dl = H−1
0 (1 + z)

(1 − 2β)
[1 − (1 + z)(2β−1)], (β 	= 1/2). (65)

For small z after some algebra, (62) gives

H0dl = z + 1

2
(1 − q)z2 + · · · . (66)

The luminosity distance depends on the particle creation
β parameter. However, (66) shows that for small z, it de-
pends on the effective deceleration parameter q . The lu-
minosity distance as a function of the redshift is shown in
Fig. 3. As expected, we find the same behavior for different
models at z � 1 and the possible difference in behavior for
different models come at large redshift (z � 1). In Fig. 3 we
observe that all curves start off with the linear Hubble law
(z = dlH0) for small z, but then, only the curve for q = 1,
i.e., β = 0 stays linear all the way. We also note that for
the small redshift the luminosity distance is larger for lower
values of q . Thus, for q = 1, we have

dl = H−1
0 z, (67)
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Fig. 4 Angular diameter distance vs. redshift for selected values of β

in unit of H−1
0

and for q = 0, i.e., β = 1/2 we get

dl = H−1
0

(
z + 1

2
z2

)
. (68)

6.4 Angular diameter distance-redshift

The angular diameter dA of a light source of proper distance
d(z) is defined as

dA = d(z)(1 + z)−1 = dl(1 + z)−2. (69)

Using (61) and (65), we get

dA = H−1
0

(1 − 2β)

[1 − (1 + z)(2β−1)

(1 + z)

]
, (β 	= 1/2). (70)

In Fig. 4 we plot the angular diameter distance versus
redshift for some selected values of β in unit of H−1

0 . The
angular diameter distance initially decreases with increasing
z and eventually begins to increase for higher values of β .

The limit on the parameter β for all kinematics tests are
in the range 0.50 ≤ β ≤ 1, i.e., −1 < q ≤ 0, which is accept-
able range observed by SNe Ia data (Qiang et al. 2007). The
kinematics tests for the inflationary phase may be derived in
a similar way as discussed above.

7 Conclusion

In this paper we have discussed the flat FRW cosmological
models described by “open” thermodynamics systems, i.e.,
including particle creation at the expense of gravitational
field. We have solved the field equations by using “gamma-
law” equation state, in which the adiabatic parameter γ is
the function of scale factor R. A unified description of early
phases of the evolution of the universe has been presented

with the creation of particle in which an inflationary phase
is followed by an radiation-dominated phase. We have ob-
tained power-law and exponential expansion in inflationary
phase for 0 ≤ a < 1 and 0 ≤ β < 1. In case of power-law ex-
pansion in both phases (inflation and radiation), the model
has singularity at t = 0. The dimension of scale factor vary
as R ∝ t1/a(1−β) in inflationary phase and R ∝ t1/2(1−β) in
radiation-dominated phase which are the simple generaliza-
tion of Carvalho’s work.

In the case of exponential expansion (a = 0), the model
is non-singular as the energy density is finite at t = 0 and at
t → −∞, R → 0 which shows that the universe is infinitely
old. We find that the exponential expansion of the universe is
due to the negative pressure caused by vacuum energy den-
sity (p = −ρ) without negative pressure due to particle cre-
ation. The possibility that q < 0 has come in this case, which
indicates that the universe is accelerating and the models
studied here are alternatives to universe dominated by a
cosmological constant. Thus the inflationary model with de
Sitter expansion belongs to particle creation domain with
q = −1. We may expect that the process of particle creation
is also an ingredient accounting for this unexpected observa-
tional result. The changes introduced by the particle creation
process, which is quantified by the parameter β , provides a
reasonable observational results. The new fact justifying the
present work is that we have considered the thermodynamics
approach for which particle creation is at the expense of the
gravitational field. A general expression relating the energy
densities and particle number density as function of scale
factor have been established. One may find that the parti-
cle creation changes the predictions of standard cosmology,
thereby alleviating the problem of reconciling observations
with the inflationary scenario. We have derived the lookback
time, proper distance, luminosity distance and angular diam-
eter distance versus redshift with particle creation. We have
observed that the age of the universe with particle creation
is always greater than the corresponding FRW model with-
out particle creation. For further work one may expect that
negative creation pressure and cosmological constant may
jointly generate the accelerating universe.
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