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Abstract This paper examines the effect of a constant κ of
a particular integral of the Gylden-Meshcherskii problem on
the stability of the triangular points in the restricted three-
body problem under the influence of small perturbations in
the Coriolis and centrifugal forces, together with the effects
of radiation pressure of the bigger primary, when the masses
of the primaries vary in accordance with the unified Meshch-
erskii law. The triangular points of the autonomized system
are found to be conditionally stable due to κ . We observed
further that the stabilizing or destabilizing tendency of the
Coriolis and centrifugal forces is controlled by κ , while the
destabilizing effects of the radiation pressure remain un-
changed but can be made strong or weak due to κ . The con-
dition that the region of stability is increasing, decreasing or
does not exist depend on this constant. The motion around
the triangular points L4,5 varying with time is studied using
the Lyapunov Characteristic Numbers, and are found to be
generally unstable.

Keywords Celestial mechanics · Variable masses ·
Radiation pressure

1 Introduction

The circular restricted three-body problem (CRTBP) de-
scribes the motion of an infinitesimal mass moving under
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the gravitational effect of the two finite masses, called pri-
maries, which move in circular orbits around their center of
mass on account of their mutual attraction and the infinites-
imal mass not influencing the motion of the primaries.

The classical RTBP assumes that the infinitesimal mass
moves under only the mutual gravitational force of the pri-
maries, but in practice, Coriolis and centrifugal forces are
effective and small perturbations affect these forces. Per-
turbations can well arise from the causes such as the lack
of sphericity (oblateness), the atmospheric drag, the solar
wind, and the actions of other bodies. An example is the
motion of a close artificial satellite of the Earth perturbed by
the atmospheric friction and the oblateness of the Earth. This
motivates many researchers to study the RTBP by taking
into account the effect of a small perturbation in the Cori-
olis and centrifugal forces.

Wintner (1941) showed that the stability of the triangu-
lar points is due to the existence of the Coriolis terms in the
equations of motion when they are written in a rotating co-
ordinate system. The absence of the Coriolis force renders
the triangular solution unstable according to Wintner (1941),
so that the oscillatory solution of the linearized equations of
motion is replaced by exponential terms with real character-
istic exponents.

The effect of a small perturbation in the Coriolis force
on the stability of the equilibrium points, keeping the cen-
trifugal force constant, was studied by Szebehely (1967b).
He maintained that the collinear points remain unstable and
obtained for the stability of the triangular points a relation
between the critical value of the mass parameter μc and the
change ε in the Coriolis force

μc = μ0 + 16ε
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Then, he concluded that the Coriolis force is a stabilizing
force.

This work was extended by Bhatnagar and Hallan (1978),
by considering the effect of perturbations ε and ε′ in the
Coriolis and centrifugal forces, respectively, and found that
collinear points remain unstable; for the triangular points
they obtained the relation

μc = μ0 + 4(36ε − 19ε′)
27
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They inferred that the range of stability increases or de-
creases depending on whether the points (ε, ε′) lie in one
or the other of the two parts in which the (ε, ε′) plane is
divided by the line 36ε − 19ε′ = 0. The combined effect
of perturbations, radiation and oblateness on the stability
of equilibrium points in the restricted three-body problem
was studied by AbdulRaheem and Singh (2006). They found
that the collinear points remain unstable, while the triangu-
lar points are conditionally stable, and they further observed
that the Coriolis force has a stabilizing tendency, while the
centrifugal force, radiation and oblateness of the primaries
have destabilizing effects; consequently the overall effect is
that the range of stability of the triangular points decreases.

The classical CRTBP is not suited to discuss the case
when at least one of the interacting bodies is an intense
emitter of radiation. According to Radzievskii (1950, 1953),
the problem in such a statement is called the photogravi-
tational problem. In certain stellar dynamics problems it is
altogether inadequate to consider solely the gravitational in-
teraction force. For example, when a star acts upon a par-
ticle in a cloud of gas and dust, the dominant factor is by
no means gravity, but the repulsive force of the radiation
pressure. Since a large fraction of all stars belong to binary
systems, the particle motion in the field of a double star of-
fers special interest. If a satellite flies high enough above
the Earth and is large enough in size, but at the same time
has sufficiently small mass, then the radiation pressure has a
very strong effect on its motion. The distance of the satellite
to the Sun practically is unaltered, and so the magnitude of
the radiation pressure is practically constant.

Further, the classical model assumes that the masses of
the bodies are constant, but there are numerous practical
problems where the mass does not remain constant. There
is a decrease in stellar mass, on account of light emission
or corpuscularly. A satellite moving around a radiating star
surrounded by cloud varies its mass due to particles of this
cloud. Comets lose part of their mass traveling around the
Sun (or other stars) due to their interaction with the solar
wind, which blows off particles from their surfaces. The
restricted problem dealing with variable mass of one, two
or three bodies under different aspects have been studied
by Orlov (1939), Gel’fgat (1973), Singh and Ishwar (1984,
1985), Lu (1990), Luk’yanov (1989a, 1990), El-Shaboury

(1990), Bekov (1988, 1991), Bekov et al. (2005), Singh
(2009), and, Singh and Oni (2010).

Gasanov (2008) investigated seven libration points and
the general case in the problem of the motion of a star in-
side a layered inhomogeneous elliptical galaxy with variable
mass. He examined the stability of these points using the
Lyapunov Characteristic Numbers (LCN), and concluded
that solutions with negative exponents are stable.

Our aim is to investigate the effect produced by a con-
stant κ of a particular integral of the Gylden-Meshcherskii
problem on the location and stability of the triangular points
of a small particle in the restricted three-body problem un-
der the influence of a small perturbation in the Coriolis
and centrifugal forces, together with the effects of radia-
tion pressure of the bigger primary, when both primaries
vary their masses in accordance with the unified Meshch-
erskii law (1952) and with their motion governed by the
Gylden-Meshcherskii problem (Gylden 1884; Meshcherskii
1952).

2 Equations of motion

The equations of motion of the infinitesimal body in the ro-
tating barycentric coordinate system Oxyz, the x–y plane of
which coincides with the plane of motion of the primaries,
and the x-axis of which always passes through these points,
as in the work by (Singh and Oni 2010), with the considera-
tion that the bigger primary is an intense emitter of radiation
have the form

ẍ − 2ωẏ = ω2x + ω̇y − μ1q
(x − x1)

r3
1

− μ2
(x − x2)

r3
2

,

ÿ + 2ωẋ = ω2y − ω̈x − μ1q
y

r3
1

− μ2
y

r3
2

,

z̈ = −μ1q
z

r3
1

− μ2
z

r3
2

,

(1)

with

r2
i = (x − xi)

2 + y2 + z2, (i = 1,2)

where r1 and r2 are distances of the infinitesimal mass
from these primaries m1 and m2 positioned at (x1,0,0) and
(x2,0,0) respectively, r is the distance between the pri-
maries, and ω is their angular velocity. μ1 and μ2 are the
product of the masses of the primaries and the gravitational
constant f . q is the radiation factor of the bigger primary,
and is given (Radzievskii 1950) by q = 1 − (Fp/Fg) such
that 0 < 1 − q � 1, where Fg is the gravitational attraction
and Fp is the radiation repulsive force. A dot denotes differ-
entiation with respect to time t .
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Introducing small perturbations ε′ and ε′′ in the Coriolis
and the centrifugal forces with the help of the parameters ϕ

and ψ respectively such that

ϕ = 1 + ε′, |ε′| � 1 and ψ = 1 + ε′′ |ε′′| � 1,

the system (1) now has the form

ẍ − 2ωẏϕ − ω̇ϕy = ω2xψ − μ1q(x − x1)

r3
1

− μ2(x − x2)

r3
2

,

ÿ + 2ωẋϕ + ω̇ϕx = ω2yψ − μ1qy

r3
1

− μ2y

r3
2

, (2)

z̈ = −μ1
qz

r3
1

− μ2
z

r3
2

.

The equations of motion of system (2) are non-integrable
differential equations with variable coefficients. We trans-
form (2) from (x, y, z, t) to (ξ, η, ζ, τ ). Following Luk’ya-
nov (1989a), we use the Meshcherskii’s (1952) transforma-
tion:

x = ξR(t), y = ηR(t),
dt

dτ
= R2(t),

r = ρ12R(t), ri = ρiR(t), (i = 1,2),

(3)

the Meshcherskii unified law (1952),

μ(t) = μ0

R(t)
, μ1(t) = μ10

R(t)
, μ2(t) = μ20

R(t)
,

μ(t) = μ1(t) + μ2(t)

where R(t) = √
αt2 + 2βt + γ : α,β, γ,μ0,μ10 and μ20

are constants, and the particular solutions of the Gylden-
Meshcherskii problem (Gylden 1884; Meshcherskii 1952)

ω(t) = ω0

R2(t)
, x1 = ξ1R(t), x2 = ξ2R(t),

C = ρ2
12ω0

(4)

The system (2) is reduced to the autonomous form:

ξ ′′ − 2ω0ϕη′ = ∂Ω

∂ξ
, η′′ + 2ω0ϕξ ′ = ∂Ω

∂η
,

ζ ′′ = ∂Ω

∂ζ

(5)

where

Ω = (ξ2 + η2)(ω2
0ψ + �)

2
+ �ζ 2

2
+ qμ10

ρ1
+ μ20

ρ2
,

ρ2
i = (ξ − ξi)

2 + η2 + ζ 2, (i = 1,2),

� = β2 − αγ = ω2
0(κ − 1)

ξ1 = −μ20
μ0

ρ12, ξ2 = μ10
μ0

ρ12 : ρ12 a constant, κ is an arbi-
trary dimensionless constant of a particular integral rμ =

κC2 (Gel’fgat 1973) of the Gylden-Meshcherskii problem
(Gylden 1884; Meshcherskii 1952), C is a constant of the
area integral, and prime denotes a differentiation with re-
spect to the new independent time τ . The relation ρ12μ0 =
κC2 connects ρ12 and the parameter κ .

Following Luk’yanov (1989a), we choose units for the
sum of the masses, distance and time, such that at initial
time t0,μ0 = f,ρ12 = 1,ω0 = C = 1, respectively.

Consequently

κ = β2 − αγ + 1, (6)

The ranges of variation of the parameter κ are as follows.

(i) If β2 − αγ = 0, we would have κ = 1
(ii) If β2 − αγ > 0, this implies 1 < κ < ∞

(iii) If β2 − αγ < 0, this implies 0 < κ < 1

These are obtained from the conditions that the distances
and masses are positive and R(t) is real.

Introducing the mass parameter υ , expressed as μ10
μ0

=
1 − υ,

μ20
μ0

= υ (Luk’yanov 1989a), where 0 < υ ≤ 1
2 and

where υ is the ratio of the mass of the smaller primary to the
total mass of the primaries.

The autonomized system (5) becomes

ξ ′′ − 2ϕη′ = ∂Ω

∂ξ
, η′′ + 2ϕξ ′ = ∂Ω

∂η
, ζ ′′ = ∂Ω

∂ζ

(7)

where

Ω = (ξ2 + η2)(ψ + κ − 1)

2
+ (κ − 1)ζ 2

2
+ qκ(1 − υ)

ρ1

+ κυ

ρ2
,

ρ1 =
√

(ξ + υ)2 + η2, ρ2 =
√

(ξ + υ − 1)2 + η2.

For κ = 1, system (7) is fully analogous to that of Devi and
Singh (1994). If further we ignore the centrifugal force, i.e.
ψ = 1, then the system (7) is fully analogous to that of Bhat-
nagar and Chawla (1979).

In the problem under consideration, we consider motion
only in the ξ–η plane, though other particular solutions of
the system (7), e.g. coplanar solutions L6,7 exist for κ > 1
(Bekov 1988; Luk’yanov 1989a; Singh and Oni 2010). In-
finitely remote solutions L±∞ (Luk’yanov 1988) exist for
ξ = η = 0 and ζ = ±∞ only for κ = 1, i.e. only for the first
Mescherskii law (1952).
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3 Location of equilibrium points of the autonomized
system

The equilibrium points are the solutions of the equations

∂Ω

∂ξ
= 0,

∂Ω

∂η
= 0

The particular solutions and/or stability of the restricted
three-body problem for the isotropic case of mass varia-
tion have been considered in different respects by Gel’fgat
(1973), Bekov (1988), Luk’yanov (1989a, 1990), and Singh
and Oni (2010).

For the perturbed case, the triangular points of the auton-
omized system are the solutions of (7), i.e.

(ψ + κ − 1)ξ − qκ(1 − υ)(ξ + υ)

ρ3
1

− κυ(ξ + υ − 1)

ρ3
2

= 0

and
(

ψ + κ − 1 − qκ(1 − υ)

ρ3
1

− κυ

ρ3
2

)
η = 0, η �= 0. (8)

Solving (8), we have

ρ1 =
(

qκ

ψ + κ − 1

) 1
3

, ρ2 =
(

κ

ψ + κ − 1

) 1
3

.

Hence, the coordinates of the triangular points are

ξ =
[

κ2/3(q2/3 − 1)

2(ψ + κ − 1)2/3
− υ + 1

2

]
,

η = ±
{

κ2/3(q2/3 + 1)

2(ψ + κ − 1)2/3
−

(
κ2/3(q2/3 − 1)

2(ψ + κ − 1)2/3

)2

− 1

4

} 1
2

(9)

where the positive sign corresponds to L4 and the negative
to L5. These points form simple triangles with the line join-
ing the primaries, different from the classical problem where
these points make equilateral triangles.

For the system of equations with variable coefficients, the
equilibrium points are determined (Luk’yanov 1990) from
the transformation (3) and the particular solutions (9) in the
form

x(i) = ξ (i)R(t), y(i) = η(i)R(t), i = 4,5 (10)

where ξ (i)(τ ), η(i)(τ ) are the libration points of the sys-
tem with constant coefficients. Consequently, the triangular
points L4,5 of the time dependent dynamical system (2) dif-
fer from those of the autonomized system (7) only by the
function R(t).

4 Stability of the triangular points of the autonomous
system

The stability of linear systems of ordinary differential equa-
tions with constant coefficients is determined by the eigen
values. Let the infinitesimal mass be displaced a little from
the equilibrium point by giving it a small displacement with
a small velocity. If its motion is a rapid departure from the
vicinity of the point, we can call such a position of the equi-
librium an “unstable one”; if, however, the body merely os-
cillates about the point, it is said to be a “stable position”.

We denote the equilibrium points and their positions as
L(ξ0, η0). Let a small displacement in (ξ0, η0) be (u, v).
Then we can write

ξ = ξ0 + u, η = η0 + v, (11)

Substituting these values in (7) we obtain the variational
equations

u′′ − 2v′ = (
Ω0

ξξ

)
u + (

Ω0
ξη

)
v,

v′′ + 2u′ = (
Ω0

ξη

)
u + (

Ω0
ηη

)
v

(12)

where the superscript 0 indicates that the partial derivatives
are evaluated at the equilibrium points (ξ0, η0).

In a computation of these derivatives, we will substitute
q = 1 − ε, ϕ = 1 + ε′,ψ = 1 + ε′′: |ε| � 1, |ε′| � 1, |ε′′| �
1 and neglect the second and higher order terms in ε, ε′, ε′′
and their products.

In the case of triangular points of the autonomized sys-
tem, we have

Ωo
ξξ = 1

4

(
3κ − 2κε + 6κυε + 5ε′′), (13)

Ωo
ηη = 1

4

(
9κ + 2κε − 6κυε + 7ε′′), (14)

Ωo
ξη =

(
3κ − 6κυ − 2κυε + 5ε′′ − 10υε′′

4

)

×
(

9κ − 8ε′′ − 4κε

3κ

)1/2

. (15)

Using the first two equations of system (12) and the above
derivatives, the characteristic equation in the triangular case
is

λ4 − (
3κ − 4 + 3ε′′ − 8ε′)λ2

+ 3

4
κ
(
9κ + 22ε′′ + 2κε

)
υ(1 − υ) = 0. (16)

The roots of (16) are given by

λ2
1,2 = −P ± √

D

2
(17)
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where

P = 4 − 3κ − 3ε′′ + 8ε′, D = P 2 − 4Q,

Q = 3κ

4

(
9κ + 22ε′′ + 2κε

)
υ(1 − υ) > 0.

Consequently, the roots of the characteristic equation de-
pend on the value of the mass parameter υ , the radiation
parameter ε, perturbations ε, ε′ and the constant κ . So the
nature of these roots is controlled by the constant κ and the
sign of the discriminant D, given by

D = 3κ
(
9κ + 22ε′′ + 2κε

)
υ2 − 3κ

(
9κ + 22ε′′ + 2κε

)
υ

+ 9κ2 − 24κ + 16 + (4 − 3κ)
(
16ε′ − 6ε′′) (18)

Since D is a monotonous function of υ in the interval
(0,1/2] and has values opposite in signs at the endpoints,
for 0 < κ < 10, there are many values of υ , say υCκ in the
interval 0 < υ ≤ 1

2 for which the discriminant is zero. We
consider the three regions of the value of υ coupled with the
changes in P which is solely due to κ .

1. When 0 < υ < υCκ ,P > 0,D > 0, in this case all λi (i =
1,2,3,4) are pure imaginary and given as λ1,2,3,4 =
±iΛn (n = 1,2) where

Λ1,2 =
√

1

2
(−P ± √

D) (19)

Consequently, the triangular point is stable in this case.
The solution is written (Szebehely 1967a, 1967b), as

u = A1 cosΛ1τ + c1 sinΛ1τ + A2 cosΛ2τ

+ c2 sinΛ2τ,

v = Ā1 cosΛ1τ + C̄1 sinΛ1τ + Ā2 cosΛ2τ

+ C̄2 sinΛ2τ,

(20)

where Ai, Āi , ci and C̄i(i = 1,2) are constants.
2. When P < 0,0 < υ < υCκ ,D > 0 and in this case the

roots are real and distinct and can be written as

λ1,2 = ±U1, λ34 = ±U2

where

U1,2 =
(

1

2
(P ± √

D)

) 1
2

. (21)

The general solution for real roots with the condition
P < 0,D > 0 can be represented as

u = A1e
U1τ + A2e

−U1τ + A3e
U2τ + A4e

−U2τ ,

v = c1A1e
U1τ + c1A2e

−U1τ + c2A3e
U2τ + c2A4e

−U2τ ,

(22)

where c1, c2,A1 and A2 are constants. The positive roots
induce instability at the triangular points.

3. When υCκ < υ ≤ 1
2 ,D < 0,P < 0,P > 0, the real parts

of two of the values of λ are positive and equal. There-
fore, the triangular point is unstable.

4. When υ = υCκ ,D = 0 the double roots give secular
terms in the solution of the equations of motion. There-
fore, the triangular point is unstable.

4.1 Critical mass parameter

The value of the mass ratio υ , when D = 0, denoted υCκ is
given by

υCκ = υ0κ + υrκ + υp1κ
+ υp2κ

(23)

where

υ0κ = 1

2
− 1

6κ
√

3

√
96κ − 9κ2 − 64,

υrκ = 2(24κ − 9κ2 − 16)

27κ
√

3
√

96κ − 9κ2 − 64
ε,

υp1κ
= 16(4 − 3κ)

3κ
√

3
√

96κ − 9κ
2 − 64

ε′,

υp2κ
= 4(78κ − 9κ2 − 88)

27κ2
√

3
√

96κ − 9κ2 − 64
ε′′.

Equation (23) represents the effects of the constant κ of
a particular integral of the Gylden-Meshcherskii problem,
perturbations and radiation on the critical mass values υCκ .
However, for κ = 1,2 the value of υ01,2 = 0.038520 and
it coincides with the classical value given by Szebehely
(1967a), but differs for 2 < κ < 10 and does not exist for
0 < κ ≤ 0.714531, κ = 4

3 and κ ≥ 10. In the absence of ra-
diation and perturbations (i.e. ε = ε′ = ε′′ = 0) and κ = 1,2,
the values υC1,2 fully coincide with the classical case of Sze-
behely (1967a).

If there is no perturbation in the centrifugal force,
(i.e.ε′′ = 0),

υCκ = υ0κ + υrκ + 16(4 − 3κ)

3κ
√

3
√

96κ − 9κ2 − 64
ε′. (24)

From (24), we find that υCκ < υ0κ . If υrκ = 0, then υCκ >

υ0. Thus, keeping the centrifugal force constant, in the ab-
sence of radiation of the bigger primary and 0.714532 ≤
κ < 4

3 , the Coriolis force is a stabilizing force, which agrees
with the result of Szebehely (1967b), but becomes a desta-
bilizing force, when 4

3 < κ < 10, and does not exist for,
0 < κ ≤ 0.714531, κ = 4

3 and κ ≥ 10.
If there is no perturbation in the Coriolis force, (23), be-

comes

υCκ = υ0κ + υrκ + 4(78κ − 9κ2 − 88)

27κ2
√

3
√

96κ − 9κ2 − 64
ε′′. (25)
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Here, we find that υCκ < υ0κ irrespective of whether υrκ =
0. So, keeping the Coriolis force constant and 0.714532 ≤
κ < 4

3 , the centrifugal force is a destabilizing force, but it
becomes stabilizing once κ is in the range 4

3 < κ ≤ 7, and

again destabilizing when 7 < κ < 10.

The critical mass values, υCκ , for the values of κ (κ =
0.714532,0.72,1, . . . ,9.952000) are

υC0.714532 = 0.498889 − 24.9788500ε + 322.9320ε′

− 186.96007ε′′,
υC0.720000 = 0.409910 − 0.29832496ε + 11.67358ε′

− 2.2338342ε′′,
υC0.750000 = 0.280104 − 0.1018899ε + 4.1920451ε′

− 3.0664033ε′′,
υC0.999900 = 0.038553 − 0.00892522ε + 0.6465822ε′

− 0.3390962ε′′,
υC1 = 0.038520 − 0.00891747ε + 0.6420578ε′

− 0.3388638ε′′,
υC1.1 = 0.015230 − 0.00343770ε + 0.35359290ε′

− 0.1669744ε′′,
υC1.3 = 0.000219 − 0.00004872ε + 0.03508002ε′

− 0.0135672ε′′,

(26)

υC4/3 = 0.000000 − 0.00000000ε + 0.00000000ε′

− 0.0000000ε′′,
(27)

υC1.34 = 0.000008 − 0.0000018ε − 0.00041253ε′

+ 0.00246017ε′′,
υC1..5 = 0.004132 − 0.0009221ε − 0.13278465ε′

+ 0.04303206ε′′,
υC1..8 = 0.022930 − 0.0052182ε − 0.26836631ε′

+ 0.06874816ε′′,
υC2 = 0.038520 − 0.00891747ε − 0.3210289ε′

+ 0.0713397ε′′,
υC3 = 0.116438 − 0.02980274ε − 0.4291595ε′

+ 0.0516580ε′′,
υC4 = 0.180857 − 0.17106674ε − 1.5396007ε′

+ 0.1069167ε′′,
υC5 = 0.234028 − 0.08726458ε − 0.4010457ε′

+ 0.0235181ε′′,
υC6 = 0.280104 − 0.10188998ε − 0.5240056ε′

+ 0.0097038ε′′,
υC7 = 0.322356 − 0.13663034ε − 0.5786697ε′

+ 0.0022963ε′′,

(28)

υC8 = 0.363917 − 0.18900383ε − 0.6804138ε′

− 0.0047250ε′′,
υC9 = 0.409910 − 0.29832496ε − 0.9338868ε′

− 0.0144118ε′′,
υC9.500 = 0.439437 − 0.45193517ε − 1.3281360ε′

− 0.0252423ε′′,
υC9.900 = 0.479821 − 1.37435213ε − 3.85032504ε′

− 0.0831860ε′′,
υC9.950 = 0.495897 − 6.81717495ε − 18.9878760ε′

− 0.4161217ε′′,
υC9.952 = 0.498973 − 27.0689614ε − 75.377677ε′

− 1.65284206ε′′.

(29)

The critical mass value υC1 , for the case κ = 1 fully coin-
cides with the relation obtained by Bhatnagar and Hallan
(1978) in the absence of radiation pressure of the bigger pri-
mary. Ignoring perturbations in the Coriolis and centrifugal
forces, in all the system of (26), (27), (28) and (29) above
shows that the radiation pressure of the bigger primary al-
ways has a destabilizing tendency and this agrees with the
result of Bhatnagar and Chawla (1979), Singh and Ishwar
(1999), AbdulRaheem and Singh (2006), and, Singh and Oni
(2010).

Let us now consider perturbing effects on the problem
influenced by radiation pressure and κ = 1. The graph of the
equation 36ε′ − 19ε′′ = 0 is the straight line POQ (Fig. 1),
which divides the plane (ε′, ε′′) into two parts, π1 and π2.
Standing at O and looking toward P, π1 is on our right, and
π2 on the left.

For the points belonging to π1,36ε′ − 19ε′′ > 0 and
υC1 < υ01 . This implies that the range of stability decreases.
For the points belonging to π2,36ε′ − 19ε′′ < 0 and υC1 <

υ01 . This also implies that the range of stability is decreas-
ing. For a point lying on the line, 36ε′ − 19ε′′ = 0 and

Fig. 1 Two parts of the (ε′, ε′′)-plane
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υC1 < υ01 . This again implies that the range of stability de-
creases. For points lying on the ε′-axis, ε′′ = 0; that is, there
is no perturbation in the centrifugal force. Then

υC1 = υ01 + υr1 + 16ε′

3
√

69
. (30)

Here we find that υC1 > υ01 . Thus, keeping the centrifugal
force constant in the absence or presence of radiation, the
Coriolis force remains a stabilizing force and confirms Sze-
behely’s (1967b) result.

For points lying on the ε′′-axis, ε′ = 0; that is, there is no
perturbation in the Coriolis force. Then

υC1 = υ01 + υr1 − 76ε′

27
√

69
. (31)

Here we find that υC1 < υ01 . So, keeping the Coriolis force
constant and in the absence or presence of radiation pres-
sure, the centrifugal force is always a destabilizing force.
In this case the radiation pressure of the bigger primary in-
creases the destabilizing tendency of the centrifugal force.
This confirms AbdulRaheem and Singh’s (2006) result in
the absence of radiation pressure of the smaller primary and
oblateness of both primaries.

We conclude that the triangular points of the autono-
mized system are stable for 0 < υ < υCκ ,0 < κ < 4

3 and
ε, ε′, ε′′ very small, and, unstable for υC ≤ υ ≤ 1

2 ,0 < κ <

10.

5 Stability of triangular points of the non-autonomous
system

Stability of non-autonomous solutions is related to the Lya-
punov Characteristic Numbers, which govern the long-
time asymptotic exponential behaviors of the solutions. The
analysis of the stability of the triangular libration points L4,5

of the non-autonomous system would solely depend on the
methods applied, since these libration points are themselves
time dependent, which means that a change in time would
result in a change in the positions of the libration points.
For example, using the concept of definition of the theorem
of Lyapunov (1956) and taking the limit as t is tending to
infinity, we have in the triangular case

lim
t→∞x(4,5)(t) = 1

2
lim

t→∞

[
κ2/3(q2/3 − 1)

(ψ + κ − 1)2/3
− 2υ + 1

]
R(t).

(32)

Hence,

lim
t→∞x(t) = ∞.

This at once proves the instability of the solutions x(t), and
similarly for y(t), according to the Lyapunov theorem, and
verifies the result of Luk’yanov (1990).

The relationships between the old and new independent
variable, t and τ based on Poincaré’s (1911) representation
of the angular velocity ω(t) are given (Singh and Oni 2010)
as

0 < lim
t→∞ τ < ∞ (33)

and

lim
t→∞

τ

t
= Γ < S2 (34)

where S = 2πκ , and finite.
Equation (33) implies that as t is approaching ∞, τ is

always approaching a finite value, and this confirms the re-
sult of Luk’yanov (1990), while (34) shows that limt→∞ τ

t

always approaches a non-negative finite value Γ .
The system of (7) with constant coefficients and the re-

ducible system are regular. The system (2) is reducible due
to the transformation (3). The reducible systems are regular
because the characteristic numbers are invariant with respect
to transformation, and consequently we can apply the theo-
rem of Lyapunov, using the Lyapunov Characteristic Num-
bers (LCN) on the stability of the perturbed motion to the
triangular steady-state solutions of the system (2). The cal-
culations of the Lyapunov characteristic numbers here are
limited to finding the maximum LCN. This produces an eas-
ily computed value that can be used as a metric to give a
qualitative indication of how stability varies over the solu-
tions. The calculation of the LCN as in Chetaev (1952) and
MaLklin (2004) is used here.

Calculating the LCN of the triangular solutions varying
with time with the consideration that as t → ∞, τ is ap-
proaching a finite value, we have

L4,5
[
x(t)

]

= − lim
t→∞

1

t
ln

∣∣∣∣
1

2

[
κ2/3(q2/3 − 1)

(ψ + κ − 1)2/3
− 2υ + 1

]
R(t)

∣∣∣∣ = 0

and similarly,

L4,5[y(t)] = 0. (35)

Thus, the Lyapunov characteristic number is zero for trian-
gular solutions; therefore, the stability or instability of the
perturbed motion cannot be determined directly from the tri-
angular libration points.

Using system (11), the particular solutions of the sys-
tem of equations with variable coefficients (2) can be rep-
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resented, given transformation (3) and solutions (20), by

x1 = A1 cosΛ1τR(t), x2 = C1 sinΛ1τR(t),

x3 = A2 cosΛ2τR(t), x4 = C2 sinΛ2τR(t),

x5 = ξ0R(t), y1 = Ā1 cosΛ1τR(t),

y2 = C̄1 sinΛ1τR(t), y3 = Ā2 cosΛ2τR(t),

y4 = C̄2 sinΛ2τR(t), y5 = η0R(t)

(36)

where ξ0, η0 are coordinates of the infinitesimal mass.
The solutions (36) correspond to the region where 0 <

υ < υCκ ,P > 0 i.e. κ < 4
3 − ε′ + 8

3ε.
Similarly, the particular solutions of (2) with conditions

0 < υ < υCκ ,P < 0 using (11) and solutions (22) can be
represented as

x4 = e±U1τR(t), x5 = e±U2τR(t), x6 = ξ0R(t)

y4 = c1e
±U1τR(t), y5 = c2e

±U2τR(t), y6 = η0R(t).

(37)

These solutions (37) correspond to the region where 0 <
4
3 − ε′ + 8

3ε < κ . We have chosen these regions since it
contains the region where the triangular points for the au-
tonomized equations are stable, as well as where they are
unstable. This region is solely determined by the parameter
κ , and perturbations in the Coriolis and centrifugal forces.
Since in both cases 0 < υ < υCκ , (D > 0).

For the solutions (36), their LCN’s are

L(x1) = − lim
t→∞

1

t
ln | cosΛ1τR(t)| = 0.

Hence

L(x1) = L(x2) = L(x3) = L(y1) = L(y2) = L(y3) = 0.

(38)

In view of the particular solutions (37), their LCN’s are

L(x4) = − lim
t→∞

1

t
ln |e±U1τR(t)| = ∓U1Γ.

Thus

L(x4) = ∓U1Γ, L(x5) = ∓U2Γ, L(x6) = 0 (39)

Similarly

L(y4) = ∓U1Γ, L(y5) = ∓U2Γ, L(y6) = 0. (40)

Hence the LCN are positive for solutions with negative ex-
ponents, negative for solutions with positive exponents and,
zero for solutions with imaginary exponents and constant
solutions. We make the following observations.

1. If roots of characteristic equation corresponding to tri-
angular solutions of the autonomized equations are pos-
itive, then the LCN of the solutions varying with time
is negative, and consequently the solutions are unstable
according to the Lyapunov theorem.

2. If roots of characteristic equation corresponding to tri-
angular solutions of the autonomized equations are pure
imaginary numbers, then the LCN of the corresponding
solution varying with time is zero, and in this case the
stability or instability of the solutions cannot be deter-
mined.

3. If roots of characteristic equation corresponding to tri-
angular solutions of the autonomized equations are neg-
ative, then the LCN of corresponding solutions varying
with time is positive and consequently the solutions are
stable.

6 Discussion

Equation (2) of the perturbed motion are different from
those obtained by Gel’fgat (1973), Bekov (1988), and
Luk’yanov (1990) due to the presence of radiation pres-
sure of the bigger primary and perturbations in the Cori-
olis and centrifugal forces. However, if these are ignored,
(2) will fully coincide with those as used by them. The po-
sitions of the triangular points of the autonomized system,
L4,5, in system (9) are affected by the factors which ap-
pear due to radiation pressure of the bigger primary, the
perturbation in the centrifugal force and the parameter κ . If
the perturbation is ignored, i.e., ψ = 1, the points are fully
analogous to the photogravitational case of Bhatnagar and
Chawla (1979). If, further, we ignore the radiation effect
of the bigger primary, i.e. q1 = 1, the points become fully
analogous to the classical case. The characteristic equation
(16) of triangular points of the autonomized system differs
from that obtained by Bhatnagar and Hallan (1978) by the
presence of the radiation factor of the bigger primary and
the parameter κ . That of Bhatnagar and Chawla (1979) dif-
fers also by κ and the perturbations in the Coriolis and the
centrifugal forces, while that of Devi and Singh (1994) dif-
fers only by the presence of the constant κ of a particular
integral of the Gylden-Mescherskii problem (Gylden 1884;
Meshcherskii 1952). If the bigger primary is nonradiating,
and there are no perturbations in the Coriolis and centrifu-
gal forces, with κ = 1, (16) corresponds to the characteristic
equation of the classical restricted problem.

Equation (23) represents the effects of the constant κ of
a particular integral of the Gylden-Meshcherskii problem,
perturbations and radiation on the critical mass values υCκ

of the autonomized restricted problem. For κ = 1, the criti-
cal value υC1 differs from that obtained by Devi and Singh
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(1994) in the sense that here, the radiation coefficient of the
bigger primary always has a destabilizing tendency. When
perturbations are ignored, (i.e. ε′ = ε′′ = 0) and κ = 1,
the value υC1 verifies the results of Bhatnagar and Chawla
(1979).

The critical mass value υC1 , for the case κ = 1 fully co-
incides with the relation obtained by Bhatnagar and Hal-
lan (1978) in the absence of radiation pressure of the big-
ger primary. Ignoring perturbations in the Coriolis and cen-
trifugal forces, in the whole system of (26), (27), (28) and
(29), shows that the radiation pressure of the bigger pri-
mary always has a destabilizing tendency and this agrees
with the result of Bhatnagar and Chawla (1979), Singh and
Ishwar (1999), AbdulRaheem and Singh (2006), and, Singh
and Oni (2010). We observe that, for, κ = 1,2 the value of
υ01,2 = 0.038520, and this coincide with the classical value
given by Szebehely (1967a).

When κ is in the range 0.714532 ≤ κ < 1.333333 (sys-
tem (26)), the Coriolis force always has a strong stabilizing
tendency that counters the destabilizing effect of the radi-
ation pressure of the bigger primary and that of the cen-
trifugal force. In this range of κ , every υCκ > υ0κ , |ε| �
1, |ε′| � 1, |ε′′| � 1, so that the region of stability of the
triangular points of the autonomized system increases. For
κ = 4

3 , the critical mass value υC4/3 is zero, and so are all
the parameters involved. For the range 1.333333 < κ ≤ 7
(system (28)), the centrifugal force has a stabilizing ten-
dency, while the radiation pressure and the Coriolis force
both have destabilizing tendency. In this range of κ , every
υCκ < υ0κ , |ε| � 1, |ε′| � 1, |ε′′| � 1, so that region of sta-
bility decreases. Further, in the range 8 ≤ κ ≤ 9.952 (system
(29)), the Coriolis and centrifugal forces κ , and the radiation
pressure, all have destabilizing effects. In this range of κ , the
region of stability decreases fast.

By keeping the centrifugal force constant (i.e., ε′′ = 0),
(23) gives the relationship among the critical mass value,
radiation coefficients and to the change ε′ in the Corio-
lis force. Here for 0.714532 ≤ κ < 1.333333, the Coriolis
force has a stronger stabilizing force, which confirms the re-
sult of Szebehely (1967b), but becomes destabilizing when
4
3 < κ < 10, and does not exist for 0 < κ ≤ 0.714531, κ = 4

3
and κ ≥ 10. Also, if the Coriolis force is kept constant (i.e.,
ε′ = 0), (23) provides the relationship of the critical mass
value, radiation coefficients and to the change ε′′ in the cen-
trifugal force. In the range 0.714532 ≤ κ < 4

3 , the centrifu-
gal force is a destabilizing force, does not exist for κ = 4

3 ,
has a stabilizing tendency when 4

3 < κ < 8, and again is
destabilizing for 8 ≤ κ ≤ 9.952. We note that the region
of stability does not exist when 0 < κ ≤ 0.714531, κ = 4

3
and κ ≥ 10, so that when the restricted problem of variable
masses evolves into the problem with constant masses, the
region of stability of the triangular points does not exist for
these values of κ . The overall effect is that the increase,

decrease or non-existence in the region of stability of the
triangular points depends on the constant κ of a particular
integral of the Glyden-Mescherskii problem (Gylden 1884;
Meshcherskii 1952).

Equation (33) implies that as t is approaching ∞, τ is al-
ways approaching a finite value, and this validates the result
of Luk’yanov (1990). Further, that the limits of the solutions
x(t) and y(t) approaches infinity, as t is approaching infin-
ity in (32), verifies the result of Luk’yanov (1990), that these
solutions are unstable.

7 Concluding remarks

The equations of the system (2), which govern the motion
of an infinitesimal mass in the gravitational field of two
variable mass bodies, under the influence of small pertur-
bations in the Coriolis and centrifugal forces, together with
the effects of radiation pressure of the bigger primary, are
non-integrable differential equations with variable coeffi-
cients. Therefore, with the help of the particular solutions
(4) of the Gylden-Meshcherskii problem (Gylden 1884;
Meshcherskii 1952), the unified Meshcherskii law (1952)
and a Meshcherskii transformation (1952), the system (2) is
reduced to a system of equations with constant coefficients.
Hence, the search for the equilibrium solutions L4,5 of (2)
boils down to that of the system (7). Analogous triangular
points for the system of equations with variable coefficients
(L4,5)R(t) are obtained with the help of the transformation
(3) and the solutions L4,5 of system (7).

The triangular points of the autonomized system are
found to be stable for 0 < υ < υCκ when κ < 4

3 − ε′ + 8
3ε,

and unstable for 0 < υ < υCκ ,
4
3 − ε′ + 8

3ε < κ < 10, and
υc ≤ υ ≤ 1

2 for any κ in the range 0 < κ < 10, where υCκ

is given by (23). We observed further that the stabilizing or
destabilizing tendency of the Coriolis and centrifugal forces
can be altered by κ , while the destabilizing tendency of the
radiation pressure cannot be altered by this constant, though
its presence can cause the stabilizing or destabilizing ten-
dency of the Coriolis and centrifugal forces, and the destabi-
lizing effects of the radiation pressure, to be strong or weak.
The condition that the region of stability is increasing, de-
creasing or does not exist, depends on this constant.

For the stability of the triangular points varying with
time, for some initial conditions, we observe according to
the Lyapunov theorem, that solutions with negative expo-
nents consequently having a positive LCN are stable, those
with positive exponents having a negative LCN are unstable,
while the stability or instability of constant and pure oscilla-
tory solutions having zero LCN’s cannot be determined. In
the case when the solutions have zero LCN’s, the region of
stability or instability does not exist due to κ .
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We further observe that as κ increases, the LCN of solu-
tions with negative exponents increases. On the other hand,
for solutions with positive exponents the range of instability
of these solutions increases.

Since the stability of the triangular equilibrium solutions
of the non-autonomous system cannot be determined when
0 < υ < υCκ , but since it has unstable solutions in the same
range of the mass parameter due to a change in the range
of the constant κ , we conclude that motion around the trian-
gular points for the perturbed photogravitational restricted
three-body problem with variable masses is in general un-
stable.
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