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Abstract The Bianchi type-V cosmological model with
variable modified Chaplygin gas having the equation of state
p = Aρ − B/ρα , where 0 ≤ α ≤ 1, A is a positive con-
stant and B is a positive function of the average scale factor
a(t) of the universe [i.e. B = B(a)] has been studied. While
studying its role in accelerated phase of the universe, it is
observed that the equation of state of the variable modified
Chaplygin gas interpolates from radiation dominated era to
quintessence dominated era. The statefinder diagnostic pair
{r, s} is adopted to characterize different phases of the uni-
verse.

Keywords Bianchi type-V space-time · Variable modified
Chaplygin gas · Statefinder parameters

1 Introduction

The direct evidence for “the expansion of the universe is ac-
celerating” comes from the high redshift supernovae (Perl-
mutter et al. 1999; Riess et al. 1998) and the WMAP data
(Bernardis et al. 2000; Hanany et al. 2000; Spergel et al.
2007). To explain these observations, two dark components
are invoked: the pressureless cold dark matter (CDM) and
the dark energy (DE) with negative pressure. The CDM con-
tributes �DM ∼ 0.3 and is mainly motivated by the the-
oretical interpretation of the galactic rotational curves and
large scale structure formation. The DE is assumed to pro-
vide �DE ∼ 0.7 and is responsible for the acceleration of
the distant type Ia supernovae. The nature of dark energy
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as well as dark matter is unknown, and many radically dif-
ferent models have been proposed, such as, a tiny positive
cosmological constant, quintessence (Caldwell et al. 1998;
Liddle and Scherrer 1999; Steinhardt et al. 1999), DGP
branes (Dvali et al. 2000; Deffayet 2001), the non-linear
F(R) models (Capozziello et al. 2003; Carroll et al. 2003;
Nojiri and Odintsov 2003), and dark energy in brane worlds,
among many others (Townsend and Wohlfarth 2003; Gib-
bons 1985; Maldacena and Nuñez 2001; Ohta 2003a, 2003b,
2005; Wohlfarth 2003; Roy 2003; Webb et al. 2001; Cline
and Vinet 2003; Chen et al. 2003; Bergshoeff 2004; Gong
and Wang 2006; Neupane and Wiltshire 2005a, 2005b;
Maeda and Ohta 2005; Neupane 2007; Gong et al. 2007;
Pereira et al. 2006; Brandt et al. 2007) including the re-
view articles (Copeland et al. 2006; Padmanabhan 2007).
The existence of dark energy fluid comes from the observa-
tions of the accelerated expansion of the universe and the
isotropic pressure cosmological models give the best fit-
ting of the observations. Although some authors (Koivisto
and Mota 2008) have suggested cosmological model with
anisotropic and viscous dark energy in order to explain
an anomalous cosmological observation in the cosmic mi-
crowave background (CMB) at the largest angles. The bi-
nary mixture of perfect fluid and dark energy has been stud-
ied for Bianchi type-I (Saha 2005) and for Bianchi type-V
(Singh and Chaubey 2009). The anisotropic dark energy has
been studied for Bianchi type-III (Akarsu and Kilinc 2010)
and for Bianchi type-VI0 (Adhav et al. 2011).

The scalar field known as Quintessence represents one
type of the dark energy. There is another candidate for dark
energy called as pure Chaplygin gas obeying the equation of
state

p = −B/ρ, (1.1)
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where p and ρ are respectively the pressure and energy den-
sity of dark energy, B is a positive constant.

There is no direct laboratory observational or experimen-
tal evidence of both CDM and DE. Therefore, it would be
important if a unified dark matter—dark energy scenario
could be found, in which these two components are differ-
ent manifestations of a single fluid (Matos and Urena-Lopez
2000; Wetterich 2002; Padmanabhan and Choudhury 2002).

A candidate for such unification is the so-called general-
ized Chaplygin gas which is an exotic fluid with the equation
of state

p = −B/ρα with 0 ≤ α ≤ 1, (1.2)

where Bψ and αψ are two parameters to be determined.
It was initially suggested by Kamenshchik et al. (2001a,

2001b) with α = 1 and then generalized by Bento et al.
(2002) for the case α �= 1.

Benaoum (2002) and Debnath et al. (2004) studied the
models in which the isotropic pressure p of the cosmologi-
cal fluid obeys a modified Chaplygin gas equation of state

p = Aρ − B

ρα
, (1.3)

where 0 ≤ A ≤ 1; 0 ≤ α ≤ 1, and B is a positive constant.
When A = 1/3 [i.e. when the scale factor a(t) is vanish-

ing small i.e. the co-moving volume of the universe is small
i.e. ρ → ∞], this (1.3) equation of state corresponds to a
radiation dominated era at one extreme.

When the density is small [i.e. ρ → 0 i.e. when the scale
factor a(t) is infinitely large], then this (1.3) equation of
state corresponds to a cosmological fluid with negative pres-
sure (the dark energy) i.e. it corresponds to �CDM model
at the other extreme.

Generally, the modified Chaplygin gas equation of state
corresponds to a mixture of ordinary matter and dark energy.
For ρ = (B/A)1/α+1 the matter content is pure dust with
p = 0.

Recently, Guo and Zhang (2005); Riess et al. (2004) have
proposed the variable Chaplygin gas model with equation of
state (1.1), where B is positive function of the cosmological
scale factor ‘a’ i.e. B = B(a). Bento et al. (2003) proved
that this assumption is reasonable since B(a) is related to the
scale potential if we consider the Chaplygin gas as a Born-
Infield scalar field.

An another form of equation of state for Chaplygin gas
(Debnath 2007; Jamil and Rashid 2008) is considered which
is given by

p = Aρ − B/ρα, (1.4)

where 0 ≤ α ≤ 1,A is a positive constant and B is a positive
function of the average scale factor a of the universe [i.e.
B = B(a)].

Sahni et al. (2003) proposed a cosmological diagnostic
pair {r, s} called statefinder, which is defined as

r =
...
a

aH 3
and s = r − 1

3(q − 1
2 )

(1.5)

to differentiate among different forms of dark energy. Here
H is the Hubble parameter and q is the deceleration param-
eter.

The statefinder is a geometrical diagnostic which de-
pends on the cosmic scalar factor a(t). The statefinder
pair {1,0} represents a cosmological constant with a fixed
equation of state w = −1 and a fixed Newton’s gravi-
tational constant. The pair {1,1} represents the standard
cold dark matter model containing no radiation. The Ein-
stein static universe corresponds to the statefinder diagnos-
tic pair {∞,−∞} (Coles and Ellis 1994). The statefinder
diagnostic pairs are analyzed for various dark energy can-
didates including holographic dark energy (Debnath 2008),
agegraphic dark energy (Zhang 2005a), quintessence (Wei
and Cai 2007), dilation dark energy (Zhang 2005b), Yang-
Mills dark energy (Huang et al. 2008), viscous dark energy
(Zhao 2008), interacting dark energy (Hu and Meng 2006),
tachyon (Zimdahl and Pavon 2004), modified Chaplygin gas
(Shao and Gui 2008), f (R) gravity (Chakraborty and Deb-
nath 2007) and so on.

In the present paper, the spatially homogeneous and
anisotropic Bianchi type-V cosmological model with vari-
able modified Chaplygin gas has been investigated. It is
shown that the equation of state of this modified model
is valid from the radiation era to the quintessence. The
statefinder diagnostic pair i.e. {r, s} parameter is adopted to
characterize different phase of the universe. The geometrical
and physical behavior of the model is also discussed.

2 Metric and field equations

The spatially homogeneous and anisotropic Bianchi type-V
line element can be written as

ds2 = dt2 − a2
1dx2 − a2

2e−2mxdy2 − a2
3e−2mxdz2, (2.1)

where a1, a2 and a3 are scale factors and are functions of
cosmic time t only and m is constant.

Bianchi type-V universe is a generalization of the open
universe in FRW cosmology and hence its study is important
in the study of dark energy models of the universe with non-
zero curvature.

The Einstein field equations are (8πG = c = 1)

ȧ1ȧ2

a1a2
+ ȧ1ȧ3

a1a3
+ ȧ2ȧ3

a2a3
− 3m2

a2
1

= ρ (2.2)
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ä2

a2
+ ä3

a3
+ ȧ2ȧ3

a2a3
− m2

a2
1

= −p (2.3)

ä1

a1
+ ä3

a3
+ ȧ1ȧ3

a1a3
− m2

a2
1

= −p (2.4)

ä1

a1
+ ä2

a2
+ ȧ1ȧ2

a1a2
− m2

a2
1

= −p (2.5)

2
ȧ1

a1
= ȧ2

a2
+ ȧ3

a3
. (2.6)

From (2.6), we get

a2
1 = a2a3. (2.7)

The energy conservation equation is

ρ̇ +
(

ȧ1

a1
+ ȧ2

a2
+ ȧ3

a3

)
(ρ + p) = 0 (2.8)

The spatial volume of the universe is defined by

V = a3 = a1a2a3 = a3
1, (2.9)

where a is an average scale factor of the universe.
We assume that the universe is filled with variable modi-

fied Chaplygin gas having equation of state

p = Aρ − B/ρα, (2.10)

where 0 ≤ α ≤ 1,A is a positive constant and B is a positive
function of the average scale factor of the universe a(t) [i.e.
B = B(a)].

At all stages it represents a mixture. There is also one
stage, in between, when the pressure vanishes and the matter
content is equivalent to a pure dust.

Now, for simplicity, assume B(a) in the form

B(a) = B0a
−n = B0V

−n/3, (2.11)

where B0 > 0 and n are positive constants.
Such type of relations have been firstly considered by

Berman (1983), Berman and Gomide (1988) for solving
FRW models. Later on many authors have studied flat FRW
and Bianchi models by using such law.

Using (2.8), (2.10) and (2.11), we obtain

ρ =
[

3(1 + α)B0

{3(1 + α)(1 + A) − n}
1

V n/3
+ C

V (1+α)(1+A)

] 1
1+α

,

(2.12)

where C > 0 is an arbitrary constant of integration.
For the requirement of expanding universe, n must be

positive i.e. for positivity of first term, we need 3(1+α)(1+
A) > n. Otherwise (a → ∞) ⇒ (ρ → ∞) which is not the
case of expanding universe.

In the variable modified Chaplygin gas scenario, the
above equation (2.12) interpolates between a radiation dom-
inated phase (A = 1/3) and a quintessence dominated phase
described by the equation of state p = γρ, where

γ = −1 + n

3(1 + α)
< −1

3
.

Case (i) Now, for small values of the scale factors a1(t),
a2(t) and a3(t), one may have

ρ ∼= C
1

1+α

V (1+A)
, (2.13)

which is very large and corresponds to the universe domi-
nated by an equation of state p = Aρ, i.e. we get, radiation
dominated universe.

Subtracting (2.3) from (2.4), we get

d

dt

(
ȧ1

a1
− ȧ2

a2

)
+

(
ȧ1

a1
− ȧ2

a2

)(
ȧ1

a1
+ ȧ2

a2
+ ȧ3

a3

)
= 0. (2.14)

Now, from (2.7) and (2.9), we get

d

dt

(
ȧ1

a1
− ȧ2

a2

)
+

(
ȧ1

a1
− ȧ2

a2

)
V̇

V
= 0. (2.15)

Integrating the above equation, we get

a1

a2
= d1 exp

(
x1

∫
dt

V

)
, d1 = constant, x1 = constant.

(2.16)

Subtracting (2.5) from (2.3) and subtracting (2.4) from (2.5)
and then by integration, we obtain

a1

a3
= d2 exp

(
x2

∫
dt

V

)
, d2 = constant, x2 = constant.

(2.17)

a2

a3
= d3 exp

(
x3

∫
dt

V

)
, d3 = constant, x3 = constant,

(2.18)

where d1, d2, d3, x1, x2 and x3 are integration constants.
In view of V = a1a2a3, we find the following relation

between the constants d1, d2, d3, x1, x2 and x3 as d2 = d1d3,
x2 = x1 + x3.

Using above results we write the scale factors a1(t), a2(t)

and a3(t) in explicit form as

a1(t) = D1V
1/3 exp

(
X1

∫
dt

V

)
(2.19a)

a2(t) = D2V
1/3 exp

(
X2

∫
dt

V

)
(2.19b)

a3(t) = D3V
1/3 exp

(
X3

∫
dt

V

)
, (2.19c)
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where Di (i = 1,2,3) and Xi (i = 1,2,3) satisfy the rela-
tions D1D2D3 = 1 and X1 + X2 + X3 = 0.

From (2.2)–(2.5), one can get

V̈

V
− 6m2

a2
1

= 3

2
(ρ − p). (2.20)

Using (2.13) and p = Aρ, (2.20) yields∫
dV√

3C
1

1+α V (1−A) + 9m2V 4/3 + c1

= t + t0, (2.21)

where c1 and t0 are constants of integration.
For A = 1/3, c1 = 0 and t0 = 0, (2.12) leads to

V =
(

m2t2 − C1/1+α

3m2

)3/2

. (2.22)

Using (2.22) in (2.19a)–(2.19c), we obtain the value of the
scale factors as

a1(t) = D1

[
m2t2 − C

1
1+α

3m2

]1/2

× exp

[−3X1m

C
1

1+α

√
3m4t2

3m4t2 − C
1

1+α

]
. (2.23a)

a2(t) = D2

[
m2t2 − C

1
1+α

3m2

]1/2

× exp

[−3X2m

C
1

1+α

√
3m4t2

3m4t2 − C
1

1+α

]
. (2.23b)

a3(t) = D3

[
m2t2 − C

1
1+α

3m2

]1/2

× exp

[−3X3m

C
1

1+α

√
3m4t2

3m4t2 − C
1

1+α

]
. (2.23c)

From (2.22), the value of the pressure and the energy density
of the universe is given by

p ∼= 1

3
C

1
1+α

(
m2t2 − C

1
1+α

3m2

)−2

and

ρ ∼= C
1

1+α

(
m2t2 − C

1
1+α

3m2

)−2

.

(2.24)

The Hubble parameter H is found as

H = m2t

(
m2t2 − C

1
1+α

3m2

)−1

(2.25)

The physical quantities are as follows:

(i) The expansion scalar θ = 3H is

θ = 3m2t

(
m2t2 − C

1
1+α

3m2

)−1

(2.26)

Fig. 1 Variation s against r for different values of m(= 1/3,1/2,2/3)

(ii) The mean anisotropy parameter 
 = 1
3

∑3
i=1(

Hi−H
H

)2

is found as


 = X

m2t2(3m4t2 − C
1

1+α )
. (2.27)

(iii) The shear scalar σ 2 = 1
2 (

∑3
i=1 H 2

i −3H 2) = 3
2
H 2 is

found as

σ 2 = 27m6X

2(3m4t2 − C
1

1+α )3
. (2.28)

(iv) The deceleration parameter q = d
dt

( 1
H

) − 1 is found as

q = C
1

1+α

3m4t2
, (2.29)

where X = X2
1 + X2

2 + X2
3.

From (1.2), the statefinder parameters are found as

r = C
1

1+α

m6t2
and s =

(
C

1
1+α

m6t2
− 1

)(
C

1
1+α

m4t2
− 3

2

)−1

.

(2.30)

The relation between the statefinder parameters is

s = r − 1

rm2 − 3/2
.

The variation of s with respect to r is shown in Fig. 1 above.

Case (ii) Now, for large values of the scale factors a1(t),
a2(t) and a3(t), one may have

ρ =
(

3(1 + α)B0

{3(1 + α)(1 + A) − n}
) 1

1+α

V
−n/3(1+α)

. (2.31)
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and the pressure is given by

p =
(

−1 + n

3(1 + α)

)
ρ. (2.32)

As per Guo and Zhang (2005) and Debnath (2008), this cor-
responds to Quintessence model (i.e. dark energy with con-
stant equation of state).

One should note that when n = 0, this results corresponds
to the original modified Chaplygin gas model discovered
by Debnath et al. (2004) in which the modified Chaplygin
gas behaves initially as radiation and later as a cosmological
constant.

Hence, in order obtain the quintessence dominated era,
one must have(

−1 + n

3(1 + α)

)
< −1

3
.

Using (2.31) and (2.32) in (2.20), we get
∫

dV√
kV

6(1+α)−n
3(1+α) + 9m2V 4/3 + c2

= t (2.33)

where c2 is constant of integration and k =
3[ 3(1+α)B0

3(1+α)(1+A)−n
] 1

1+α .

For n = 2(1 + α) and c2 = 0, (2.33) leads to

V = βt3, where β =
(

k + 9m2

9

)3/2

. (2.34)

Using (2.34), we obtain the values of the scale factors
a1(t), a2(t) and a3(t) as

a1(t) = D1β
1/3t exp

[−X1

2βt2

]
(2.35a)

a2(t) = D2β
1/3t exp

[−X2

2βt2

]
(2.35b)

a3(t) = D3β
1/3t exp

[−X3

2βt2

]
. (2.35c)

From (2.34), the value of the energy density and the pressure
of the universe is given by

ρ ∼=
[

3(1 + α)B0

3(1 + α)(1 + A) − n

] 1
1+α

β
−n/3(1+α)

t
−n/(1+α)

and

p =
(

−1 + n

3(1 + α)

)

×
[

3(1 + α)B0

3(1 + α)(1 + A) − n

] 1
1+α

β
−n/3(1+α)

t
−n/(1+α)

(2.36)

The Hubble parameter H is found as

H = 1

t
. (2.37)

The physical quantities are as follows:

(i) The expansion scalar θ is

θ = 3

t
, (2.38)

(ii) The mean anisotropy parameter 
 is found as


 = X

3β2t8
, (2.39)

(iii) The shear scalar σ 2 is found as

σ 2 = X

2β2t10
, (2.40)

(iv) The deceleration parameter q is found as

q = 0, (2.41)

where X = X2
1 + X2

2 + X2
3.

From (1.2), the statefinder parameters are found as

r = 0 and s = 2

3
. (2.42)

Gorini et al. (2003, 2004) have shown that the simple flat
Friedmann model with Chaplygin gas can equivalently be
described in terms of a homogeneous minimally coupled
scalar field φ and a self-interacting potential v(φ) with ef-
fective Lagrangian

Lφ = 1

2
φ̇2 − v(φ). (1.3)

Barrow (1988, 1990), Kamenshchik et al. (2001a, 2001b,
2004) have obtained homogeneous scalar field φ(t) and a
potential v(φ) to describe Chaplygin cosmology.

Now, consider the energy density ρφ and pressure pφ cor-
responding to a scalar field φ having a self-interacting poten-
tial v(φ). In view of variable modified Chaplygin gas model,
the analogous energy density and the pressure of the scalar
field are

ρφ = 1

2
φ̇2 + v(φ) = ρ

=
[

3(1 + α)B0

{3(1 + α)(1 + A) − n}
1

V n/3
+ C

V (1+α)(1+A)

] 1
1+α

(2.43)

and

pφ = 1

2
φ̇2 − v(φ)

= Aρ − B0V
−n
3

ρα
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= A

[
3(1 + α)B0

{3(1 + α)(1 + A) − n}
1

V n/3
+ C

V (1+α)(1+A)

] 1
1+α

− B0V
−n
3

[
3(1 + α)B0

{3(1 + α)(1 + A) − n}
1

V n/3

+ C

V (1+α)(1+A)

] −α
1+α

(2.44)

From (2.43) and (2.44), we have

φ̇2 = (1 + A)

[
3(1 + α)B0

{3(1 + α)(1 + A) − n}
1

V n/3

+ C

V (1+α)(1+A)

] 1
1+α

− B0V
−n
3

[
3(1 + α)B0

{3(1 + α)(1 + A) − n}
1

V n/3

+ C

V (1+α)(1+A)

] −α
1+α

(2.45)

and

v(φ) = (1 − A)

2

[
3(1 + α)B0

{3(1 + α)(1 + A) − n}
1

V n/3

+ C

V (1+α)(1+A)

] 1
1+α

+ B0V
−n
3

2

[
3(1 + α)B0

{3(1 + α)(1 + A) − n}
1

V n/3

+ C

V (1+α)(1+A)

] −α
1+α

(2.46)

3 Conclusion

Here, a study has been carried on a spatially homoge-
neous and anisotropic Bianchi type-V model filled with vari-
able modified Chaplygin gas. The equation of state of this
cosmological model is valid from the radiation era to the
quintessence model. In this model a detailed description of
the universe has been given from radiation era (A = 1/3 &
ρ is very large) to quintessence model (ρ is very small). As
compared to Chaplygin gas models; this model describes
the universe to a large extent. The physical and geometri-
cal parameters are also discussed. The statefinder diagnostic
pair i.e. {r, s} parameter is adopted to differentiate among
different forms of dark energy. It is interesting to note that
this model reduces to Chaplygin gas model with A = 0 and
α = 1. Further it reduces to modified Chaplygin gas model
with n = 0.
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