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Abstract In this paper, families of simple symmetric and
non-symmetric periodic orbits in the restricted four-body
problem are presented. Three bodies of masses m1, m2 and
m3 (primaries) lie always at the apices of an equilateral tri-
angle, while each moves in circle about the center of mass
of the system fixed at the origin of the coordinate system. A
massless fourth body is moving under the Newtonian gravi-
tational attraction of the primaries. The fourth body does not
affect the motion of the three bodies. We investigate the evo-
lution of these families and we study their linear stability in
three cases, i.e. when the three primary bodies are equal,
when two primaries are equal and finally when we have
three unequal masses. Series, with respect to the mass m3,
of critical periodic orbits as well as horizontal and vertical-
critical periodic orbits of each family and in any case of the
mass parameters are also calculated.

Keywords Asymptotic orbits · Four-body problem ·
Periodic orbits · Stability

1 Introduction and equations of motion

The objective of our paper is the investigation, numerically,
of the families of simple (crossing the synodical line twice in
one period) periodic orbits of a body of negligible mass stud-
ding its motion under the Newtonian gravitational attraction
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of three bodies with masses m1, m2 and m3 which move,
with the same angular velocity, in circular orbits around their
center of mass fixed at the origin of the coordinate system.
In the general problem of three bodies there is a particular
solution in which the bodies lie at the vertices of an equi-
lateral triangle, each moving in a Keplerian orbit. This is
well known, and was first given by Lagrange in 1772. He
found three-body motions in which the mutual distances
are constant, and Euler extended them and found solutions
in which the ratios of mutual distances are constant. Al-
though Lagrange thought his equilateral triangle solutions
were of no great practical significance, it was later real-
ized that the Sun, Jupiter and the Trojan asteroids formed
such a configuration in our Solar system. Many scien-
tists, among others, Andoyer (1906), Lindow (1922, 1923),
Schaub (1929), MacMillan and Bartky (1932), Hüttenhain
(1933), Pedersen (1944, 1952), Brumberg (1957), Palmore
(1973), Simo (1978), Majorana (1981), Álvarez-Ramirez
and Vidal (2009), Baltagiannis and Papadakis (2011), and
references therein, studied the four-body problem.

The same problem, in various versions, has been used
by many scientists for practical applications such as, among
others, Van Hamme and Wilson (1986), Kloppenborg et al.
(2010) (ε Aurigae system), Melita et al. (2008), Robutel and
Gabern (2006) (Sun, Jupiter and Saturn system), Schwarz et
al. (2009a) (star, two massive planets and a massless Trojan),
Schwarz et al. (2009b) (star, brown dwarf, gas giant and a
massless Trojan), Ceccaroni and Biggs (2010) (Sun, Jupiter,
Trojan Asteroid, Spacecraft), and references therein.

We consider that three particles of masses m1, m2 and
m3 always lie at the vertices of an equilateral triangle and
one of them, say m1, is on the positive x-axis at the origin
of time. The motion of the system is referred to axes rotat-
ing with uniform angular velocity. The three bodies move in
the same plane and their mutual distances remain unchanged
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with respect to time. The motion of the primaries consists of
circular orbits around their center of gravity.

The equations of motion of the infinitesimal mass of the
restricted four-body problem, in the usual dimensionless
rectangular rotating coordinate system (x, y, z) are written
as Moulton (1900),
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ÿ + 2ẋ = ∂�

∂y
= y −

3∑

i=1

mi(y − yi)

r3
i

, (1)

z̈ = ∂�

∂z
= −

3∑

i=1

mi(z − zi)

r3
i

,

where dots denote time derivatives while the gravitational
potential � in synodic coordinates is defined as
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and the distance of the fourth particle from each of the three
primaries is:

r2
i = (x − xi)
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2, i = 1,2,3. (3)

The equations of motion admit a Jacobian type of integral,

ẋ2 + ẏ2 + ż2 = 2� − C, (4)

where C is the Jacobian constant.
If we suppose that the three primary bodies move on the

same plane and the axes are so chosen at the origin of time
that m1 is on the x-axis then the coordinates of the three
primaries are:
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where we have abbreviated

K = m2(m3 − m2) + m1(m2 + 2m3). (6)

2 Case of equal primary bodies

While in the classical restricted three-body problem there
are five coplanar equilibrium points, here in the restricted
four-body problem (Lagrangian equilateral triangle config-
uration) the existence as well as the number of the collinear
and the non-collinear equilibrium points depends on the par-
ticular values of the mass parameters m1,2,3 of the primary
bodies (Baltagiannis and Papadakis 2011). In our present
case where all the primaries have the same mass m1 = m2 =
m3 = 1/3, the problem admits four collinear (on the x-axis)
equilibrium points and six non-collinear (off the x-axis)
ones. All these equilibrium points are unstable (for details
see Álvarez-Ramirez and Vidal 2009 and Baltagiannis and
Papadakis 2011).

In this section we will present the network of ten planar
symmetric (with respect to x-axis) simple-periodic orbits of
the problem when the masses of the primaries are equal.
We have chosen the ten families which correspond (quali-
tatively) to the most basic families of the classical Copen-
hagen three-body problem (see Szebehely 1967, p. 455). By
symmetric simple-periodic orbits we mean the simplest so-
lutions which have just two perpendicular intersections with
the horizontal x-axis.

All calculations reported in this paper were performed
using the variable step R-K 8th-order direct integration
and settings the allowable energy variation �C = |Cstart −
Cend| < 10−12 and |x0 − xT | < 10−8 (initial and final con-
ditions at t = 0 and t = T ).

In Fig. 1 we present the network of ten families of the
simple symmetric periodic orbits for equal masses of the pri-
mary bodies. The presentation is made in the (x,C) plane,
where the initial conditions generating closed solutions re-
entering after one oscillation, are shown as characteristic pe-
riodic family curves. We note here that we have considered
the symmetric periodic orbits as represented by their initial
conditions x0, y0 = 0, ẋ0 = 0 and ẏ0 > 0 i.e. “positive” per-
pendicular intersections of the x-axis. The position of the
primary body m1 is denoted by a vertical dashed line. Small
red circles indicate the positions of the equilibrium points
Li , i = 1, . . . ,4. The shaded area is non-accessible to mo-
tion due to the Jacobian integral.

At the same time we study the linear stability of the pe-
riodic solutions of the problem. The horizontal and vertical
isoenergetic stability of each periodic orbit of the ten fami-
lies was computed using the stability parameters ah and av ,
defined by Hénon (1965). According to this paper the con-
dition for a symmetric periodic orbit to be horizontal or/and
vertical stable is |ah| < 1 or/and |av| < 1 respectively. For
high accuracy (i.e. the accuracy of the numerical integration,
which in the present work is 12 significant figures), we in-
tegrated the equations of motion simultaneously with equa-
tions of variation. In Fig. 1 the stability arcs of the families
are presented by red lines.
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Fig. 1 The characteristic curves of ten families of the simple sym-
metric periodic orbits for m1 = m2 = m3 = 1/3. Red lines indicate the
horizontal stability arcs of the families. The small black circles and
triangles show the horizontal and the vertical critical periodic orbits
correspondingly

Finally, we calculated the special generating planar or-
bits i.e. the horizontal and vertical critical periodic orbits
of each family. A periodic orbit is a horizontal-critical or
vertical-critical periodic orbit if the stability index |ah| = 1
or |av| = 1 correspondingly (for details see Hénon 1973)
and from them we have, generally, the opportunity to cal-
culate other families of planar or three dimensional periodic
orbits. The small black circles and triangles indicate the hor-
izontal and the vertical critical periodic orbits of the families
correspondingly.

Family f1 consists of symmetric simple periodic orbits
around the three primary bodies. These are retrograde orbits
in the rotating as well as in the fixed system like family m
of the classical three-body problem. Family f1, from one
side, has orbits where tend to collision with the primaries
while on the other side the periodic orbits grow away from
the three primary bodies as the Jacobian constant decreases.
A large part of the family is stable (red line in Fig. 1) while
one horizontal critical periodic orbit and five vertical ones
exist in the part of the family where we have calculated (the
family exist and for C < −3 which is out of the region −3 ≤
C ≤ 5 in which we study the families in this paper).

The periodic orbits of family f2 are retrograde orbits
around the primary body m1 like family h of the classical
three-body problem. The characteristic curve of this fam-
ily, from one side, evolves inside the funnels of the (x,C)

diagram, that are formed between the zero velocity bound-
aries, and always increases as C increases. From the other

Fig. 2 Three symmetric periodic orbits of family f2 for
m1 = m2 = m3 = 1/3. The “end” of the family is a heteroclinic
asymptotic orbit on L5 and L6 (blue line). The small black points
and the green stars denote the positions of the primary bodies and the
equilibria of the problem correspondingly

side, spirals around point in the (x,C) plane which has or-
dinate C = CL(3,5,6)

= 2.94673 (Fig. 1). So, the termination
members of the family are asymptotic orbits which intersect
the x-axis perpendicularly and tend asymptotically to L5 for
t → +∞ and to L6 for t → −∞, spiralling into (and out
of) this point (Fig. 2). The termination of this family has a
characteristic behaviour. As the period tends to infinity, the
energy of the orbits oscillates in a small shrinking interval
around the energy of the asymptotic orbit which is the en-
ergy of the equilibrium point L5(6). At each change in the
sign of the derivative of the energy, the stability of the orbit
changes. This type of termination has been called a “blue
sky catastrophe” by Devaney (1977).

In the frames (a) and (b) of Fig. 3 we present the stabil-
ity of the family f2 i.e. we plot the horizontal (solid line)
and the vertical (dashed line) stability indices versus the Ja-
cobian constant C. The second figure is an enlargement of
the first one, around the value of C = CL3,5,6 where the “blue
sky catastrophe” termination of the family is occurred. Many
horizontal (f ih

2 ) and vertical-critical (f iv
2 ) periodic orbits of

the family are denoted by small circles and triangles corre-
spondingly since the stability of the family changes all the
time as the period tends to infinity and the characteristic
curve of the family spirals around the point with ordinate
C = CL3,5,6 in the (x,C) plane. The evolution of the period
T of the family f2 is presented in the third frame of Fig. 3.

Family f3 has as members direct simple symmetric peri-
odic orbits around the primary body m1 like family g of the
classical three-body problem. As C decreases the orbits in-
crease in size and then change multiplicity. The parts of the
families where correspond to higher-multiplicity orbits are
not considered in this paper. The majority of orbits in family



360 Astrophys Space Sci (2011) 336:357–367

Fig. 3 (a) Horizontal and vertical stability diagram of family f2. The
small circles and triangles indicate the horizontal and the vertical crit-
ical periodic orbits correspondingly. (b) Zoomed area around the Jaco-

bian constant C = CL(3,5,6)
= 2.94673 where the stability-instability of

the family changes all the time as the period tends to infinity (frame (c))

f3 are stable (red line in Fig. 1) and one horizontal and four
vertical-critical periodic orbits exist.

The periodic orbits of family f4 are retrograde in the ro-
tating system and direct in the fixed system, around the pri-
mary bodies m1, m2 and m3 like family l of the classical
three-body problem. This family has periodic orbits, from
one side, which grow away from the three primary bodies as
the Jacobian constant increases while, from the other side,
the family “ends” on the zero velocity curve (Fig. 1). Most
of the periodic orbits of the family are stable and there are
three horizontal and five vertical-critical periodic solutions.

Family f5 contains retrograde simple symmetric peri-
odic orbits around the equilibrium point L2 like family a
of the classical three-body problem. The infinitesimal ellip-
tic retrograde orbits around L2 increase in size, as decreas-
ing Jacobian constant, until a heteroclinic asymptotic orbit
on equilibrium points L5 and L6 is reached (Fig. 4). The
majority of the periodic orbits of this family are unstable
but there are horizontal and vertical-critical orbits since the
family “ends” under the “blue sky catastrophe” termination.
The characteristic curve of the family has two small arcs of
stable periodic orbits as the Jacobian constant tends to its
lower value (red lines in Fig. 1).

Retrograde periodic orbits around the primary body m1

of the problem are the members of family f6. From one side
the family tends to collision with the primaries m2 and m3

while from the other side the family terminates with hete-
roclinic asymptotic orbits on the equilibrium points L5 and
L6. The periodic solutions of the family are unstable but two
small arcs with stable ones exist (Fig. 1). As the period of the
family tends to infinity and the characteristic of the family
spirals around a point with C = CL3 , horizontal and vertical-
critical periodic orbits are created.

Family f7 has retrograde periodic orbits around the pri-
mary bodies m2 and m3. The family begins with orbits very
close to the two primaries and ends with a collision orbit

Fig. 4 Three symmetric periodic orbits of family f5 around the equi-
librium point L2 for m1 = m2 = m3 = 1/3. The “end” of the family
is a heteroclinic asymptotic orbit on L5 and L6 (blue line). The small
black points and the green stars denote the positions of the primary
bodies and the equilibria of the problem correspondingly

with the primary body m1. The majority of the periodic so-
lutions of the family are unstable but there are small arcs
with stable ones in the middle and close to the end of its
characteristic curve (red lines in Fig. 1).

Family f8 from one side ends on the zero velocity
curve while from the other side terminates with heteroclinic
asymptotic orbit at L5 and L6 and all its members are retro-
grade periodic orbits around the three primary bodies. The
periodic solutions of this family are unstable and we found
horizontal and vertical-critical periodic orbits only in its
“blue sky catastrophe” termination.

Family f9 is like family x of the classical three-body
problem and consists of retrograde periodic orbits around
the primary bodies m2 and m3. The termination orbits of
both sides of this family are heteroclinic asymptotic orbits
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at L5 and L6. There are small arcs of its characteristic curve
with stable periodic solutions.

Finally, family f10 consists of direct symmetric periodic
orbits around the three primary bodies of the problem and
corresponds to family k of the classical three-body prob-
lem. The periodic orbits of this family, on both sides, tend to
change multiplicity. We continued and calculated the parts
of the family with higher-multiplicity and found the termina-
tion periodic orbits of this family. Family f10 ends, from one
side, with a collision periodic orbit with the three primary
bodies (black orbit in Fig. 5) and from the other side termi-
nates with asymptotic orbit at the three equilibrium points
i.e. the collinear L3 and the non-collinear L5 and L6 (blue
orbit in Fig. 5). Family F10 has two small arcs of its charac-
teristic curve with stable periodic solutions.

In Table 1 we list the initial conditions of the symmetric
periodic orbits which are plotted in Figs. 2, 4 and 5. For
each orbit listed in this table, x0 is the initial position of the
particle on the x-axis, ẏ0 is the vertical initial velocity (ẋ0 =
0), xT/2, ẏT /2 are denoted the same quantities at the half

Fig. 5 The termination symmetric periodic orbits of family f10 for
m1 = m2 = m3 = 1/3. The small black points and the green stars de-
note the positions of the primary bodies and the equilibria of the prob-
lem correspondingly

period, T/2 is the half period and C is the Jacobian constant.
In the last column we present the horizontal stability of the
periodic orbit.

3 Two primary bodies with equal masses

In this section we will study the simple symmetric periodic
solutions of the restricted four-body problem when the two
primary bodies m2 and m3 have equal masses. The existence
of this kind of orbits (symmetric with respect to horizontal
x-axis), in the present case, is easily be proved if we in-
sert the transformation (x, y, ẋ, ẏ, t) → (x,−y,−ẋ, ẏ,−t)

in the equation of motion (1). We verify that these equations
remain unchanged under the previous transformation.

It is known, that in the Lagrange central configuration the
necessary condition for the stability of the configuration is
the inequality,

m1m2 + m2m3 + m3m1

(m1 + m2 + m3)2
<

1

27
, (7)

where m1, m2 and m3 the three primary bodies (Gascheau
1843). We choose m1 = 0.97 and m2 = m3 = 0.015 and so
the inequality (7) is fulfilled.

And in this case of mass distribution, as in the first one,
we calculated the network of the families of the simple sym-
metric periodic orbits of the problem and we present ten of
them. Some of these families, namely f1,2,3,4,5,7, are the
evolution of the old ones (when m1 = m2 = m3) and some
of them are new (f6,8,9,10) since the old ones do not exist
any more. In Fig. 6 we plot the characteristic curves of these
ten families.

Comparing the Figs. 1 and 6 we see the differences in
the forbidden areas (or the trapped areas), in the absence
of the collinear equilibrium points L1 and L4 as well as in
the characteristic curves of the families. According to the
paper Baltagiannis and Papadakis (2011) the restricted four-
body problem, when m2 = m3 admits two or four collinear
and four or six non-collinear equilibrium points (depends

Table 1 Symmetric periodic orbits which are plotted in Figs. 2, 4 and 5

Family x0 ẏ0 xT/2 ẏT /2 T/2 C Stability

f2 0.40050000 1.56088315 0.75770121 −1.53644341 0.36611460 3.05967251 S

0.05350000 1.34205190 1.23459900 −1.30198016 1.56756877 1.67506327 S

−0.08435450 0.73239406 1.63558530 −1.01441055 19.27221938 2.94672728 U

f5 1.10950000 0.21881797 1.24602285 −0.20446502 2.32565571 3.33382420 U

0.90050000 0.93362977 1.40248144 −0.70365211 2.40189387 3.03584294 U

0.69799469 2.06682108 1.63556565 −1.01438409 14.68467055 2.94673480 U

f10 0.57952380 17.46633001 −0.50246977 0.08137413 4.00510710 3.31516544 U

0.60309000 4.90830820 −0.36515435 −0.00036434 3.74842644 3.47668129 U
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Fig. 6 The network of ten families of the simple symmetric periodic
orbits for m1 = 0.97 and m2 = m3 = 0.015. Red lines indicate the hor-
izontal stability arcs of the families. The small black circles and trian-
gles show the horizontal and the vertical critical periodic orbits corre-
spondingly

on m2,3). For m2 = m3 = mcrit = 0.2882762 the equilib-
rium point L1 coincides with L4 and for values less than
mcrit the equilibria L1 and L4 do not exist. So, in the present
case the problem has 2 collinear and 6 non-collinear equilib-
ria. All the equilibrium points are unstable except the non-
collinear equilibria L5 and L6 which are stable.

For m1 = 0.97 and m2 = m3 = 0.015 we found that fam-
ilies f1 and f7 present, qualitatively, the same behaviour as
in the case with three equal primary bodies (both families
tend to collision with the primaries m2 and m3).

Family f2 now tends to collision with the primaries m1

and m2 and it has not simple asymptotic orbits any more.
The evolution of the families f3,4,5, as C varies, is dif-

ferent now since f3 and f5 tend to collision with m1 while
f4, as C decreases, changes multiplicity. In the first frame of
Fig. 7 the stability diagram of family f5 is illustrated. The
two horizontal and the two vertical critical orbits of this fam-
ily are marked with small circles and triangles correspond-
ingly.

Family f6 consists of retrograde symmetric periodic or-
bits around the three bodies m1,2,3 and from both sides ter-
minates on the zero velocity curve (inside zoomed image
in Fig. 6). It has two small arcs in its characteristic curve
with stable periodic orbits. In this family four horizontal and

Fig. 7 Horizontal (solid lines)
and vertical (dashed lines)
stability diagram of families
f5,6,9,10 for m1 = 0.97,
m2 = m3 = 0.015. The small
circles and triangles indicate the
horizontal and the vertical
critical periodic orbits
correspondingly
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five vertical-critical periodic orbits exist (second frame in
Fig. 7).

Family f8 has retrograde periodic orbits around m1,2,3.
The characteristic curve of this family is closed. The half
periodic orbits of this family are stable (red line in Fig. 6).
Six horizontal and four vertical-critical symmetric periodic
orbits exist.

The only family where all its periodic orbits are unsta-
ble is the family f9. Consists of retrograde periodic orbits
around the three bodies m1,2,3. From one side, this fam-
ily, tends to collision with m2 and m3 while from the other
side changes multiplicity. Four vertical-critical periodic or-
bits exist (third frame in Fig. 7).

Finally, the members of the family f10 are direct sym-
metric periodic orbits around the primary m1. The family
has stable periodic orbits, four horizontal and two vertical-
critical periodic orbits (last frame in Fig. 7). This family
terminates, from one side, on the zero velocity curve while
from the other side changes multiplicity (inside zoomed im-
age in Fig. 6).

From the horizontal and vertical stability curves of the
families f5, f6 and f10 it is seen that these families consist
mostly of orbits which are vertically stable but horizontally
unstable.

4 Primary bodies with unequal masses

Collinear equilibrium points in the restricted four-body
problem (Lagrangian configuration) with three unequal
masses, do not exist. The problem, in this case, admits
eight or ten (depends on the mass parameters) non-collinear
equilibrium points (for details see Baltagiannis and Pa-
padakis 2011). In this section we study the families of sim-
ple periodic orbits when the mass distribution is m1 = 0.97,
m2 = 0.02 and m3 = 0.01. The stability condition (7), for
these mi , is fulfilled. For these values of masses the problem
has eight equilibrium points. All equilibria are unstable ex-
cept L5 and L6 which are stable. In this case of the problem,
the horizontal x-axis is not a symmetric axis any more (as
in the two previous cases in the present paper). So, in this
section we will study the families of simple non-symmetric
periodic orbits for the specific values of masses of the three
primary bodies.

In the two previous cases we presented the characteris-
tic curves of the families of simple symmetric periodic or-
bits using the initial conditions of the periodic orbits namely
x0 = {x0, y0 = 0, ẋ0 = 0, ẏ0(C)} while now the characteris-
tic curves of the families of non-symmetric periodic orbits in
the (x0,C) plane do not define the complete set of the initial
conditions of the orbits since they do not provide any infor-
mation about the values of the horizontal (ẋ0 �= 0 now) or the
vertical component of the velocity of the fourth infinitesimal

body. For comparison reasons we will use the same presen-
tation of the families on the (x0,C) plane and we will give
additional information about the velocity of the fourth body
in appropriate tables of data.

While the determination of the initial conditions of an
orbit close to a symmetric periodic orbit is possible using
the grid method (Markellos et al. 1974), this is not possible
for non-symmetric periodic orbits since the velocity of the
fourth body is not vertical with respect to horizontal x-axis
for T = 0. So, we need to know how a symmetric periodic
orbit changes as the mass parameters vary. From the previ-
ous section we know ten families of simple symmetric peri-
odic orbits with m1 = 0.97 and m2 = m3 = 0.015. We can
obtain a one-parameter set of horizontal or vertical critical
periodic orbits by varying the mass parameter (say, m3). If
the parameter is fixed the horizontal (or vertical) critical or-
bits are isolated. In the present case, we keep constant the
mass of the dominant body m1 = 0.97 and we computed
monoparametric sets of horizontal or vertical critical orbits
for values of the mass parameter of the third primary m3

varying in the range [0.015, 0.01] (the mass of the second
primary body is defined by the equation m2 = 1−m1 −m3).
So, we determined critical non-symmetric periodic orbits
for m1 = 0.97, m3 = 0.01 and m2 = 0.02. We shall call
the set of initial conditions and other quantities describing
a critical orbit for a range of values of the mass parame-
ters, a bifurcation series or a series of critical orbits. Once
a non-symmetric orbit has been found, we can extend the
search to the whole one-parameter family to which that or-
bit belongs. All the families of symmetric periodic orbits
fi , i = 1, . . . ,10 of the previous case (two equal primaries)
have at least one horizontal critical periodic orbit except
family f9. In this case we determined the series of one (it
has four) vertical critical periodic orbit of family f9.

In Table 2 horizontal critical periodic orbits with Sh = 1
for the families fi , i = 1, . . . ,8,10 and vertical critical ones
with Sv = 1 for the family f9 are given. For each family the
first critical periodic orbit is the symmetric critical solution
for m1 = 0.97 and m2 = m3 = 0.015 while the second one
is the non-symmetric critical solution for m1 = 0.97 m2 =
0.02 and m3 = 0.01 correspondingly. In the last column of
Table 2 we present the stability index Sh = (ah + dh)/2 or
Sv = (av + dv)/2, where ah, dh, av and dv are the isoener-
getic stability horizontal (vertical) parameters, of each peri-
odic orbit (for details see Hénon 1965, 1973).

Starting with the initial conditions of Table 2, for m1 =
0.97 m2 = 0.02 and m3 = 0.01, we calculated the ten fami-
lies of simple non-symmetric periodic orbits. In Fig. 8 we
present these ten families with their corresponding stable
arcs (red lines). We note again that the characteristic curves
presented here do not give any information about the veloc-
ity of the non-symmetric periodic orbits of the families fi ,
i = 1, . . . ,10.
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Table 2 Series, with respect to the mass parameter m3 (m1 = 0.97 is fixed and m2 = 1 − m1 − m3), of critical symmetric and non-symmetric
periodic orbits

Family m3 x0 ẋ0 ẏ0 C T Stability index

f1 0.015 −1.02160447 0.00000000 2.04679983 −1.18104196 2.82991261 Sh = 1.00000000

0.01 −1.02506173 −0.03888367 2.05336268 −1.17807072 2.84078467 Sh

f2 0.015 −0.75612119 0.00000000 1.89645568 −0.42598534 2.65805735 Sh

0.01 −0.75507284 0.01748971 1.90269870 −0.42825831 2.66038694 Sh

f3 0.015 0.49660519 0.00000000 0.97708718 3.45614347 3.19119978 Sh

0.01 0.50001684 0.00161738 0.97122228 3.44521168 3.25098464 Sh

f4 0.015 −2.09768018 0.00000000 1.40690658 3.37872619 9.39826718 Sh

0.01 −2.09833939 −0.00119843 1.40823351 3.37878217 9.39762923 Sh

f5 0.015 0.20901246 0.00000000 2.92071648 2.16398820 6.24319928 Sh

0.01 0.26503026 0.26031156 2.42511743 2.30234921 6.23835093 Sh

f6 0.015 −1.29832006 0.00000000 0.34444543 3.12037989 14.34282809 Sh

0.01 −1.31371897 0.08828457 0.40643256 3.10118167 15.15805445 Sh

f7 0.015 −1.54435005 0.00000000 1.05782952 2.57088764 5.64506825 Sh

0.01 −1.55780271 0.01646369 1.08000666 2.55924268 5.70518828 Sh

f8 0.015 −1.72477906 0.00000000 1.06562373 3.00644003 18.17937805 Sh

0.01 −1.70207170 0.00374697 1.03334713 3.01572943 18.04783658 Sh

f9 0.015 −2.24258103 0.00000000 1.86532152 2.44520826 17.63176140 Sv = 1.00000000

0.01 −2.21748105 0.03965238 1.83278958 2.46324526 17.58806770 Sv

f10 0.015 0.73304548 0.00000000 0.46045805 3.10542112 9.37317852 Sh

0.01 0.73452874 −0.14568935 0.47286556 3.07075149 10.71055379 Sh

Fig. 8 The characteristic curves of ten families of the simple non-sym-
metric periodic orbits for m1 = 0.97, m2 = 0.02 and m3 = 0.01. Red
lines indicate the horizontal stability arcs of the families. The small
black circles and triangles show the horizontal and the vertical critical
periodic orbits correspondingly

The network of the ten families of periodic orbits we
found is quite close to this network of families in the case
where the two primaries are equal (m2 = m3 = 0.015) but
with a significant difference i.e. in the present case all
the periodic solutions are non-symmetric. Namely, families
f1,2,3,4,7,8,9 have the same, qualitatively, behaviour as in the
previous case while families f5,6,10 are evolved different.

Family f5 consists of simple retrograde non-symmetric
periodic orbits which some of them are Trojan type orbits
(generally not crossing the synodical line). From one side
has solutions around the equilibrium point L2 and from the
other side has as members periodic orbits around the stable
equilibrium point L6 (f5 in Fig. 9). The evolution of this
family is like the short-period asymmetric family emanat-
ing from the Lagrangian equilibrium point L5 and termi-
nates on a symmetrical periodic orbit belonging to the fam-
ily b, which family b emanates from the collinear equilib-
rium point L3 in the classical restricted three-body problem
(Deprit et al. 1967). Family f5 has stable periodic orbits and
three horizontal and two vertical critical non-symmetric pe-
riodic solutions.

Family f6 has retrograde non-symmetric periodic orbits
around the three primaries and now, in this mass distribu-
tion, from both sides terminates with solutions where are
asymptotic orbits at the equilibrium point L3 (Fig. 8, inside
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Fig. 9 Non-symmetric periodic orbits from the ten families fi , i = 1, . . . ,10 for m1 = 0.97, m2 = 0.02 and m3 = 0.01. The small black points
and the green stars denote the positions of the primary bodies and the equilibria of the problem correspondingly
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Fig. 10 Horizontal (solid line) and vertical (dashed line) stability dia-
gram of the family f5 of the simple non-symmetric periodic orbits for
m1 = 0.97, m2 = 0.02 and m3 = 0.01. The small circles and triangles
indicate the horizontal and the vertical critical periodic orbits of this
family correspondingly

Fig. 11 Left: x versus ẋ from the family f6 of the simple non-symmet-
ric periodic orbits for m1 = 0.97, m2 = 0.02 and m3 = 0.01. Right: C
versus T from the family f10. The small circles and triangles indicate
the horizontal and the vertical critical periodic orbits of these families
correspondingly

left window and frame f6 in Fig. 9). It has a small arc of
stable periodic orbits (red line in Fig. 8) and we have calcu-
lated many horizontal and vertical periodic solutions close
to its termination (small circles and triangles in left frame of
Fig. 11).

Finally, family f10 consists of direct simple non-sym-
metric periodic orbits around the dominant primary body
m1. This family from one side has periodic orbits where
change multiplicity and from the other side has asymptotic
orbits at the equilibrium point L3 (f10 in Fig. 9). Many hor-
izontal and vertical periodic orbits are calculated (small cir-
cles and triangles in right frame of Fig. 11).

In Fig. 9 we plot samples of simple non-symmetric pe-
riodic orbits from the ten determined families. In frames f6

and f10 asymptotic orbits at L3 from families f6 and f10 are
presented correspondingly. In frame f5 we illustrate seven
non-symmetric periodic orbits where they present the evo-
lution of family f5 which we have described previously.

In Fig. 10 the stability diagrams from the family f5 is
illustrated. The positions of the horizontal and vertical crit-
ical periodic orbits from this family are also presented. In
Fig. 11 we plot two characteristic curves of families f6 and
f10 correspondingly. In the second figure we denote the po-
sitions of the critical periodic orbits as the period T tends to
infinity.

5 Conclusions and remarks

Our goal of this paper was the study of the families of
the simple periodic orbits of the restricted four-body prob-
lem (Lagrangian equilateral triangle configuration), when
the primary bodies of the problem have equal or not masses.
We found ten families of periodic orbits of each case i.e.
when the primary bodies are equal, when the two primaries
m2 and m3 are equal and finally when m1 �= m2 �= m3. We
chosen, in the last two cases, one dominant primary body
(m1) and two small (m2,3) in order the stability inequality
(7) of the configuration to be valid.

We found a large number of various types of orbits, such
as symmetric and non-symmetric, with respect to the hori-
zontal x-axis, orbits around one, two or three primaries, or-
bits around an equilibrium position, collision orbits, Trojan
orbits, as well as asymptotic orbits at one, two or three equi-
libria. The orbits are manly retrograde but there are families
where consist of direct periodic orbits.

We have also studied the stability of each periodic orbit
and we found the special generating planar horizontal and
vertical critical solutions of each family.

In any case of the mass distribution, the families f1, f2,
f3 and f4 have the majority of their periodic orbits to be
stable (like the basic families m, h, g and l of the classical
three-body problem). The majority of the periodic orbits of
the rest families are unstable.

The network of the families of the periodic orbits changes
substantially as the mass parameters vary and some families
disappear while some news appear. More specifically, our
main results can be summarized, in each case, as follows:

5.1 Three equal masses

• There is not family without stable periodic orbits. The ma-
jority of the periodic orbits of the families f1, f2, f3 and
f4 are stable. The rest families have small arcs of their
characteristic curves with stable periodic orbits.

• Six of the ten families, under consideration, have as termi-
nating members, asymptotic orbits. Namely, families f2,
f5, f6, f8 and f9 terminate with heteroclinic asymptotic
orbits at the equilibrium points L5 and L6. One family,
f10, has as terminating member an asymptotic orbit at the
three equilibrium points L3, L5 and L6.
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• Family f5 emanates from the collinear equilibrium point
L2 and terminates with asymptotic orbits at the non-
collinear equilibria L5 and L6.

• All the families have horizontal and vertical-critical peri-
odic orbits as members.

• All the symmetric periodic orbits we found are asymmet-
ric with respect to the vertical y-axis.

• All the families consist of retrograde periodic orbits ex-
cept families f3 and f10 where have direct ones.

5.2 Two equal masses

• Only one family, namely f9, is entirely unstable. All the
others families have stable periodic solutions.

• Simple asymptotic orbits, in the ten families under con-
sideration, do not exist.

• All the symmetric periodic orbits we found are asymmet-
ric with respect to the vertical y-axis.

• The characteristic curve of family f8 is closed.
• All the families consist of retrograde periodic orbits ex-

cept families f3 and f10 where have direct ones.

5.3 Unequal masses

• All the families determined here consist of simple non-
symmetric periodic orbits (both in horizontal and in ver-
tical axis).

• All the families have stable periodic orbits.
• Two (of ten) families, namely, f3 and f10 have ter-

minating orbits asymptotic solutions at the equilibrium
point L3.

• Family f5 emanates (or terminates) from the non-collinear
equilibrium point L2 and terminates (or emanates) at the
non-collinear equilibria L6.

• The characteristic curve of family f8 is closed.
• All the families consist of retrograde periodic orbits ex-

cept families f3 and f10 where have direct ones.

Closing this article we would like to express our intention to
apply these results in the Sun-Jupiter-Asteroid system. Fam-
ilies of periodic orbits have already been calculated and we
will present them in a future article.
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