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Abstract This paper is devoted to study the dynamics of
gravitational collapse in the Misner and Sharp formalism.
We take non-viscous heat conducting charged anisotropic
fluid as a collapsing matter with cylindrical symmetry. The
dynamical equations are derived and coupled with the trans-
port equation for heat flux obtained from the Müller-Israel-
Stewart causal thermodynamic theory. We discuss the role
of anisotropy, electric charge and radial heat flux over the
dynamics of the collapse with the help of coupled equation.

Keywords Gravitational collapse · Electromagnetic field ·
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1 Introduction

One of the most important problems in the gravitation theory
and relativistic astrophysics is to understand the end state
of a continual gravitational collapse. A massive star under-
goes to gravitational collapse at the end of its life cycle.
This happens when all the internal nuclear forces fail to sup-
ply the sufficiently high pressure to counter-balance gravity.
The compact objects such as white dwarfs, neutron stars and
black hole are the results of possible stages of the collaps-
ing astronomical objects. In white dwarfs and neutron stars,
gravity is neutralized by electron and neutron degeneracy
pressure respectively and black hole is a complete collapsed
object.
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Oppenheimer and Snyder (1939) are the pioneers who
studied gravitational collapse of an adiabatically flowing
dust. This was idealized problem because dust is unreal-
istic matter and one cannot ignore the effects of pressure
on the formation of spacetime singularity. A more analytic
analysis was made by Misner and Sharp (1964) with perfect
fluid in the inner region of a star. They formulated the dy-
namical equations governing adiabatic relativistic collapse.
In both cases, vacuum was taken in the exterior region of a
star.

The concept of non-vacuum exterior of a star was intro-
duced by Vaidya (1951) for the radiating fluid in the interior
region of the star. Goswami (2007) formulated a more re-
alistic collapsing model by taking the radiating dust matter
in the interior of a star. He remarked that bounce in the col-
lapse is due to the dissipation. Debnath et al. (2005) explored
gravitational collapse of the non-adiabatic fluid by assuming
quasi-spherical Szekeres spacetime in the interior and plane
symmetric Vaidya solution in the exterior region. By using
the local conservation of momentum, they studied the ther-
modynamical behavior of the collapsing matter.

An extensive literature survey (Herrera et al. 2004 and
Mitra 2006) predicts that gravitational collapse is highly dis-
sipative process. This indicates that the effects of the dissi-
pation must be included in the study of collapse for its better
understanding. Herrera and Santos (2004) explored dynami-
cal description of gravitational collapse by using Misner and
Sharp’s formulation. Matter under consideration was dis-
tributed with spherically symmetric and energy loss in the
form of heat flow and radiation. Chan (2001) studied the re-
alistic model of radiating star which undergoes dissipation in
the form of radial heat flow and shear viscosity. Herrera et al.
(2009) also formulated the dynamical equations by includ-
ing dissipation in the form of heat flow, radiation, shear and
bulk viscosity and then coupled with causal transport equa-
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tions with spherical symmetry. Herrera (2006) discussed the
inertia of heat and its role in the dynamics of dissipative
collapse with outgoing radial heat flux by using spherical
symmetry.

Most of the work available in spherical symmetry is due
to its simplest symmetry. To generalize the geometry of the
star, people worked on gravitational collapse using the non-
spherical symmetry. The existence of cylindrical and plane
gravitational waves provides strong motivation in this re-
gard. Herrera et al. (2005) formulated the set of equations
with regularity and matching conditions for the static cylin-
drically symmetric distribution of matter. Sharif and Ah-
mad (2007) studied cylindrically symmetric gravitational
collapse of two perfect fluids using the high speed approx-
imation scheme. They investigated the emission of gravita-
tional radiations from cylindrically symmetric gravitational
collapse. Nolan (2002) investigated naked singularities in
the cylindrical gravitational collapse of counter rotating dust
shell. Di Prisco et al. (2009) discussed the shear free cylin-
drical gravitational collapse by using junction conditions.
Nakao et al. (2009) studied gravitational collapse of a hol-
low cylinder composed of dust. Recently, Sharif and Rehmat
(2010) discussed the dynamics of viscous dissipative plane
symmetric gravitational collapse.

The behavior of electromagnetic field in gravitational
field has been the subject of interest for many people.
Thorne (1965) developed the concept of cylindrical energy
and investigated that a strong magnetic field along the sym-
metry axis may halt the cylindrical collapse of a finite cylin-
der before it reached to singularity. In recent papers (Sharif
and Abbas 2009, 2010a, 2010b), we have studied the effects
of the electromagnetic field on the gravitational collapse
by taking the homogeneous, non-homogeneous and spher-
ical model. Di Prisco et al. (2007) derived the dynamical
equations for the spherically symmetric collapse by includ-
ing electromagnetic field. This work has been extended by
Sharif and Siddiqa (2011) for the charged plane symmet-
ric gravitational collapse. Also, Sharif and Fatima (2011)
discussed dynamics of adiabatic charged viscous cylindrical
gravitational collapse.

This paper is aimed to study the dynamics of non-
adiabatic charged cylindrically symmetric gravitational col-
lapse to see the effects of charge and heat flux on the pro-
cess of collapse. The plan of the paper is the following. In
the next section, we describe the gravitational source and
the Einstein-Maxwell field equations. Section 3 is devoted to
matching conditions. We formulate the dynamical equations
in Sect. 4 and the derivation of the transport equation and
their coupling with the dynamical equations are presented
in Sect. 5. The last section contains the conclusion of the
paper.

2 Interior matter distribution and the field equations

We take non-static cylindrically symmetric as an interior
metric in the co-moving coordinates in the form

ds2− = −A2dt2 + B2dr2 + C2(dθ2 + dz2),

−∞ < t < ∞, 0 ≤ r < ∞, (1)

0 ≤ θ ≤ 2π, −∞ < z < +∞

where A, B and C are functions of t and r . Matter under
consideration is anisotropic fluid which undergoes dissipa-
tion in the form of heat flux. The energy-momentum tensor
for such a fluid dissipating only at diffusion approximation,
i.e., ε = 0 is defined as (Herrera 2006)

Tαβ = (μ + P⊥)VαVβ + P⊥gαβ

+ (Pr − P⊥)χαχβ + Vαqβ + Vβqα, (2)

where μ, Pr, P⊥, qα, Vα and χα are the energy density, the
radial pressure, the tangential pressure, heat flux, the four-
velocity of the fluid and the unit four-vector along the radial
direction respectively. For the metric (1), the four-vector ve-
locity, heat flux and unit four-vector along the radial direc-
tion are given by

V α = A−1δα
0 , χα = B−1δα

1 , qα = B−1qδα
1 ,

which satisfy

V αVα = −1, χαχα = 1,

χαVα = 0, qαVα = 0.

We can write the electromagnetic energy-momentum ten-
sor in the form

T
(em)
αβ = 1

4π

(
Fγ

α Fβγ − 1

4
FγδFγ δgαβ

)
. (3)

The Maxwell equations are given by

Fαβ = φβ,α − φα,β, (4)

Fαβ ;β = 4πJα, (5)

where Fαβ is the Maxwell field tensor, φα is the four poten-
tial and Jα is the four current. Since the charge is at rest with
respect to the co-moving coordinate system, thus the mag-
netic field is zero. Consequently, the four potential and the
four current will become

φα = φδ0
α, J α = σV α, (6)

where φ = φ(t, r) is an arbitrary function and σ = σ(t, r) is
the charge density.
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For the interior spacetime, using (6), the Maxwell field
equations take the following form

φ′′ −
(

A′

A
+ B ′

B
− 2

C′

C

)
φ′ = 4πσAB2, (7)

φ̇′ −
(

Ȧ

A
+ Ḃ

B
− 2

Ċ

C

)
φ′ = 0, (8)

where dot and prime represent the partial derivatives with
respect to t and r respectively. Integration of (7) implies that

φ′ = 2sAB

C2
, (9)

where s(r) = 2π
∫ r

0 σBC2dr is the total charge distributed
per unit length of the cylinder and is the consequence of law
of conservation of charge, J

μ

;μ = 0. Obviously (8) is identi-
cally satisfied by (9).

The Einstein field equations, Gαβ = 8π(Tαβ +T
(em)
αβ ), for

the metric (1) can be written as

8π(T00 + T
(em)
00 ) = 8πμA2 + 4s2A2

C4

= Ċ

C

(
2
Ḃ

B
+ Ċ

C

)
+

(
A

B

)2

×
(

−2
C′′

C
+ 2

B ′C′

BC
−

(
C′

C

)2)
,

(10)

8π(T01 + T
(em)
01 ) = 8πq = 2

AB

(
Ċ′
C

− ḂC′

BC
− ĊA′

CA

)
, (11)

8π(T11 + T
(em)
11 ) = 8πPrB

2 − 4s2B2

C4

= −
(

B

A

)2(
2
C̈

C
+

(
Ċ

C

)2

− 2
ȦĊ

AC

)

+
(

C′

C

)2

+ 2
A′C′

AC
, (12)

8π(T22 + E22)

= 8πP⊥C2 + 4s2

C2

= −
(

C

A

)2(
B̈

B
+ C̈

C
− Ȧ

A

(
Ḃ

B
+ Ċ

C

)
+ ḂĊ

BC

)

+
(

C

B

)2(
A′′

A
+ C′′

C
− A′

A

(
B ′

B
− C′

C

)
− B ′C′

BC

)
.

(13)

The C-energy for the cylindrically symmetric spacetime is
defined by Thorne (1965)

E = 1

8
(1 − l−2∇ar̃∇ar̃). (14)

The circumference radius ρ, specific length l and areal ra-
dius r̃ can be defined as

ρ2 = ξ(1)aξ
a
(1), l2 = ξ(2)aξ

a
(2), r̃ = ρl,

where ξ(1) = ∂
∂θ

, ξ(2) = ∂
∂z

are Killing vectors and E repre-
sents the gravitational energy per unit specific length of the
cylinder.

The specific energy of the cylinder (Poisson 2004) analo-
gous to Misner and Sharp energy for the spherical symmetry
in the interior region with the contribution of electromag-
netic field can be written as follows

E′ = l

8
+ C

2

(
Ċ2

A2
− C′2

B2

)
+ s2

2C
. (15)

We would like to mention here that this energy is also analo-
gous to Taub’s mass function in the plane symmetric space-
time (Sharif and Rehmat 2010).

3 Junction conditions

In this section, we assume that the 3D timelike boundary
surface � splits the two 4D cylindrically symmetric space-
times V + and V −. The metric which describes the internal
region V − is given by (1) while for the representation of ex-
terior region V +, a metric in the retarded time coordinate is
considered. If M(ν) and Q(ν) are mass and charge, respec-
tively, in retarded time then the corresponding cylindrically
symmetric spacetime given by (Chao-Guang 1995) will take
the form

ds2+ = −
(−2M(ν)

R
+ Q2(ν)

R2

)
dν2

− 2dRdν + R2(dθ2 + dz2), (16)

where ν is the retarded time coordinate. We can write the
induced metric for the hypersurface � in the following form

(ds2)� = −dτ 2 + y2(τ )(dθ2 + dz2), (17)

where ξ i ≡ (τ,φ, z) (i = 0,2,3) represent the intrinsic co-
ordinates of �.

The Darmois junction conditions (Darmois 1927) can be
stated as follows:

• The continuity of the first fundamental form over the hy-
persurface � i.e.,

(ds2)� = (ds2−)� = (ds2+)�. (18)

• The continuity of the second fundamental form over the
hypersurface �

[Kij ] = K+
ij − K−

ij = 0. (19)
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Here, K±
ij is the extrinsic curvature given by

K±
ij = −n±

σ

(
∂2χσ±

∂ξ i∂ξj
+ �σ

μν

∂χ
μ
±∂χν±

∂ξ i∂ξj

)

(σ,μ, ν = 0,1,2,3), (20)

where n±
σ are the components of outward unit normal to the

hypersurface in the coordinates χ±μ.
We can write the equations of hypersurface as follows

h−(t, r) = r − r� = 0, (21)

h+(ν,R) = R − R�(ν) = 0, (22)

where r� is a constant. Using above equations, we have the
interior and exterior spacetimes on � as follows

(ds2−)� = −A2(t, r�)dt2 + C2(t, r�)(dθ2 + dR�(ν)2).

(23)

(ds2+)� = −
[(−2M(ν)

R�(ν)
+ Q2(ν)

R�(ν)2

)
+ 2dR�(ν)

dν

]
dν2

+ R2
�(dθ2 + dz2). (24)

The continuity of the first fundamental form gives

R�(ν) = C(t, r�), (25)

dt

dτ
= 1

A
, (26)

dν

dτ
=

[(−2M(ν)

R�

+ Q2(ν)

R2
�

)
+ 2dR�

dν

]−1
2

. (27)

Now we consider the second fundamental form over �. For
this purpose, we need the outward unit normals to � using
(21) and (22)

n−
a = B(0,1,0,0), (28)

n+
a =

(−2M(ν)

R�

+ Q2(ν)

R2
�

+ 2dR�

dν

)−1
2

×
(

−dR�

dν
,1,0,0

)
. (29)

The non-zero components of the extrinsic curvature K±
ij

are

K−
00 = −

(
A′

AB

)
�

, (30)

K+
00 =

[
d2ν

dτ 2

(
dν

dτ

)−1

−
(

M

R2
− Q2

R3

)(
dν

dτ

)]
�

, (31)

K−
22 = K−

33 =
(

CC′

B

)
�

, (32)

K+
22 =

[
R

dR

dτ
+

(
Q2

R
− 2M

)
dν

dτ

]
�

= K+
33. (33)

The continuity of the extrinsic curvature components yields

[
d2ν

dτ 2

(
dν

dτ

)−1

−
(

M

R2
− Q2

R3

)(
dν

dτ

)]
�

= −
(

A′

AB

)
�

, (34)

[
R

dR

dτ
+

(
Q2

R
− 2M

)
dν

dτ

]
�

=
(

CC′

B

)
�

. (35)

Using (25)–(27), (10) and (11) in (34) and (35), it follows
that

E′ − M
�= l

8
⇔ s

�= Q, (36)

q
�= Pr − 3s2

2C4
. (37)

The first equation indicates that the difference between two
masses is equal to l

8 as shown in the adiabatic case (Sharif
and Fatima 2011). This is due to the least unsatisfactory defi-
nition of Thorne C-energy (Thorne 1965). The second equa-
tion describes a relation between heat flux, radial pressure
and charge over the hypersurface �. It is obvious from this
equation that for uncharged radiating fluid, radial pressure
and heat flux are equal over the boundary of the collapsing
cylinder.

4 The dynamical equations

Here we derive the dynamical equations for non-adiabatic
charged anisotropic fluid. The energy-momentum conserva-
tion, (T αβ + T (em)αβ);β = 0, implies that

(
T αβ + T (em)αβ

)
;β Vα

= − μ̇

A
− Ḃ

AB
(μ + Pr) − 2Ċ

AC
(μ + P⊥)

− 2q

B

(
A′

A
+ C′

C

)
− q ′

B
= 0 (38)

and
(
T αβ + T (em)αβ

)
;β χa

= 1

B
P ′

r + A′

AB
(μ + Pr) + q̇

A
+ 2q

A

(
Ḃ

B
+ Ċ

C

)

+ 2C′

BC
(Pr − P⊥) − ss′

πBC4
= 0. (39)
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Following Misner and Sharp formalism (Misner and Sharp
1964), we discuss the dynamics of the collapsing system.
We introduce proper time derivative as well as the proper
radial derivative constructed from the circumference radius
of a cylinder inside � as (Sharif and Fatima 2011)

DT = 1

A

∂

∂t
, DR = 1

R′
∂

∂r
, R = C. (40)

The fluid velocity in the case of collapse can be defined
as

U = DT (R) = DT (C) < 0. (41)

Consequently, we can write (15) as

Ẽ = C′

B
=

[
U2 + s2

C2
− 2

C

(
E′ − 1

8

)]1/2

. (42)

Using (11), (12), (15) and (40), the time rate of change of
the C-energy turns out to be

DT E′ = −4πR2
[(

Pr − 1

32πR2

)
U + qẼ

]

+ 3s2U

2R2
. (43)

This equation represents the variation of total energy inside
the collapsing cylinder. Since U < 0, the first term on the
right hand side of this equation will increase the energy of
the system provided that the factor within the round brackets
is positive. The second term in the square brackets due to
negative sign describes the outflow of energy in the form
of radiation during the collapse. For the collapsing cylinder
containing the same species of the charges, the third term

will decrease the energy of the system as 3s2

2R2 plays the role
of Coulomb repulsive force and U < 0.

Similarly, using (10), (11), (15) and (40), we obtain

DRE′ = 4πR2
(

μ + q
U

Ẽ

)
+ l

8
+ s

R
DRs + 3s2

2R2
. (44)

This equation gives the variation of energy between the adja-
cent cylindrical surfaces inside the matter distribution. The
first term is the energy density of the fluid element along
with heat flux contribution. Since U < 0, the heat flux fac-
tor decreases the energy of the system during the collapse of
cylinder. The term l

8 comes from the definition of C-energy
and the remaining terms are due to the electromagnetic field.

Using (12), (15), (41) and (42), we can obtain the accel-
eration DT U of a collapsing matter inside �

DT U = − 1

R2

(
E′ − l

8

)
− 4πRPr + ẼA′

AB
+ 5s2

2R3
. (45)

Inserting the value of A′
A

from (45) into (39), it follows that

(μ + Pr)DT U

= −(μ + Pr)

[
1

R2

(
E′ − l

8

)
+ 4πPrR − 5s2

2R3

]

− Ẽ

[
DT q + 4qU

R
+ 2qG

]

− Ẽ2
[
DRPr + 2(Pr − P⊥)

1

R
− s

πR4
DRs

]
, (46)

where G = 1
A

( Ḃ
B

− Ċ
C

) 	= 0 for simplicity. Now the complete
dynamics of the system is described by (46). The system will
evolve radially outward or inward according to DT U < 0 or
DT U > 0. Thus the terms in (46) contributing negatively,
favors the collapse while the other contribution prevents the
collapse. If both of these cancel each other then there will
be a hydrostatic equilibrium. Since the left hand side of (46)
represents force, so the factor μ + Pr refers to an inertial
mass density independent of charge and heat flux contribu-
tions. The first and third terms on the right hand side rep-
resents the gravitational force. The second term represents
the heat flux contribution which seems to leave the system
(due to negative sign) through the outward radially directed
streamlines. Being in the same direction of pressure, it sup-
ports the pressure and would prevent the collapse.

The term (μ + Pr)[ 1
R2 (E′ − l

8 ) + 4πPrR − 5s2

2R3 ] rep-
resents the gravitational force. The factor within the first
square brackets shows the effects of specific length and
the electric charge on the active gravitational mass term
(μ + Pr). The third term has three main contributions, i.e.,
the first is the pressure gradient which is negative, the sec-
ond is the local anisotropy of the fluid which will be nega-
tive for Pr < P⊥ and the third is the electromagnetic field
term. For an isotropic pressure, the second contribution will
be vanished. Further, following Di Prisco et al. (2007), it
can be found that the third term contributes negatively for
s
R

> DRs. Thus the third square brackets, under these condi-
tions with negative sign, contributes positively by reducing
an attractive behavior of force appearing on left hand side of
the equation. Since the attractive force is decreased, so the
third term prevents the gravitational collapse of the cylinder.

5 The transport equation

The transport equation predicts the processes of mass, heat
and momentum transfer during the dynamics of a realistic
matter. The transport equation for heat flux derived from the
Müller-Israel-Stewart causal thermodynamic theory is given
by Herrera (2006)

τhabV cqb;c + qa = −κhab(T,b + abT )
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− 1

2
κT 2

(
τV b

κT 2

)
;b

qa, (47)

where hab = gab +V aV b is the projection tensor, κ denotes
thermal conductivity, T is temperature, τ stands for relax-
ation time which is the time taken by a perturbed system to
return into an equilibrium state and abT is the Tolman in-
ertial term. Due to symmetry of the spacetime, the transport
equation reduces to the following form

τ q̇ = −1

2
κqT 2

(
τ

κT 2

)·
− 1

2
τq

(
Ḃ

B
+ 2

Ċ

C

)

− κ

B
(T A)′ − qA. (48)

Using (40) and (41) in this equation, it follows that

DT q = − κT 2q

2τ
DT

(
τ

κT 2

)
− q

[
3U

2R
+ G + 1

τ

]

− κẼ

τ
DRT − κT

τẼ

× DT U − κT

τẼ

[
E′ + l

8
+ 4πPrR

3

− 5s2

2R

]
1

R2
. (49)

In order to understand the effects of heat flux or dissipa-
tion on collapsing process, we couple (49) with dynamical
(46). Thus the replacement of (49) in (46), yields

(μ + Pr)(1 − α)DT U = (1 − α)Fgrav + Fhyd + κẼ2

τ
DRT

+ Ẽ

[
κT 2q

2τ
DT

(
τ

κT 2

)]

− Ẽq

(
5U

2R
+ G − 1

τ

)
, (50)

where Fgrav, Fhyd and α are given by the following equa-
tions

Fgrav = −(μ + Pr)

[
E′ − C

8
+ 4πPrR

3 − 5s2

2R

]
1

R2
, (51)

Fhyd = −Ẽ2
[
DR(Pr) + 2

R
(Pr − P⊥) − μ2

0sDRs

4πR4

]
, (52)

α = κT

τ
(μ + Pr)

−1. (53)

For the physical interpretation of (50), it can be observed
that the left hand side of this equation being the product
of inertial mass density (μ + Pr)(1 − α) and acceleration,
DT U represents the Newtonian force. Thus we can write
F = (μ + Pr)(1 − α)DT U . It is clear that when α → 1,

then F → 0, which means that there is no inertial force and
matter would experience the gravitational attraction which
causes the collapse. For 0 < α < 1, the inertial mass den-
sity goes on decreasing while 1 < α indicates the increase
of inertial mass density. Of course, by the equivalence prin-
ciple, there would occur decrease and increase in the gravi-
tational mass. In this way, one can explicitly distinguish the
expanding and collapsing mechanism during the dynamics
of dissipative system.

Also, (50) implies that gravitational force is affected by
the same factor but hydrodynamical force is independent of
this factor. Further, as long as (μ+Pr)(1−α)DT U < 0, the
total Newtonian force of the system remains directed down-
ward which is the indication for the gravitational collapse
and the converse is true for the expansion. If there is a con-
tinuous change in α from a value greater than one to less
than one and vice versa, then there is a transition phase in
the system and bouncing would occur. This phenomenon
causes the loss of energy from the system and hence the
collapsing cylinder with non-adiabatic source leads to the
emission of the gravitational radiations. On the basis of this
fact, the exterior of the collapsing cylinder is radiation zone
which is completely described by a spacetime in radiation
coordinates like in the present case.

6 Outlook

This paper deals with the effects of the charge and heat
conduction on the dynamics of cylindrical anisotropic fluid
collapse. We have extended the recent work of Sharif and
Fatima (2011) to non-adiabatic case for the transportation
process of heat flux during the dynamics of realistic mat-
ter collapse. For this purpose, the non-viscous heat conduct-
ing anisotropic fluid with cylindrical symmetry has been
taken as the source of gravitation in the presence of elec-
tromagnetic field. Using the Misner and Sharp formalism,
the dynamical equations are derived. We have found that
during the collapse of non-viscous heat conducting charged
anisotropic fluid, the radial heat flux and electric charge
causes to reduce the energy of the system.

For q > 0, E′ = C′
B

> 0, (44) yields that the second term
in the first square brackets is negative which indicates that
heat is emitting from the system. Thus the external region
of such a collapsing system, being non-vacuum, is defined
by a cylindrical geometry in the radiation (single null) co-
ordinate. This prediction is analogous to the Vaidya (1951)
for spherically symmetric case. The time evolution of the
system, given by dynamical equation (46), indicates that the
inertial mass density is independent of heat flux and elec-
tric charge. The left hand side of this equation corresponds
to the Newtonian force of the system which is decreased by
the heat flux.
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Since the collapse of a star is an irreversible process.
The transport process of such non-equilibrium objects and
connection between their dynamics and thermodynamics are
important for the better understanding of the problem. Thus
using the Müller-Israel-Stewart causal thermodynamic the-
ory, the transport equation for the dissipative fluid has been
formulated and coupled to the dynamical equation. The cou-
pled equation helps to determine the influence of the heat
flux over the dynamics of collapsing cylinder. It has been
found that in the coupled dynamical (50), the inertial as well
as gravitational masses are influenced by the factor (1 − α).
The role of α during the dynamics of system can be ex-
plained as follows: For α tends to one, we get zero mass
density. For 0 < α < 1, the inertial and the gravitational
mass density are decreased while for α > 1, the gravitational
force term becomes negative. This is the case for the rever-
sal of collapse. The conditions on α have been investigated
for the bouncing behavior of the system.
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