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Abstract A spatially homogeneous and anisotropic Bianchi
type-I cosmological model is obtained in a scalar–tensor the-
ory of gravitation proposed by Saez and Ballester (Phys.
Lett. A 113:467, 1986) when the source for energy momen-
tum tensor is a bulk viscous fluid containing one dimen-
sional cosmic strings. Some physical and kinematical prop-
erties of the model are discussed. It is observed that the bulk
viscosity has a greater role in getting an accelerated expan-
sion of the universe in this theory.

Keywords Viscosity · Anisotropic universe · Cosmic
strings · Scalar tensor theory

1 Introduction

In recent years there has been a considerable interest in cos-
mological models with bulk viscosity, since bulk viscosity
leads to the accelerated expansion phase if the early uni-
verse, popularly known as the inflationary phase. The pos-
sibility of bulk viscosity leading to inflationary-like solu-
tions in general relativistic FRW models has been discussed
by several authors (Barrow 1986; Padmanabhan and Chitre
1987; Pavon et al. 1991; Martens 1995; Lima et al. 1993).
It is well known that the bulk viscosity contributes a nega-
tive pressure term giving rise to an effective total negative
pressure leading to an repulsive gravity. This overcomes the
attractive gravity of the matter and gives an impetus for rapid
expansion of the universe. Roy and Tiwari (1983), Mohanty
and Pattanaik (1991), Mohanty and Pradhan (1992), Singh
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and Shi Ram (1996), Singh (2005) are some of the authors
who have investigated cosmological models with bulk vis-
cosity in general relativity.

Of late, string cosmological models are attracting more
and more attentions of research workers. In a gauze the-
ory, spontaneous symmetry breaking in elementary parti-
cle physics has given rise to topological defects known as
cosmic strings. The gravitational effects of such objects are
of particular interest since they are considered as possible
‘seeds’ for galaxy for motion and gravitational lenses. Late-
lier (1983), Krori et al. (1990), Mahanta and Mukherjee
(2001), Battacharjee and Baruah (2001) have studied several
aspects of string cosmological models in general relativity.
Recently, Wang (2004, 2005, 2006), Bali and Dave (2002),
Bali and Pradhan (2007), Tripathy et al. (2009, 2010) have
studied the Bianchi type cosmological models in the pres-
ence of cosmic strings and bulk viscosity.

Scalar–Tensor theories of gravitation are considered to
be essential to describe the gravitational interactions near
the plank scale: string theory, extended inflations and many
higher order theories imply scalar field. Brans and Dicke
(1961) scalar–tensor theory of gravitation introduces an ad-
ditional scalar field φ besides the metric tensor gij and
a dimensionless coupling constant ω. This theory goes to
general relativity for large values of the coupling constant
ω > 500. Saez and Ballester (1986) formulated a scalar–
tensor theory of gravitation in which the metric is coupled
with a dimensionless scalar field in a simple manner. This
coupling gives a satisfactory description of the weak fields.
In spite of the dimensionless character of the scalar field an
antigravity regime appears. This theory also suggests a pos-
sible way to solve missing matter problem in non-flat FRW
cosmologies.

Johri and Sudharsan (1989), Pimental (1994), Banerjee
and Beesham (1996), Sing et al. (1997) have discussed bulk
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viscous cosmological models in Brans-Dicke theory of grav-
itation. Reddy (2003a, 2003b), Reddy and Naidu (2007a,
2007b) and Rao et al. (2007, 2008a, 2008b) have studied
several aspects of string cosmological models in scalar–
tensor theory of gravitation.

In this paper we study spatially homogeneous and aniso-
tropic locally rotational symmetric (LRS) Bianchi type-I
universe I the presence of bulk viscous fluid containing mas-
sive strings in the frame work of Saez and Ballester (1986)
scalar–tensor theory of gravitation. The advantages of these
anisotropic models in the scalar–tensor theory are that they
describe the evolution of the early phase of the universe.

2 Metric and field equations

We consider the LRS Bianchi type-I metric in the form

ds2 = −dt2 + A2dx2 + B2(dy2 + dz2) (2.1)

where A and B are the Eulerian functions of time t only.
The field equations given by Saez and Ballester (1986)

for the combined scalar and tensor fields are

Rij − 1

2
gijR − ωφn

(
φ,iφ,j − 1

2
gijφ,kφ

,k

)
= −Tij (2.2)

and the scalar field φ satisfies the equation

2φnφ,i
,i + nφn−1φ,kφ

,k = 0 (2.3)

Here ω and n are constants, Tij is the energy momentum ten-
sor of the matter and comma and semicolon denotes partial
and covariant differentiation respectively.

Also

T ij;j = 0 (2.4)

is a consequence of the field equations (2.2) and (2.3).
We consider the energy momentum tensor for a bulk vis-

cous fluid containing one dimensional string as

Tij = (ρ + �p)uiuj + �pgij − λxixj (2.5)

where ρ is the rest energy density of the system, λ is tension
in the string and

�p = p − 3ξH (2.6)

is the total pressure which includes the proper pressure, ξ(t)

is the coefficient of bulk viscosity, 3 ξH is usually known as
bulk viscous pressure, H is the Hubble parameter, ui = δi

4 is
the four velocity vector and xi is a space-like vector which
represents the anisotropic directions of the string.

Here ui and xi satisfy the equations

giju
iuj = −1

gij x
ixj = 1 (2.7)

uixi = 0

we assume the string to be lying along the x-axis. The one
dimensional strings are assumed to be loaded with particles
and the particle energy density is ρp = ρ − λ.

We also consider ρ, λ,
⇀
p and φ are functions of time t

only.
By adopting comoving coordinates the field equation

(2.2) and (2.3) take the form

2Ḣ2 + 3H 2
2 − ω

2
φnφ̇2 = λ− ⇀

p, (2.8)

Ḣ1 + H 2
1 + Ḣ2 + H 2

2 + H1H2 − ω

2
φnφ̇2 = − ⇀

p, (2.9)

2H1H2 + H 2
2 + ω

2
φnφ̇2 = ρ, (2.10)

φ̈ + (H1 + H2)φ̇ + nφ̇2

2φ
= 0 (2.11)

It may be noted that (2.4) being a consequence of (2.2)
and (2.3) we consider (2.8) to (2.11) only where H1 = Ȧ

A

and H2 = Ḃ
B

are the directional Hubble parameters, so that

H = (H1+2H2)
3 , and the overhead dots denote ordinary time

derivatives.
The expansion scalar θ and the shear scalar σ for the met-

ric (2.1) are defined as

θ = ui
ji = H1 + 2H2, (2.12)

σ 2 = 1

2

(
H 2

1 + 2H 2
2 − 1

3
θ2

)
= 1

3
(H1 − H2)

2 (2.13)

3 Solutions of the field equations and the models

The field equations (2.8) to (2.11) are highly non-linear
in nature and therefore we require the following plausible
physical conditions:

(1) The shear scalar σ be proportional to scalar expansion
θ , so that we can take a linear relationship between the
Hubble parameters H1 and H2, i.e.,

H1 = kH2 (3.1)

where k is an arbitrary constant which takes positive val-
ues only and it takes care of the anisotropic nature of the
model.
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(2) A more general relationship between the proper rest en-
ergy density ρ and string tension density λ is taken to
be

ρ = rλ (3.2)

where r is an arbitrary constant which can take both pos-
itive and negative values. The negative value of r leads
to the absence of strings in the universe and the positive
value shows the presence of one dimensional strings in
the cosmic fluid. The energy density of the particles at-
tached to the strings is

ρp = ρ − λ = (r − 1)λ (3.3)

(3) For a bartropic fluid, the combined effect of the proper
pressure and the barotropic bulk viscous pressure can be
expressed as

�p = p − 3ξH = (ερ) (3.4)

where

ε = ε0 − ζ and p = ε0ρ (0 ≤ ε0 ≤ 1) (3.5)

With the assumption (3.1), the field equations (2.8)–(2.11)
reduce to

2Ḣ2 + 3H 2
2 − ω

2
φnφ̇2 = λ− ⇀

p, (3.6)

(k + 1)Ḣ2 + (k2 + k + 1)H 2
2 − ω

2
φnφ̇2 = − ⇀

p, (3.7)

(2k + 1)H 2
2 + ω

2
φnφ̇2 = ρ, (3.8)

φ̈ + (k + 1)H2φ̇ + n

2

φ̇2

φ
= 0 (3.9)

Addition of (3.6) and (3.8) and then using (3.2) and (3.4),
we obtain

2Ḣ2 + (2k + 4)H 2
2 =

(
1

r
− ε + 1

)
ρ (3.10)

Addition of (3.7) and (3.8) yields

(k + 1)Ḣ2 + (k2 + 3k + 2)H 2
2 = (1 − ε)ρ (3.11)

Equations (3.10) and (3.11), immediately, gives us

− Ḣ2

H 2
2

= m (3.12)

where

m = 2r(ε + 1) − k[1 − r(ε + 1)]
k[r(ε + 1) − 1] − r(ε − 1) − 1

(3.13)

Integrating (3.12), we get

H2 = Ḃ

B
= 1

mt + m1
(3.14)

which on further integration yields

B = B0(mt + m1)
1
m (3.15)

and consequently, we obtain

A = A0(mt + m1)
k
m (3.16)

where m1,A0 and B0 are constants of integration.
With a suitable choice of constants, the metric (2.1) with

the help of (3.15) and (3.16) can be written as

ds2 = −dt2 + (mt)
2k
m dx2 + (mt)

2
m (dy2 + dz2) (3.17)

which represents bulk viscous string cosmological model in
Saez-Ballester theory.

4 Some physical properties

The model (3.17) represents an exact bulk viscous string
cosmological model in Saez-Ballester scalar–tensor theory
of gravitation. The scalar field of the theory in the model
can be obtained from (3.9) using (3.14) as

φ =
[

(n + 1)mφ0t
1
m

2

] 2
n+2

(4.1)

where φ0 is a constant of integration.
The physical quantities that are important in cosmology

are:
The string tension density

λ = 1

r

[(
2k + 1

m2

)
1

t2
+ ωφ2

0

2

1

t
2(k+1)

m

]
(4.2)

Energy density

ρ =
[(

2k + 1

m2

)
1

t2
+ ωφ2

0

2

1

t
2(k+1)

m

]
(4.3)

Proper pressure

p = ε0

[(
2k + 1

m2

)
1

t2
+ ωφ2

0

2

1

t
2(k+1)

m

]
(4.4)

Particle energy density

ρp =
(

r − 1

r

)[(
2k + 1

m2

)
1

t2
+ ωφ2

0

2

1

t
2(k+1)

m

]
(4.5)
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Coefficient of bulk viscosity

ξ =
(

mξ

k + 2

)[(
2k + 1

m2

)
1

t
+ ωφ2

0

2

1

t
2(k+1)

m

]
(4.6)

The expansion scalar θ and the shear scalar σ 2 for the model
(3.17) are given by

θ = (k + 2)
1

mt
, (4.7)

σ 2 = (k − 1)2

3m2t2
(4.8)

The scale factor of the model can be expressed as

R = AB2 = mt
(k + 2)

m
(4.9)

The deceleration parameter for such a volume scale factor is
given by

q = −RR̈

Ṙ2
= m

(k + 2)
− 1 (4.10)

It can be observed that the model (3.17) has no initial singu-
larity.

The spatial volume in the model increases as t in-
creases while the scalar of expansion θ and the shear
scalar σ 2 decreases. At the initial epoch, physical quanti-
ties θ, σ 2, λ,ρ, ξ and p diverge when t → ∞, λ,p,ρ, θ, ξ

and σ vanish. Also, since

lim
t→∞

(
σ 2

θ2

)
= 1

6
�= 0

The model does not approach isotropy for large values of t .
It may be noted here that for accelerated expansion of the

model the deceleration parameter q should be less than zero
(i.e., q < 0). Hence in order to get an accelerated expansion
model, we should have m

k+2 < 1.

5 Conclusions

Here, the field equations for spatially homogeneous and
anisotropic LRS Bianchi type-I metric are solved in the
frame work of Saez-Ballester(1986) scalar–tensor theory of

gravitation when the source of the energy-momentum ten-
sor is a viscous fluid containing one dimensional strings. It
is well known that scalar field and bulk viscosity play a vital
role in getting an accelerated universe. In other words, bulk
viscosity has a greater role in obtaining inflationary model.
The model obtained represents a bulk viscous inflationary
cosmological model in Saez-Ballester scalar–tensor theory
of gravitation.
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