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Abstract In this paper we study the asymptotic solutions of
the (N + 1)-body ring planar problem, N of which are finite
and ν = N − 1 are moving in circular orbits around their
center of masses, while the N th + 1 body is infinitesimal.
ν of the primaries have equal masses m and the N th most-
massive primary, with m0 = βm, is located at the origin of
the system. We found the invariant unstable and stable man-
ifolds around hyperbolic Lyapunov periodic orbits, which
emanate from the collinear equilibrium points L1 and L2.
We construct numerically, from the intersection points of the
appropriate Poincaré cuts, homoclinic symmetric asymp-
totic orbits around these Lyapunov periodic orbits. There are
families of symmetric simple-periodic orbits which contain
as terminal points asymptotic orbits which intersect the x-
axis perpendicularly and tend asymptotically to equilibrium
points of the problem spiraling into (and out of) these points.
All these families, for a fixed value of the mass parameter
β = 2, are found and presented. The eighteen (more geo-
metrically simple) families and the corresponding eighteen
terminating homo- and heteroclinic symmetric asymptotic
orbits are illustrated. The stability of these families is com-
puted and also presented.
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1 Introduction and equations of motion

Poincaré (1957), while studying the so-called Poincaré map
associated with an unstable periodic orbit, defined a ho-
moclinic point as a point whose orbit is asymptotic to the
hyperbolic fixed point in both directions. Also, Strömgren
in 1935 calculated heteroclinic asymptotic orbits connect-
ing the two triangular critical points in the classical re-
stricted three-body problem. After that, many papers have
been written about stable and unstable invariant manifolds
and homoclinic, heteroclinic, asymptotic orbits associated
with an equilibrium point or with a Lyapunov periodic or-
bit (among others Deprit and Henrard 1965; Conley 1968;
McGehee 1969; Llibre and Simó 1980; Llibre et al. 1985;
Gómez et al. 1988). The interest in these concepts has been
revived recently due to the fact that stable and unstable
manifold tubes associated with bounded orbits around the
collinear libration points L1 and L2, provide a framework
for understanding dynamical phenomena such as the con-
duction particles to and from the smaller primary body and
between primaries for separate three-body systems (for de-
tails see Koon et al. 1999, 2001b, 2001a; Gómez et al. 2004).

Our goal in this paper is to study the asymptotic solutions
around periodic orbits and around the equilibrium points of
the planar (N + 1)-body ring problem. We will calculate the
invariant stable and unstable manifolds and the correspond-
ing homoclinic asymptotic orbits around the Lyapunov pe-
riodic solutions as well as the homo- and heteroclinic orbits
associated with the equilibrium configurations of this prob-
lem.

The planar (N + 1)-body ring problem is a two degrees
of freedom problem and describes the motion of an infini-
tesimal particle attracted by the gravitational field of ν + 1
primary bodies (N = ν + 1). We consider a central primary
body of mass m0 = βm which is located at the center of
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Fig. 1 The positions of the primaries and the distribution of the 35
equilibrium points in the (8 + 1)-body ring problem for β = 2

a regular of ν-polygon (the origin of the coordinate system;
see Fig. 1) and mi , i = 1, . . . , ν peripheral primaries of equal
mass m which are located at the vertices of this regular poly-
gon, which is rotating in its own plane about the center with
a constant angular velocity.

The equations of motion of the infinitesimal mass, of
the (N + 1)-body ring problem, in the usual dimension-
less rectangular rotating coordinate system are written as
(Kalvouridis 1999),
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is the angle formed between consecutive periph-
eral primaries. The distances of the particle from the central
primary and from each peripheral ones are correspondingly

r2
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while the ν = N − 1 peripheral primary bodies are placed at
positions (xi, yi):

xi = 1

M
cos[2(i − 1)θ ], yi = 1

M
sin[2(i − 1)θ ]. (5)

Here, β = m0/m i.e. is the ratio of the central mass m0 to
one of the other equal primaries, and the unit of length is
chosen in such a way that the distance between the primaries
is equal to 1.

The energy (Jacobi) integral of this problem is given by
the expression

ẋ2 + ẏ2 = 2� − C, (6)

where C is the Jacobi constant.

2 Linearization around the equilibrium configurations

In the present work we study the (N +1)-body ring problem
when the number ν of peripheral primaries is ν = N −1 = 7
and the mass parameter β of the problem is β = m0/m = 2.

2.1 Collinear equilibrium points Li, i = 1, . . . ,5

The linearized equations for infinitesimal motions near the
collinear equilibrium points are

ẋ = Ax, x = (x, y, ẋ, ẏ)T , (7)

where x is the state vector of the ninth particle with respect
to the equilibrium points and the time-independent coeffi-
cient matrix A is

A =

⎛
⎜⎜⎝
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0 A22 −2 0

⎞
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and x0 is the abscissa of the collinear equilibrium point as
solution of the equation,

x0 − 1
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The characteristic equation of the linear system (7) is

λ4 + (4 − A11 − A22)λ
2 + A11A22 = 0. (11)
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Fig. 2 Left: the positive
quantity λ at the collinear
equilibrium points Li ,
i = 1,2,4,5 as the mass
parameter β varies. Right: the
eigenfrequencies at the libration
point L3

In the present ring problem, where the number of the pe-
ripheral primaries is ν = 7, we have five collinear equilib-
rium points for 0 < β < βcrit

4 = 3.10072 (the system has 5ν

collinear and non-collinear equilibrium points; see Fig. 1).
For β = βcrit

4 the equilibrium point L4 coincides with the
L5 and the collinear equilibria are four (4ν equilibria as
a whole) and finally for β > βcrit

4 the equilibrium points
L4,5 do not exist (the system now has 3ν collinear and non-
collinear equilibrium points).

For the equilibria L1, L2 and L4 the characteristic equa-
tion (11) has one real and one imaginary pair of eigenvalues,
which have the form ±λ and ±iρ where λ and ρ are the
positive constants

λ = 1√
2

√
A11 + A22 − 4 + K,

ρ = 1√
2

√
4 − A11 − A22 + K,

(12)

where

K =
√

(A11 − 4)2 − 2(A11 + 4)A22 + A2
22. (13)

For the collinear equilibrium point L3 the characteristic
equation (11) has, when 0 < β < βcrit

3 = 585.4957, four
conjugate complex roots, while when β ≥ βcrit

3 it has the
imaginary roots λ1,2 = ±iω1 and λ3,4 = ±iω2 (see Fig. 2,
right frame). For the last collinear equilibrium point L5

(11) has four real roots (when 0 < β ≤ βcrit
5(1) = 0.43228),

four conjugate complex roots (when βcrit
5(1) < β < βcrit

5(2) =
3.07492) and four real roots again (when βcrit

5(2) ≤ β < βcrit
4 ).

For β > βcrit
4 , as we have already mentioned, the equilibrium

points L4 and L5 do not exist.
From the above eigenvalues we conclude that, in the

present problem, all the collinear equilibrium points are un-
stable except L3 where it is stable for β ≥ βcrit

3 contrary
to the classical restricted three-body problem, where all the

collinear equilibrium points are unstable for every value of
the mass ratio μ.

In the left frame of Fig. 2 we present the positive quantity
λ (12) at the collinear equilibrium points L1,2,4,5 as the mass
parameter of the problem β varies. In the right frame of the
same figure, the variation of the eigenfrequencies, or mean
motions ω1, ω2, at the equilibrium point L3 are illustrated.

The corresponding eigenvectors of matrix A can be nor-
malized to 1,

u1 = (1,−σ,λ,−λσ)T , w1 = (1,−iτ, iν, ντ )T ,

u2 = (1, σ,−λ,−λσ)T , w2 = (1, iτ,−iν, ντ )T ,
(14)

where σ and τ are the constants
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In Fig. 6 we present the zero velocity curves of the (8 + 1)-
body ring problem for β = 2 using for Jacobi constant C

the values of the energy of the collinear equilibrium points
of the problem. For C = CL5 = 7.27932 (similarly for C =
CL3 = 6.98058) zero velocity curve around the equilibrium
point L5 (similarly around L3) does not exist because the L5

(respectively the L3) is a local minimum of the zero velocity
surface. In order to plot the zero velocity curve around the
equilibrium point L5 we took, in the third frame of Fig. 6,
the Jacobi constant C to be just larger than CL5 . The same
we did in the fifth frame where C is just larger than CL3 .
The light gray color corresponds to areas where no motion
is possible (for details see Kalvouridis 1999).

It is known, in the restricted three-body problem, that
from collinear equilibrium points Li , i = 1,2,3, emanate
the families a (from L2), b (from L3) and c (from L1) (ac-
cording to the classical nomenclature). For Jacobi constants
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C just below of CLi
hyperbolic periodic orbits around each

Li exist, called Lyapunov orbits. Similarly, in the (8 + 1)-
body ring problem, emanates the Lyapunov family f14 from
the collinear equilibrium point L1 and the family f13 from
L2, as we will see in Fig. 3 of next section.

Using the eigenvectors (14) we will find the invariant
unstable and stable manifolds around the above hyperbolic
Lyapunov periodic orbits which emanate from these equilib-
ria.

2.2 Lagrangian equilibrium points out of x-axis

To study analytically the solutions in the neighborhood of
the equilibrium configuration Li and LS

i , i = 6,7, . . . ,20
(see Fig. 1), we can transfer the origin at Li (LS

i ), and we can
linearize the equations of motion as in the previous subsec-
tion. But due to the formulation of the problem, the system
has symmetry: (a) with respect to the line from the central
primary (origin) to any peripheral primary (i.e. the x-axis)
and (b) to the line from the central primary to the bisector
between two peripheral primaries (see Fig. 1, dotted line).
Due to these symmetries all the equilibrium points have to
be placed on those lines. So on the x-axis, for β = 2, we
have the equilibrium points Li , i = 1, . . . ,5, while on the
bisector line between the primaries m1 and m2 we have the
collinear, with respect to this line, equilibria L17,18,20 and
LS

6,9; then on the next bisector between m2 and m3 lie the

L13,14,15 and LS
11,12 and so on (see Fig. 1).

The five groups of equilibrium points which exhibit the
same behavior, with respect to linear stability, are

(a) L1,L9,L
S
9 ,L12,L

S
12,L16,L

S
16,

(b) L2,L6,L
S
6 ,L11,L

S
11,L19,L

S
19,

(c) L3,L7,L
S
7 ,L15,L

S
15,L20,L

S
20,

(d) L4,L8,L
S
8 ,L14,L

S
14,L18,L

S
18,

(e) L5,L10,L
S
10,L13,L

S
13,L17,L

S
17.

In the previous subsection we studied the stability of the
collinear equilibrium points Li , i = 1, . . . ,5 and due to the
symmetries we have, actually, already studied the stability
for all the equilibrium points out of the x-axis. So, all the
equilibrium points of this problem are unstable, for every
value of the mass parameter β for which they exist, except
the L3, L7, LS

7 , L15, LS
15, L20 and LS

20, which are stable for
β ≥ βcrit

3 .
In that last case we have a solution with “short” and

“long” period terms corresponding to large and small val-
ues of the eigenfrequencies ω1, ω2 (for details see p. 258 of
Szebehely 1967).

3 Asymptotic orbits around equilibrium points

In this section we present all the families of simple sym-
metric periodic orbits (i.e. having only two both perpen-

Fig. 3 Families of simple symmetric periodic orbits where their ter-
mination orbits are asymptotic, in the (8 + 1)-body ring problem for
β = 2

dicular, intersections with the x-axis) for β = 2, where
their termination members are asymptotic orbits to equilib-
rium points of the problem spiraling into (and out of) these
points. We found decades of such families and we present
the eighteen more geometrically simple of them, named fi ,
i = 1, . . . ,18, as well as the asymptotic orbits which are as-
sociated to these families.

In Fig. 3 we present the network of these eighteen fami-
lies while the heavy red lines indicate their horizontal stable
arcs. The small circles are the positions of the five collinear
equilibrium points and the gray color corresponds to areas
where no motion is possible.

All the characteristic curves of these families, as we see
in this figure, spiral from one or both sides around the points,
in the (x0,C) plane, where they have C = CL3 or C = CL5 .
These are the natural termination points near areas I–VI,
which are presented in Fig. 3. Details of the areas of these
points are illustrated in the six frames of Fig. 4. Typical
terminating asymptotic orbits of these eighteen families are
plotted in Fig. 5, while data of some of these orbits are pre-
sented in Table 1.

Two of these families have as terminating members
homoclinic asymptotic orbits at the collinear equilibrium
points L3 and L5. Specifically, family f4 from one side has
as a termination member a homoclinic asymptotic orbit at
the collinear equilibrium point L3 and from the other side
ends with a heteroclinic asymptotic orbit at the equilibrium
points L7 and LS

7 . Contrarily, family f15 starts and ends
with a homoclinic asymptotic orbit at the collinear equilib-
rium point L5.
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Fig. 4 Zooming in around the
areas I, II, III, IV, V and VI of
Fig. 3

Two other families emanate from equilibrium points,
namely, the family f14 emanates from the collinear equilib-
rium point L1 and ends with a heteroclinic asymptotic orbit
at the equilibrium points L17 and LS

17, while family f13 em-
anates from L2 and ends with a heteroclinic asymptotic orbit
at L20 and LS

20.

As well, family f2 from one side starts with a hetero-
clinic asymptotic orbit at L15 and LS

15, while the other side

continues out of the frame of Fig. 3 for smaller values of the
Jacobi constant C. Similarly, family f7 from one side starts
with a heteroclinic asymptotic orbit at L7 and LS

7 while the

other side continues for smaller C.
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Table 1 Data of some asymptotic orbits illustrated in Fig. 5

Family x0 xT/2 ẏT /2 C T/2 Stability Orbit

f1 −2.93997091 1.99930414 −0.70829296 6.98057737 19.45426383 U Heteroclinic at L20,L
S
20

f2 −2.55991161 0.78051638 −0.78805488 6.98057953 16.39918836 U Heteroclinic at L15,L
S
15

f4 −2.10553344 −1.58083557 0.00000007 6.98057667 19.33053956 U Homoclinic at L3

f5 −1.31961525 −0.41723618 −1.03537365 6.98058296 16.80818734 U Heteroclinic at L7,L
S
7

f13 1.45658367 1.99930414 −0.70829350 6.98057663 17.41913222 U Heteroclinic at L20,L
S
20

f14 0.58387238 0.71877558 −0.40985792 7.27931806 11.02592491 U Heteroclinic at L17,L
S
17

f15 0.51279332 −0.73403890 0.00000004 7.27931806 13.89829146 U Homoclinic at L5

f16 0.52001479 −0.65721568 −0.16743922 7.27931809 14.91087210 U Heteroclinic at L13,L
S
13

f17 0.08775510 −0.98493340 −0.30832720 7.27931818 10.67219854 U Heteroclinic at L10,L
S
10

Table 2 Terminating heteroclinic orbits

Family One side of the family Other side

f3 at L7,L
S
7 at L7,L

S
7

f5 at L7,L
S
7 at L15,L

S
15

f6 at L7,L
S
7 at L20,L

S
20

f8 at L7,L
S
7 at L15,L

S
15

f9 at L15,L
S
15 at L15,L

S
15

f10 at L7,L
S
7 at L7,L

S
7

f11 at L15,L
S
15 at L15,L

S
15

f12 at L15,L
S
15 at L20,L

S
20

f16 at L7,L
S
7 at L13,L

S
13

f17 at L10,L
S
10 at L10,L

S
10

f18 at L10,L
S
10 at L10,L

S
10

The first family f1 starts with a heteroclinic asymptotic
orbit at L20 and LS

20 and ends on the zero velocity curve.
All the rest of the families have as terminating members

heteroclinic orbits at various equilibrium points out of the
x-axis, as presented in Table 2.

We note here that a homoclinic orbit related to an equilib-
rium point L or to a periodic orbit P is an orbit that tends to
L (or to P ) for t → ±∞, while a heteroclinic orbit “joins”
two equilibrium points or two periodic orbits.

The majority of the symmetric periodic orbits of the fam-
ilies we found is unstable, but from Figs. 3 and 4 we can
see that small arcs of stable periodic orbits exist (heavy red
lines). The termination of these eighteen families have a
characteristic behavior. As the period tends to infinity, the
energy of the orbits oscillates in a small shrinking interval
around the energy of the asymptotic orbit which is the en-
ergy of the equilibrium point (L3(5)).

At each change in the sign of the derivative of the energy,
the stability of the orbit changes. This type of termination
has been called a ‘blue sky catastrophe’ at first by Abraham
(1975) and later by Devaney (1977), who in his paper writes:
Let Xτ be a one-parameter family of smooth vector fields

depending continuously on a real parameter τ . Suppose that
for τ < τ0, Xτ has a closed orbit γτ and that the γτ also
depend continuously on τ . We say that Xτ0 admits a blue sky
catastrophe along γτ if the periods of the γτ tend to infinity
as τ approaches τ0, i.e. the closed orbits disappear into the
“blue sky”.

4 Asymptotic orbits around Lyapunov periodic orbits

The contours of the surface (6) for zero velocity provide the
zero velocity curves of the (8 + 1)-body ring problem. In
Fig. 6 we present these zero velocity curves for β = 2 and
for values of the Jacobi constant C exact or very close to the
values of the five collinear equilibrium points. Especially, in
the first, second and fourth frame we plot the zero velocity
curves for C = CL1 , C = CL4 and C = CL2 , respectively. In
the third and fifth frame we illustrate the zero velocity curves
for C just bigger than CL5 and CL3 respectively, in order to
create zero velocity curves around the equilibrium points L5

and L3. For C = CL5 and C = CL3 the small islands around
L5 and L3 do not exist. The zero velocity curves in Fig. 6
are classified from the bigger (first frame) to smaller (last
one) value of C. The red point is the central primary, the
blue ones the peripheral primaries and the green points are
the equilibrium points of the problem. The light gray color
corresponds to areas where no motion is possible.

For values of the Jacobi constant C greater than or equal
to CL1 , the infinitesimal ninth body is free to move only in
isolated regions where the central body or one peripheral
primary exists (first frame of Fig. 6). But for C just less than
CL1 a “neck” around L1 (and of course around L9, L12, etc.;
see group (a) in Sect. 2.2) is created and now the small body
can move from the central primary body to the peripherals
and vice versa. This region, as the Hill’s region (keeping the
same terminology as in the restricted three-body problem),
corresponding to such values of the Jacobi constant, con-
tains “necks” around the equilibrium points.
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Fig. 5 Asymptotic orbits from the 18 families plotted in Fig. 3. Last two frames: details of orbits from f4 and f14 families correspondingly. In
each frame the equilibrium points around which these asymptotic orbits exist, are marked. Data of some of these orbits are presented in Table 1.
The red point is the central primary, the blue ones the peripheral primaries and the green ones the equilibrium points of the problem
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Fig. 6 Zero velocity curves of
the (8 + 1)-body ring problem
for β = 2. The Jacobi constant
C is, from the first to fifth frame
(from the bigger to smaller
values of C), CL1 = 7.3919,
CL4 = 7.37704, CL5 � 7.3,
CL2 = 7.22324, CL3 � 6.99,
respectively. The red point is the
central primary, the blue ones
are the peripheral primaries and
the green ones the equilibrium
points of the problem. The light
gray color corresponds to areas
where no motion is possible

As we saw in the previous section, family f14 of sym-
metric periodic orbits which emanate from the equilibrium
point L1 contains hyperbolic Lyapunov orbits for C < CL1 .

In this section we have done a systematic numerical com-
putation of the invariant unstable W u

L1p.o.
manifolds asso-

ciated with these Lyapunov periodic orbits and the corre-
sponding homoclinic asymptotic orbits which exist around
them.

For values of the Jacobi constant C greater than or equal
to CL2 , the infinitesimal body is free to move only in the
white internal region of the fourth frame of Fig. 6 and can-
not move out of this. When C is just less than CL2 a “neck”
around L2 (and of course around L6, L11 etc.; see group (b)
in Sect. 2.2) is created and now the small body can move out
of the bodies’ region and around them. Family f14 of sym-
metric periodic orbits emanates from the equilibrium point
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Fig. 7 Left: zero velocity curves and a Lyapunov periodic orbit around the equilibrium point L1 for C = 7.350092. Middle: the unstable manifolds
W u

L1p.o. of this Lyapunov periodic orbit. Right: details of the unstable manifolds

L1 and contains hyperbolic Lyapunov orbits for C < CL2 .
And in this case we found homoclinic asymptotic orbits
around these Lyapunov periodic orbits.

We note that if we know the unstable manifold of a Lya-
punov orbit, then the corresponding stable manifold is ob-
tained using the symmetric property of the equations of the
problem. The equations of motion of the (N + 1)-body ring
problem, as in the classical three-body one, have the prop-
erty that if x = x(t), y = y(t) is a solution, then x = x(−t),
y = −y(−t) is also a solution. This symmetry follows from
inspection of the terms occurring in the differential equa-
tions (1), where if we substitute x → x, y → −y, ẋ → −ẋ,
ẏ → ẏ, ẍ → ẍ and ÿ → −ÿ, the equations remain un-
changeable, a fact that verifies the preceding statement.

Using the analysis of Deprit and Henrard (1969), or the
analysis of Llibre et al. (1985), or the purely numerical
method presented by Simó and Stuchi (2000), we can deter-
mine the invariant unstable manifold W u

Lip.o.
emerging from

each unstable Lyapunov orbit close to any of the collinear
equilibrium points L1 and L2. It is known (Conley 1968)
that unstable (and stable W s

p.o.) manifolds of these Lyapunov
orbits are two dimensional, locally diffeomorphic to cylin-
ders (e.g. Fig. 7, third frame). In this way we compute the
surface of section of the invariant manifold with the plane
y = 0 one or two or more times, and obtain a closed curve
which is diffeomorphic to a circle (e.g. first frame of Fig. 8).
We call this intersection the (first or second, etc.) “cut” of
W u

Lip.o.
with the appropriate plane.

In the first frame of Fig. 7 we present the zero veloc-
ity curves of the problem for C = 7.350092, i.e. just a
smaller value than the energy of the collinear equilibrium
point CL1 = 7.3919 where a small “neck” around L1 has
been created. A hyperbolic Lyapunov periodic orbit around
the equilibrium point is also plotted. This Lyapunov peri-
odic orbit belongs to the family f14, which emanates from

the collinear equilibrium point L1 as we have already men-
tioned in the previous section.

In the next frame in the same figure we illustrate the
position space projection of the unstable manifold W u

L1p.o.

(orange-green tube) until the first intersection with the
Poincaré section at y = 0. Details of this unstable manifold
are presented in the third frame of the same figure.

Then we calculated the first Poincaré cut of the left (or-
ange) unstable manifold W u

L1p.o. with the plane y = 0 for the
same value of the Jacobi constant and we plot it (line C3) in
the first frame of Fig. 8. This line has no intersection with
the line ẋ = 0. For smaller values of C than C3 the first
Poincaré cuts have been shrunk (lines C2 and C1), while
for larger values of C we have the lines C4 and C5. So, for
C = 7.30542191 the first Poincaré cut has two intersections
with the ẋ = 0, named A and B and we will call them homo-
clinic points, since they are initial conditions for homoclinic
asymptotic orbits around the Lyapunov periodic orbit with
the same energy.

Similarly, we plot, in the second frame of Fig. 8, the
first Poincaré cuts of the right (green) unstable manifold
W u

L1p.o. with the plane y = 0 for the same value of the Ja-
cobi constant Ci , i = 1, . . . ,5 as in the previous frame. We
observe that for C = C4 and C = C5 we have homoclinic
points. We choose only the homoclinic points D and E for
C = C5 = 7.30542191 in order to have homoclinic points
with the same energy as in the left Poincaré cut projection.

Using the initial conditions of the homoclinic points A,
B, D and E and the common value of the Jacobi constant
C5 (i.e. x0 = (x0,0,0, ẏ0(C5))), we produce the homoclinic
trajectories which are presented in the third frame of Fig. 8.

So far, we have studied the asymptotic orbits, around the
Lyapunov periodic orbit, in the case where the energy con-
stant has the value C = 7.305422 and the region where the
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Fig. 8 Left: the first Poincaré cuts of the left unstable invariant manifold W u
L1p.o. with the plane y = 0 around the equilibrium point L1 for various

values of C. Middle: the first Poincaré cuts of the right unstable manifolds. Right: The Lyapunov periodic orbit around the equilibrium point L1
with C = 7.305422 (black) and the corresponding homoclinic orbits with initial conditions of the homoclinic points A (red), B (blue), D (green)
and E (orange)

infinitesimal body can move free, is closed, and fourteen
(two of them are collinear) of the equilibrium points of the
(8+1)-body ring problem are out of it. Now we decrease the
energy and we take C = 7.102558 (a value just below the en-
ergy of L2) where the closed region opens and new “necks”
close to equilibrium points L2, L19 etc., exist. In that case,
and always for β = 2, the unstable invariant manifolds of
the Lyapunov periodic orbit with the same C around the
collinear equilibrium point L2 are calculated. The Lyapunov
periodic orbit in this case belongs to family f13, which em-
anates from the collinear equilibrium point L2.

Similarly as earlier we compute the appropriate cuts with
the plane y = 0 in order to find the intersections with the
ẋ-axis (homoclinic intersections). In Fig. 9 (first frame) the
first Poincaré cuts of the left unstable manifold of the Lya-
punov periodic orbit around L2 i.e. W u

L2p.o.
for various val-

ues of the Jacobi constant C, are presented. None of them,
and for any other values of C of this family, intersects the
ẋ-axis. But if we plot the first Poincaré cuts of the right un-
stable manifold W u

L2p.o.
, then we observe, in the next three

frames of the same Fig. 9, that for C = C4,5,6 many homo-
clinic points exist. We choose only the points F and G from
the Poincaré cut C4 = 7.102558 and we calculated the cor-
responding homoclinic asymptotic orbits around the hyper-
bolic Lyapunov periodic orbit with the same energy and we
present them in the fifth frame of Fig. 9. Details of the area
close to collinear equilibrium point L2 are present in the last
frame of the same figure.

5 Conclusions

In this paper, a study of the asymptotic orbits around the
equilibrium points and around hyperbolic Lyapunov sym-
metric periodic orbits of the (N + 1)-body ring problem

when the mass parameter is β = 2 and N = ν + 1 = 8 has
been done.

We found all the families of symmetric simple-periodic
orbits of the problem which contain as terminal points ho-
moclinic or heteroclinic asymptotic orbits which intersect
the x-axis perpendicularly and tend asymptotically to equi-
librium points of the problem spiraling into (and out of)
these points. Eighteen of them, the simplest ones, are plotted
in detail. The horizontal isoenergetic stability of these fam-
ilies is calculated. Eighteen typical homo- and heteroclinic
asymptotic orbits, one of each family, are illustrated.

We also found the unstable invariant manifold of hyper-
bolic Lyapunov periodic orbits around the collinear equilib-
rium points L1 and L2. The first Poincaré cuts of the un-
stable manifolds on the appropriate plane y = 0, for various
values of the Jacobi constant, are calculated and presented.
We determined homoclinic points and using these points as
initial conditions, we found homoclinic asymptotic orbits
around the Lyapunov periodic orbits with the same energy.

From the obtained results some general remarks are in
order.

• We found the critical values of the mass parameter β

where they split the kind of the eigenvalues of the lin-
earization system around the collinear equilibrium config-
urations as the mass parameter β of the problem (ν = 7)
varies.

• In the present problem, all the collinear equilibrium points
are unstable except L3, which is stable for β ≥ βcrit

3 =
585.4957 on contrary to the classical restricted three-body
problem, where all the collinear equilibrium points are
unstable for every value of the mass ratio μ.

• There are decades of families of simple symmetric peri-
odic orbits (i.e. having only two both perpendicular, in-
tersections with the x-axis). Many of them have as termi-
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Fig. 9 Up left: the first Poincaré cuts of the left unstable invariant manifold W u
L1p.o. with the plane y = 0 around the equilibrium point L2 for

various values of C. Up middle: the first Poincaré cuts of the right unstable manifolds for C1,C2,C3 and C4. Up left: the first Poincaré cuts of the
right unstable manifolds for C5. Down right: the first Poincaré cuts of the right unstable manifolds for C6. Down middle: the Lyapunov periodic
orbit around the equilibrium point L2 with C = 7.102558 (black) and the corresponding homoclinic orbits with initial conditions of the homoclinic
points F (red) and G (blue). Down right: details close to L2

nation orbits asymptotic ones at equilibrium points of the
problem. From the eighteen families which we study in
detail, we conclude to the following.

• Only two families have as members homoclinic asymp-
totic orbits.

• Sixteen families have heteroclinic asymptotic terminating
orbits.

• Eleven families have in both edges as termination mem-
bers heteroclinic asymptotic orbits.

• There is one family (namely f16) which, from one side,
has as terminal member a heteroclinic asymptotic orbit
for C = CL3 , while from the other side it has as terminal
member a heteroclinic asymptotic orbit for C = CL5 .

• In the majority of cases, the symmetric periodic orbits of
the families we found are unstable but all the families
have limited segments of their characteristic curves for
which the orbits are stable.

• There are homoclinic asymptotic orbits at the Lyapunov
periodic orbits in the interior region (around the central

primary body m0 or the m1) as well as in the exterior
region (around all the eight primary bodies).
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