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Abstract Properties of three-dimensional ion-acoustic soli-
tary and shock waves accompining electron-positron-ion
magnetoplasma with high-energy (superthermal) electrons
and positrons are investigated. For this purpose, a Zakharov-
Kuznetsov-Burgers (ZKB) equation is derived from the ion
continuity equation, ion momentum equation with kinematic
viscosity among ions fluid, electrons, and positrons having
kappa distribution together with the Poisson equation. The
dependence of the solitary and shock excitations character-
istics on the parameter measuring the superthermality κ , the
ion gyrofrequency �, the unperturbed positrons-to-ions den-
sity ratio ν, the viscosity parameter η, the direction cosine �,
the ion-to-electron temperature ratio σi , and the electron-to-
positron temperature ratio σp have been investigated. More-
over, it is found that the parameters κ , �, ν, η, and � lead
to accelerate the particles, whereas the parameters σi and σp

would lead to decelerate them. Numerical calculations re-
veal that the nonlinear pulses polarity are always positive.
This study could be useful to understand the nonlinear elec-
trostatic excitations in interstellar medium.
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1 Introduction

In the last decades, numerous observations have provided
consistent data and confirmed that there are deviations from
Maxwellian equilibrium are expected to produce in space
plasmas, which are sufficiently dilute and low collisional
(Lazar et al. 2010a, 2010b). For example, observations and
in-situ measurements have confirmed the wide-spread exis-
tence of superthermal populations at different altitudes in the
solar wind plasma (Feldman et al. 1975; Pilipp et al. 1987;
Fisk and Gloeckler 2006) and probably in the solar corona
(Scudder 1992a, 1992b; Pierrard et al. 1999), Earth’s mag-
netospheric plasma sheet (Christon et al. 1988), Jupiter
(Leubner and Geophys 1982), Saturn (Armstrong et al.
1983), etc. One of these non-Maxwellian distributions is the
superthermal (kappa) distribution. The latter assumes that
the superthermal particles may arise due to the effect of ex-
ternal forces acting on the natural space environment plas-
mas or due to wave particle interaction. Plasma with an ex-
cess of superthermal particles are generally characterized
by long tail in the high energy region. It has been noticed
that a plasma in the presence of superthermal particles suf-
fers velocity-space diffusion (Hasegawa et al. 1985). Impor-
tantly, the kappa (κ) distribution obeys an inverse power law
at high velocities. For all velocities, in the limit when the
spectral index κ becomes very large (κ → ∞), the distri-
bution function approaches the Maxwellian one. The κ dis-
tribution was first suggested by Vasyliunas (1968) to model
space plasmas. The advantage of employing κ distribution
lies in the fact that the Maxwellian distribution is a special
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case of the κ function in the limit of κ → ∞. Based on
superthermal assumption, many authors have been studied
the effect of superthermal particles (electrons, positrons, and
ions) in different types of plasma environments (e.g., Hell-
berg and Mace 2002; Leubner and Schupfer 2002; Leubner
2004; Abbasi and Pajouh 2007; Saini and Kourakis 2008;
Chuang and Hau 2009; Tribeche and Boubakour 2009;
El-Awady et al. 2010; Sultana et al. 2010).

An electron-positron-ion (e-p-i) plasma is a fully ion-
ized gas consisting of electrons and positrons having equal
masses and charges with opposite polarity. The e-p-i plas-
mas are found not only in early universe (Rees et al. 1983)
but also in astrophysical environments such as in magne-
tosphere of pulsars (Michel 1982), active galactic nuclei
(Miller and Witta 1987), interstellar medium (Moskalenko
and Strong 1998; Adriani et al. 2009), etc. Also, e-p-i plasma
can be artificially created in laboratories (Surko et al. 1986;
Surko and Murphy 1990; Tinkle et al. 1994; Greaves and
Surko 1995; Gahn et al. 2000). Indeed, the presence of
ions leads to existence of several low frequency waves
which otherwise do not propagate in electron-positron plas-
mas. One of these low frequency waves is the nonlinear
ion-acoustic wave. The nonlinearity could produce various
structures (Hirota 2004; Wazwaz 2009), such as solitons,
shocks, peakons, cuspons, etc. However, we will pay at-
tention to investigate both the solitons and shocks. Briefly,
the solitary waves appear because of the balance between
the dispersion (caused by charge separation) and the non-
linearity (because of convection of mobile particles). How-
ever, the shocks which are sometimes called kinks or double
layers are monotonically change in the physical parameter
from one value at one extreme to another at the other end,
hence “kinks”. This is associated with adjacent positive and
negative charge regions, which give rise to the name “dou-
ble layers”. Such double layers are more difficult to gen-
erate and require a fine tuning of the plasma parameters,
hence a more complicated plasma composition with enough
leeway to obey the necessary constraints (Verheest et al.
2006). During the last decades, there has been increasing in-
terest in interpreting low-frequency nonlinear ion-acoustic
structures (solitons and shocks) with non Maxwellian parti-
cles both in electron-ion plasma and in e-p-i plasmas (e.g.
Vasyliunas 1968; Hasegawa et al. 1985; Hellberg et al.
2000, 2005; Aoutou et al. 2008; Baluku and Hellberg 2008;
El-Awady et al. 2010; Lazar et al. 2010a, 2010b; Sultana et
al. 2010). To the best of our knowledge, most of these stud-
ies did not consider the propagation of ion-acoustic struc-
tures (solitons and shocks) in three component e-p-i magne-
toplasma and taking into account the effects of superthermal
particles (both electrons and positrons), as well as ion kine-
matic viscosity. Therefore, the goal of the present work is
to tackle extension of the nonlinear ion-acoustic structures
(solitons and shocks) in magnetoplasma composed of three

distinct particle populations, namely inertial ions, as well as
electrons and positrons obeying a kappa distribution taking
into account the kinematic viscosity of the ion fluid.

The organization of the paper is as follows: The basic
equations for the nonlinear electrostatic excitations in an
e-p-i magnetoplasma are presented in Sect. 2. In Sect. 3 the
reductive perturbation method is used to reduce the basic
equations to Zakharov-Kuznetsov-Burgers (ZKB) equation.
In Sect. 4, the ZKB equation is solved analytically to ob-
tain both solitary and shock solutions. The latter are used to
study the behavior of these nonlinear structures. The results
are summarized in Sect. 5.

2 Model equations

Let us consider a three-dimensional, collisionless, magne-
tized e-p-i plasma consisting of inertialess superthermal
electrons and positrons, as well as inertial single-charge adi-
abatic positive ions. The nonlinear dynamics of the ion-
acoustic waves in such e-p-i plasma is described by the fol-
lowing normalized equations

∂ni

∂t
+ ∇ · (niui ) = 0, (1)

∂ui

∂t
+ (ui · ∇)ui

= −∇ϕ + �(ui × x̂ ) − 5

3
σin

−1/3
i ∇ni + ηi∇2ui , (2)

∇2ϕ = ne − ni − np, (3)

where nj is the density of j th species (where j = e, p, and i

stands for electrons, positrons, and ions, respectively), ui is
the ion fluid velocity, ϕ is an electrostatic potential, and ηi

is the normalized kinematic viscosity. We shall adopt kappa-
distribution for electrons and positrons, by relying on a sim-
ilar notations in Chuang and Hau (2009), wherein the funda-
mental algebra is expressed in detail. Therefore, the normal-
ized number densities of electrons and positrons are given
by

ne = μ
(

1 − ϕ

κ

)−κ+ 1
2
, (4)

np = ν
(

1 + σp

ϕ

κ

)−κ+ 1
2
, (5)

where κ is a real parameter measuring deviation from
Maxwellian equilibrium. In the limit κ → ∞, superthermal
distribution reduces to Maxwell-Boltzmann distribution. At
equilibrium, we have

μ − ν = 1, (6)
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where μ = n
(0)
e /n

(0)
i and ν = n

(0)
p /n

(0)
i denote the unper-

turbed density ratios of electrons and positrons-to-ions, re-
spectively. Furthermore, we introduce the following nota-
tions:

� = ωci√
4πn

(0)
i e2/mi

, ωci = eB0/mic,

σi = Ti /Te, σp = Te /Tp, and ηi = η0

ωpi λ2
Di

,

where ωci is the ion gyrofrequency, σi is the ratio of ion-
to-electron temperature, and σp is the ratio of electron-to-
positron temperature. Here, e is the magnitude of the elec-
tron charge, B0 is an external static magnetic field, mi is the
ion mass, c is the velocity of the light in vacuum, and η0 is
the unnormalized kinematic viscosity.

The variables appearing in (1)–(5) have been appropri-
ately normalized. Thus ni,e,p is normalized by the unper-

turbed ion density n
(0)
i , ui by the ion-acoustic speed Csi =

(kBTe/mi)
1/2, ϕ by the electrostatic potential kBTe/e, the

space and time variables are in units of the ion Debye ra-
dius λDi = (kBTe/4πn

(0)
i e2)1/2 and the ion plasma period

ω−1
pi = (4πn

(0)
i e2/mi)

−1/2, respectively. kB is the Boltz-
mann constant.

3 Reduction to Zakharov-Kuznetsov-Burgers equation

To study the nonlinear ion-acoustic waves of small, but
finite, amplitude, we use reductive perturbation method
(Washimi and Taniuti 1966), which leads to a scaling of the
independent variables through the stretched coordinates

X = ε1/2(x − λt), Y = ε1/2y,

Z = ε1/2z, and T = ε3/2t,
(7)

where λ is a wave propagation speed to be determined later
and ε is a small parameter measuring the weakness of the
dispersion and nonlinearity. Furthermore, the variables ni ,
ui , and ϕ are expanded as

ni = 1 + εn
(1)
i + ε2n

(2)
i + · · · , (8)

uix = εu
(1)
ix + ε2u

(2)
ix + · · · , (9)

uiy = ε3/2u
(1)
iy + ε2u

(2)
iy + · · · , (10)

uiz = ε3/2u
(1)
iz + ε2u

(2)
iz + · · · , (11)

ϕ = εϕ(1) + ε2ϕ(2) + · · · . (12)

The value of ηi is assumed to be small, so that we may set
ηi = ε1/2η where η is finite quantity of the order of unity.

Applying Binomial series of (4) and (5), and substitut-
ing the expansion (8)–(12), as well as the stretching (7) into

(1)–(5), then collecting the terms in different powers of ε.
The lowest-order in ε gives the following relations

n
(1)
i = 1

�
ϕ(1), (13)

u
(1)
ix = λ

�
ϕ(1), (14)

u
(1)
iy = − λ2

��

∂ϕ(1)

∂Z
, (15)

u
(1)
iz = λ2

��

∂ϕ(1)

∂Y
, (16)

where the Poisson equation gives the compatibility condi-
tion

1

�
−

(
1 − 1

2κ

)
(μ + νσp) = 0, (17)

with

� = λ2 − 5

3
σi. (18)

The next-order in ε yields a system of equations in
the second-order perturbed quantities. Solving this system
with the aid of (13)–(18), we finally obtain the Zakharov-
Kuznetsov-Burgers (ZKB) equation

∂ϕ(1)

∂T
+ Aϕ(1) ∂ϕ(1)

∂X
+ B

∂3ϕ(1)

∂X3

+ C
∂

∂X

(
∂2ϕ(1)

∂Y 2
+ ∂2ϕ(1)

∂Z2

)

− D

(
∂2

∂X2
+ ∂2

∂Y 2
+ ∂2

∂Z2

)
ϕ(1) = 0, (19)

where

A = B

{
3
(λ2 − 5

27σi)

�3
−

(
1 − 1

4κ2

)
(μ − νσ 2

p)

}
, (20)

B = 1
2

(
λ

�2

)−1

, C = B

(
1 + λ4

�2�2

)
, and

D = η

2
.

(21)

It is worth mentioning here that the viscosity parameter η is
contained only in the last term of (19). It is noticed that for
η → 0, the dissipative term (i.e. last term in (19)) disappears,
yielding the formation of solitary pulses only, (due to the
balance between the nonlinearity and dispersion). However,
in our model the dissipative term is presented, which leads
to lose the system energy, and thus leads to the formation
of a shock. Thus, we pointout that the dissipative coefficient
plays an important role to change the profile of the nonlinear
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structure, i.e. soliton to shock and vis versa, so the soliton
existence is expected to be strongly affected by the viscosity
term.

4 Solutions of ZKB equation and parametric study

To obtain the solution of (19), we introduce the transforma-
tion

χ = �X + mY + nZ − UT, (22)

where �, m, and n are the direction cosines between the wave
propagation vector k with the X,Y, and Z axes, respectively.
U is the velocity of the moving frame normalized by Csi .
Considering �(χ) = ϕ(1)(X,Y,Z,T ), (19) takes the form
of an ordinary differential equation as follows:

−U
d�

dχ
+ A��

d�

dχ
+ �F

d3�

dχ3
− D

d2�

dχ2
= 0, (23)

where

F = B�2 + C(m2 + n2).

If we emphasize on a limiting case when the dispersion
is dominant cases (i.e., D → 0), then (23) reduces to the
well-known ZK equation. Integrating the latter and using
the boundary conditions � → 0, d�/dχ,d2�/dχ2 → 0 at
χ → ±∞, we obtain the solitary wave solution

� = �0 sech2(χ/δ), (24)

where the maximum amplitude �0 and the width δ of the
solitary waves are given, respectively, by

�0 = 3U/A�, (25)

and

δ = 2(�F/U)1/2. (26)

Firstly, we will investigate the nature of the solitary struc-
ture (represented by (24)). We have numerically analyzed
the potential amplitude �0 and width δ and investigate how
the ratio of ion-to-electron temperature σi , the parameter
measuring deviation from Maxwellian equilibrium κ , the
unperturbed density ratio of positrons-to-ions ν, the direc-
tion cosine �, and the ion gyrofrequency � change the pro-
file of the pulse structure.

From Figs. 1 and 2, it is seen that the increase of the pa-
rameter measuring the deviation from Maxwellian equilib-
rium κ , the ratio of ion-to-electron temperature σi , the di-
rection cosine �, the unperturbed density ratio of positrons-
to-ions ν, leads to make the amplitude shorter. However, for
� < 0.4 the decrease in the amplitude is much smaller than

Fig. 1 The contour plot of the amplitude �0 (given by (25)) with pa-
rameter measuring deviation from Maxwellian equilibrium κ and the
ion-to-electron temperature ratio σ . The numbers on the contour curves
indicate the values of the corresponding amplitude, where ν = 0.2,
� = 0.9, U = 0.2, and σp = 0.9

Fig. 2 The contour plot of the amplitude �0 (given by (25)) with di-
rection cosine � and unperturbed density ratio of positrons-to-ions ν.
The numbers on the contour curves indicate the values of the corre-
sponding amplitude, where κ = 2, σi = 0.05, U = 0.2, and σp = 0.9

for � > 0.4. That is indicate that for large direction cosine �,
the pulse amplitude does not suffer significant change. The
behavior of electron-to-positron temperature ratio σp is the
same as the behavior of ion-to-electron temperature ratio σi ,
therefore we do not include it in the figures. The dependence
of the spatial extension (width) δ on the parameter measur-
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Fig. 3 The contour plot of the width δ (given by (26)) with parameter
measuring deviation from Maxwellian equilibrium κ and the ion-to-
electron temperature ratio σi . The numbers on the contour curves in-
dicate the values of the corresponding width, where ν = 0.2, � = 0.9,
� = 0.1, U = 0.2, and σp = 0.9

Fig. 4 The contour plot of the width δ (given by (26)) with direc-
tion cosine � and unperturbed density ratio of positrons-to-ions ν. The
numbers on the contour curves indicate the values of the corresponding
width, where κ = 2, σi = 0.05, � = 0.1, U = 0.2, and σp = 0.9

ing deviation from Maxwellian equilibrium κ , the ratio of
ion-to-electron temperature σi , the direction cosine �, the
unperturbed density ratio of positrons-to-ions ν, and the ion
gyrofrequency � are displayed in Figs. 3–5. In Fig. 3 it is
noticed that the width decreases with increasing κ but it in-
creases with the increase of σi . However, for small κ (i.e.
κ = 2–6) the width changes with σi faster than for large κ

Fig. 5 The contour plot of the width δ (given by (26)) with direction
cosine � and ion gyrofrequency �. The numbers on the contour curves
indicate the values of the corresponding width, where ν = 0.2, κ = 2,
σi = 0.05, U = 0.2, and σp = 0.9

(i.e. κ > 6). That is indicate that the index κ plays an impor-
tant role in the pulse profile. For certain value of � the width
changes its profile/behavior; see Figs. 4 and 5. On the other
hand, the pulse width becomes wider for � < 0.58 whereas
it becomes narrower for � > 0.58. Furthermore, the increase
of the unperturbed density ratio of positrons-to-ions ν, and
the ion gyrofrequency � would lead to shrinks the solitary
pulse width.

Now, we will obtain the general/exact solution of (23)
involving both the dissipative and dispersion terms. We
will employ the hyperbolic tangent (tanh) method (Malfliet
1992; Malfliet and Hereman 1996), which is a tool for find-
ing the travelling wave solutions of peculiar type nonlinear
evolution equations. Introducing new independent variable
W = tanh(ρχ) to (23), we get

−Uρ(1 − W 2)
d�

dW
+ A�ρ(1 − W 2)�

d�

dW

+ F�ρ3(1 − W 2)

× d

dW

{
(1 − W 2)

d

dW

[
(1 − W 2)

d

dW

]}
�

− Dρ2(1 − W 2)
d

dW

[
(1 − W 2)

d

dW

]
� = 0. (27)

Assume the solution is as a series in the form

�(W) = a0 + a1W + a2W
2. (28)
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Fig. 6 The shock profiles � (given by (30)) against χ for different val-
ues of κ where κ = 2 (solid line), κ = 20 (dotted line), κ = 50 (dashed
line), ν = 0.2, � = 0.9, � = 0.1, σi = 0.05, σp = 0.9, and η = 0.1

Using (28) into (27), we obtain a system of algebraic equa-
tions. Solving this system, we can finally obtain

a0 = 9

25

D2

FA�2
, a1 = ∓ 6

25

D2

FA�2
,

a2 = − 3

25

D2

FA�2
, ρ = ± D

10F�
, U = 6D2

25F�
.

(29)

Therefore, (28) can be rewritten as

�(χ) = 3

25

D2

FA�2

[
2 − 2 tanh

(
D

10F�
χ

)

+ sech2
(

D

10F�
χ

)]
. (30)

Notice that the exact solution of the ZKB equation (23) con-
tains the contribution from both dispersion and dissipative
effects which influence the eventual shape of the wave po-
tential. It may be appropriate to point out that the above
solution has been obtained in the region of parameter val-
ues where the nonlinearity, dispersion, and dissipative co-
efficients in the ZKB equation (23) bear either positive or
negative values. One sees in the solution (30) that the am-
plitude coefficient (i.e., where χ → 0) has ever positive
value, independent on the intrinsic plasma parameters val-
ues. Therefore, the shock pulse polarity is always positive in
the present system. Also, we have examined if A → 0 for
possible plasma parameters values. It is found that A cannot
be either vanish or has negative sign. Therefore, the solution
obtained above cover the entire range of plasma parameters.

The profile of the double layers (shock waves) is depicted
against various plasma parameters, namely the parame-
ter measuring deviation from Maxwellian equilibrium κ ,
the ion gyrofrequency �, the unperturbed density ratio of
positrons-to-ions ν, the viscosity parameter η, the direction
cosine �, the ratio of ion-to-electron temperature σi , and the
ratio of electron-to-positron temperature σp . It is obvious
from Figs. 6, 7, 8, 9, 10 that the shock amplitude (width)
increases (decreases) with the increase of κ , �, ν, η, and

Fig. 7 The shock profiles � (given by (30)) against χ for differ-
ent values of � where � = 0.1 (solid line), � = 0.11 (dotted line),
� = 0.12 (dashed line), κ = 2, ν = 0.2, � = 0.9, σi = 0.05, σp = 0.9,

and η = 0.1

Fig. 8 The shock profiles � (given by (30)) against χ for different
values of ν where ν = 0.2 (solid line), ν = 0.3 (dotted line), ν = 0.4
(dashed line), κ = 2, � = 0.9, � = 0.1, σi = 0.05, σp = 0.9, and
η = 0.1

Fig. 9 The shock profiles � (given by (30)) against χ for differ-
ent values of η where η = 0.1 (solid line), η = 0.11 (dotted line),
η = 0.12 (dashed line), κ = 2, ν = 0.2, � = 0.9, � = 0.1, σi = 0.05,
and σp = 0.9

�. Physically, increasing the double layers amplitude means
that the potential drop across the double layer enhances,
and then more particles will be accelerated. Therefore, the
physical parameters κ , �, ν, η, and � lead to much poten-
tial drop and accelerate electrons and positrons/ions in op-
posite directions. The effects of σi and σp on the double
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Fig. 10 The shock profiles � (given by (30)) against χ for different
values of � where � = 0.8 (solid line), � = 0.85 (dotted line), � = 0.9
(dashed line), κ = 2, ν = 0.2, � = 0.1, σi = 0.05, σp = 0.9, and
η = 0.1

Fig. 11 The shock profiles � (given by (30)) against χ for differ-
ent values of σi where σi = 0.05 (solid line), σi = 0.08 (dotted line),
σi = 0.1 (dashed line), κ = 2, ν = 0.2, � = 0.9, � = 0.1, σp = 0.9,

and η = 0.1

layer amplitude and width are displayed in Figs. 11 and 12.
It is seen that the wave amplitude (width) shrinks (enhances)
with the increase of σi , whereas the wave amplitude and
width shrinks with the increase of σp . However, increasing
ν (σp) leads to smaller (larger) and narrower (wider) exci-
tations. Importantly, the parameters σi and σp would lead
to decelerate the electrons and positrons/ions. Finally, in the
limit λ → √

5σi/3 (fixed temperature ratio), no double layer
excitations are expected to occur.

5 Summary

To summarize, we have investigated the propagation of
three-dimensional ion-acoustic solitary and shock waves
in e-p-i magnetoplasma with superthermal electrons and
positrons (represented by kappa distribution). The dissipa-
tion in the system is introduced by taking into account the
kinematic viscosity among the ions fluid. The evolution of
the system is investigated by deriving ZKB equation. The
analytical solutions of the latter are obtained, which indicate
that either solitary or shock pulses can exist depending on
the dissipation in the system. The dependence of the solitary

Fig. 12 The shock profiles � (given by (30)) against χ for differ-
ent values of σp where σp = 0.9 (solid line), σp = 1.05 (dotted line),
σp = 1.2 (dashed line), κ = 2, ν = 0.2, � = 0.9, � = 0.1, σi = 0.05,
and η = 0.1

and shock excitations characteristics on the parameter mea-
suring deviation from Maxwellian equilibrium κ , the ion gy-
rofrequency �, the unperturbed density ratio of positrons-
to-ions ν, the viscosity parameter η, the direction cosine �,
the ratio of ion-to-electron temperature σi , and the ratio of
electron-to-positron temperature σp have been investigated.
Furthermore, the parameters κ , �, ν, η, and � lead to accel-
erate the particles, whereas the parameters σi and σp would
lead to decelerate them. Also, the numerical calculations re-
veal that the nonlinear pulses polarity are always positive.
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