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Abstract In this paper the effect of solar radiation pressure
on the location and stability of the five Lagrangian points
is studied, within the frame of elliptic restricted three-body
problem, where the primaries are the Sun and Jupiter acting
on a particle of negligible mass. We found that the radia-
tion pressure plays the rule of slightly reducing the effective
mass of the Sun and changes the location of the Lagrangian
points. New formulas for the location of the collinear libra-
tion points were derived. For large values of the force ratio
β, we found that at β = 0.12, the collinear point L3 is stable
and some families of periodic orbits can be drawn around it.

Keywords Elliptic restricted three-body problem ·
Radiation pressure · Libration points · Stability

1 Introduction

In spite of the large amount of analytical and numerical work
in the circular restricted three-body problem (CRTBP), there
are relatively few analytical results on the subject of elliptic
restricted three-body problem (ERTBP) (Cors et al. 2001)
and show the existence of a new class of periodic orbits in
the three dimensional (ERTBP) in the case of equal masses
of the primaries. Arenstorf (1966) showed the existence of
second kind of periodic orbits (i.e. some which come from
analytic continuation of unperturbed elliptic Keplerian or-
bits, with arbitrary eccentricity) in the planar (RTBP) in the
neighbourhood of one of the primaries, irrespective of the
mass ratio. Jefferys (1965) showed that there exist doubly
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symmetric, almost circular periodic solutions if one of the
primaries is sufficiently small. He showed as well (Jefferys
1966) the existence of families of elliptic orbits for any value
of the eccentricity and critical inclination. The elliptic re-
stricted three-body problem (ERTBP) has not been fully ex-
plored (planar or spatial), although a number of papers have
been devoted to it: Katsiaris (1972) computed some periodic
orbits when the eccentricity, e, of the primaries lies in the
range [0, 0.4]; Olle and Pacha (1991) computed families of
periodic solutions, very far from the primaries, which were
assumed to be of equal masses and in the rectilinear collision
orbit. Danby (1964) studied the (ERTBP) and used numeri-
cal integration to determine the linear stability of the ellip-
tic Lagrange orbits. Using the traditional mass value μ and
the eccentricity e as parameters, he obtained a stability dia-
gram in the μ–e plane and noted that there are cases where
the elliptic orbits appear to be linearly stable even though
the circular ones are not. Roberts (2002) studied the linear
stability of the periodic orbits of Lagrange in the (ERTBP),
using perturbation technique, he proved that for some mass
values; the elliptic orbits were linearly stable.

Şelaru and Cucu-Dumitrescu (1994) performed an ana-
lytical investigation concerning the structure of asymptotic
perturbative approximations for small amplitude motions of
the (infinitesimal) third point mass in the neighbourhood of
a Lagrangian equilateral libration position in the planar, el-
liptic restricted problem of three bodies. After a sequence of
canonical transformations, they formulated the Hamiltonian
governing the motion of the negligible mass body, using the
eccentric anomaly of the primaries’ elliptic Keplerian or-
bit as the independent variable, they then studied the lin-
earized system of differential equations of motion obtained
from expanding the Hamiltonian around a Lagrangian solu-
tion. Also they developed their theory and calculations of an
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asymptotic solution up to the first order in the orbital eccen-
tricity of the primaries taken as the perturbation parameter:
terms up to the first power. At later stage, Şelaru and Cucu-
Dumitrescu (1995) presented an extension of these consider-
ations to a similar second order theory. Floria (2004) under-
takes an approximate integration of the (ERTBP) by means
of a perturbation technique based on Lie series develop-
ments, which leads to an approximate solution to the dif-
ferential system of canonical equations of motion derived
from the chosen Hamiltonian function (expanded in powers
of the numerical eccentricity a of the elliptic orbit of the two
primaries, which plays the role of the small parameter of the
perturbation).

In the present work we studied the combined effects of
gravitational forces of the primaries rotating in an elliptic
orbit around their center of mass and the solar radiation pres-
sure emanating from the Sun on the particle. We find analyt-
ically the locations of the five equilibrium points in terms of
the mass ratio of the primaries together with the force ra-
tio, β of the radiation force and the gravitational force of
the Sun. We also studied the linear stability of the libration
points under the gravitational and radiation forces.

Finally, we applied our formulae to the Sun–Jupiter sys-
tem to calculate the corresponding solutions for both the tri-
angular and collinear points. Also we plotted all the solu-
tions with respect to the true anomaly

Zero velocity curves around the triangular point L4 were
plotted in the case of the presence of SRP and without it.

2 Formulation of the problem

The ERTBP models the motion of a test particle having an
infinitesimal mass, m, and moving under the influence of
the gravitational field of two massive bodies of masses m1

and m2 that revolve around their center of mass in an el-
liptic orbit. The motion of the finite masses are non sensi-
bly affected by the gravitational attraction due to the infin-
itesimal particle, and their motion can be considered as a
Keplerian motion of pure unperturbed two body problem,
and can be considered as completely known and given in
advance. In what follows, we concentrate our attention on
the motion of the infinitesimal mass, m, assuming that this
motion takes place in space “spatial elliptic restricted three
body problem” about the center of mass of the primaries.
Consequently, the relative orbit of one of the primaries with
respect to the other is also an ellipse. All these ellipses share
a common numerical value of the eccentricity, e.

Introducing the elliptic orbit for the primaries generalizes
the original (CRTBP), and improves its applicability, while
some outstanding and useful properties of the circular model
still hold true or can be adapted to the elliptic case.

Fig. 1 The location of the Sun (S), Jupiter (J) and the Particle (P) in
the rotating frame

According to the usual practice and without loss of gen-
erality we chose a system of units as: the gravitational con-
stant and the sum of the finite masses equals to the unity, i.e.
m1 + m2 = 1, and we choose

m2

m1 + m2
= μ,

m1

m1 + m2
= 1 − μ, 0 < μ <

1

2
. (1)

If in addition to this, the value of the orbital angular mo-
mentum of the relative motion of the primaries is unity, then
the semi-latus rectum of the elliptic relative orbit will be
equals one, and the polar equation of this ellipse will take
the form

r = 1

1 + e cosf
, (2)

where f is the true anomaly of the smaller primary m2 and
e is the eccentricity of the elliptic orbit of either primaries.

To describe the motion of a particle of negligible mass
P under the action of the gravitational field of a two pri-
maries, Sun (S) and Jupiter (J), taking into account the ef-
fect of solar radiation pressure (SRP), we shall use a set of
rotating axes Oxyz centered at the center of mass of the two
primaries, which are rotating around their center of mass in
elliptic orbits with variable angular velocity ḟ = (0,0, ḟ ),
with respect to an inertial frame XYZ, and coincides with it
at t = 0.

Assume that the primaries are located on the rotating x-
axis at the points S(x1,0,0) and J(x2,0,0) as in Fig. 1.

Apart from the gravitational acceleration of the Sun on
the particle, Fgr = m1/r2

1 , the solar radiation pressure exerts
a small acceleration on the particle, m, in the opposite direc-
tion to the gravitational acceleration which may be written
as (Montenbruck and Gill 2005)

Frad = 1

4π

(A/m)

r2
1

L0Qpr

c
, (3)

where A is the geometric cross–section of the particle, c is
the speed of light, Qpr is the radiation pressure coefficient,
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depending on the properties of the particle (density, shape,
size, etc.), L0 is the luminosity of the Sun.

Define the ratio of the two forces by a dimensionless
quantity β as:

β = Frad

Fgr
= (A/m)QprL0

4πcm1
. (4)

Note that the ratio β is independent of the distance r1

between the Sun and the particle. The total action from the
Sun on the particle can be expressed by the acceleration:

Ftotal = Fgr − Frad = (1 − β)Fgr = − (1 − β)m1

r2
1

.

3 Equations of motion

The equations of motion of the small particle P(x, y, z) un-
der the action of the gravitational forces of the primaries
and the solar radiation pressure taken into account can be
formulated in a Cartesian barycentric system of coordinates
Oxyz, in which the two perpendicular axes Ox and Oy ro-
tate with a variable angular velocity ḟ , in the orbital plane
around the Z-axes with respect to a fixed reference frame
OXYZ, with origin placed at the center of mass of the two
primaries, where f is the true anomaly of the finite mass m2

in its elliptic motion, and may be written as:

ẍ − xḟ 2 − 2ẏḟ − yf̈ = −(1 − β)
(1 − μ)(x − x1)

r3
1

− μ(x − x2)

r3
2

,

ÿ − yḟ 2 + 2ẋḟ + xf̈ = −(1 − β)
(1 − μ)y

r3
1

− μy

r3
2

,

z̈ = −(1 − β)
(1 − μ)z

r3
1

− μz

r3
2

,

(5)

where

r2
i = (x − xi)

2 + y2 + z2, i = 1,2 (6)

and

x1 = −μr, x2 = (1 − μ)r.

Where the dots indicate differentiation with respect to
time.

In the system of equations (5) the separation between the
primaries is variable, and given by (2). In order to main-
tain the primaries in fixed positions, we transform now to a
rotating pulsating coordinate system, in which, the unit of
length may be chosen as the instantaneous distance of the
primaries, namely r defined by (2), the independent variable

can be chosen so as to be the true anomaly f of the Ke-
plerian motion described by the smaller primary. So in the
system of equations (5) we put

x = rx̃, y = rỹ, z = rz̃,

r1 = rr̃1 and r2 = rr̃2.
(7)

Accordingly, the separation between the primaries will
be constant and equal to one, and the position of m1 and m2

will be determined by the coordinate

(x̃1, ỹ1, z̃1) = (−μ,0,0) , (x̃2, ỹ2, z̃2) = (1 − μ,0,0) .

The equations of motion of the particle P(x̃, ỹ, z̃) in this
pulsating system, when we take the true anomaly f , as the
new independent variable rather than the time, t, using the
relation df/dt = 1/r2 can be written in the form:

x̃′′ − 2ỹ′ = 1

(1 + e cosf )

[
x̃ − (1 − β) (1 − μ)

r̃3
1

(x̃ + μ)

− μ

r̃3
2

(x̃ + μ − 1)

]
,

(8)

ỹ′′ + 2x̃′ = 1

(1 + e cosf )

[
1 − (1 − β) (1 − μ)

r̃3
1

− μ

r̃3
2

]
ỹ,

z̃′′ + z̃ = 1

(1 + e cosf )

[
1 − (1 − β) (1 − μ)

r̃3
1

− μ

r̃3
2

]
z̃.

These equations can be reformulated as:

x̃′′ − 2ỹ′ = G(e,f )
∂U

∂x̃
,

ỹ′′ + 2x̃′ = G(e,f )
∂U

∂ỹ
,

z̃′′ + z̃ = G(e,f )
∂U

∂z̃
, (9)

where

U = (1 − μ)

[
1

2
r̃2

1 + (1 − β)

r1

]

+ μ

[
1

2
r̃2

2 + 1

r̃2

]
− 1

2

z̃2

r
, (10)

r̃2
1 = (x̃ + μ)2 + ỹ2 + z̃2,

r̃2
2 = (x̃ + μ − 1)2 + ỹ2 + z̃2,

(11)

G(e,f ) = (1 + e cosf )−1. (12)

It may be noted at this stage that U itself is not dependent
explicitly on the true anomaly f which enters only through
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Fig. 2 The location of the five
equilibrium points
(Li, i = 1,2, . . . ,5)

the common term 1/(1 + e cosf ) outside the partial deriv-
atives on the right hand side of (8), (9) nor it is dependent
explicitly on the time. Where the differentiation with respect
to f in (8), (9) was denoted by a dash.

4 Lagrangian equilibrium points

The critical values of the potential function

�(x̃, ỹ, z̃, f ) = U(1 + e cosf )−1, (13)

where U is defined by (10) are called the Lagrangian (libra-
tion) points. They determine the equilibrium points of the
differential equations (8) in the rotating pulsating coordi-
nates. It is well known that there exist five relative equilib-
rium solutions (libration points), where in our case the grav-
itational forces, the force due to the solar radiation pressure
and the centrifugal forces balance each other; three of them
are collinear, denoted by (L1,L2 and L3) and the other two
are triangular, denoted by (L4 and L5) shown in Fig. 2.

The Lagrangian points that appear in the restricted prob-
lem of the three bodies are very important for astronautic
applications, they are very good points to locate a space sta-
tion, since they require a small amount of fuel for station
keeping. In order to search for the location of the equilib-
rium points, i.e. the points where the particle has zero veloc-
ity and zero acceleration in the rotating pulsating frame, we
write the equation of motion again for convenience.

x̃′′ − 2ỹ′ = ∂�

∂x̃
,

ỹ′′ + 2x̃′ = ∂�

∂ỹ
,

z̃′′ + z̃ = ∂�

∂z̃
,

(14)

where on using (8) we obtain

�x̃ = 1

(1 + e cosf )

[
(1 − A) x̃ − μ(1 − μ)

(
1 − β

r̃3
1

− 1

r̃3
2

)]
,

(15)

�ỹ = 1

(1 + e cosf )
(1 − A) ỹ, (16)

�z̃ = 1

(1 + e cosf )
(1 − A)z̃, (17)

where

A = (1 − β) (1 − μ)

r̃3
1

+ μ

r̃3
2

. (18)

To obtain the location of the equilibrium points, we put
x̃′′ = x̃′ = ỹ′′ = ỹ′ = z̃′′ = 0, into (14). From the third equa-
tion of the system (14), the condition �z̃ = 0 implies that
z̃ = 0. That is all the critical points are planar, and no equi-
librium points can be found outside the x̃ỹ-plane (Szebehely
1967).

4.1 The triangular equilibrium points

In the x̃ỹ plane, let the coordinate of the equilibrium points
be (x̃0, ỹ0). In the case when ỹ �= 0, the equilibrium points
can be obtained from the conditions:

∂U/∂r̃1 = ∂U/r̃2 = 0. (19)

So, when using (10) the conditions ∂U/∂r̃1 = ∂U/r̃2 = 0
give:

∂U

∂r̃1
= (1 − μ)

(
r̃1 − (1 − β)

r̃2
1

)
= 0,

∂U

∂r̃2
= μ

(
r̃2 − 1

r̃2
2

)
= 0

(20)

from which, we get

r̃1 = (1 − β)1/3 , r̃2 = 1. (21)

Substituting (21) into (11) we obtain the coordinate of the
triangular points (L4 and L5) in the form

(x̃0, ỹ0) =
(

−μ + 1

2
(1 − β)2/3,

± (1 − β)1/3

√
1 − 1

4
(1 − β)2/3

)
, (22)
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where by convention the leading triangular points is taken to
be L4 and the point L5.

4.2 The collinear equilibrium points

Consider now the case when ỹ = 0, i.e. when the equilib-
rium points lie along the x̃-axis. These points are found from
the condition ∂U/∂x̃ = 0. Note that

∂U

∂x̃
= ∂U

∂r̃1

∂r̃1

∂x̃
+ ∂U

∂r̃2

∂r̃2

∂x̃
= 0.

Using (10) and (11) we obtain the condition in the form

(1 − μ)

[
r̃1 − (1 − β)

r̃2
1

]
x̃ + μ

r̃1
+ μ

[
r̃2 − 1

r̃2
2

]
x̃ + μ − 1

r̃2
=0.

(23)

The collinear equilibrium points will be denoted by L1,
L2 and L3, and are shown in Fig. 2. They will be defined
as:

(i) L1 lies between S and J: −μ < x̃ < 1 − μ,
(ii) L2 is to the right of J: x̃ > 1 − μ,

(iii) L3 is to the left of S: x̃ < −μ.

4.2.1 Location of L1 (−μ < x̃ < 1 − μ)

At the point L1, we have r̃1 + r̃2 = 1, r̃1 = x̃ + μ, r̃2 = 1 −
μ − x̃.

So let , r̃2 = ρ, r̃1 = 1−ρ, then substitution into (23) and
after rearrangement we obtain:

μ

3(1 − μ)
= ρ3(1 − ρ + ρ2

3 − β
3ρ

)

(1 − ρ)2(1 − ρ3)
. (24)

Because of the occurrence of the term, β/3ρ, in the nu-
merator of (24) we replace ρ by [1 − (1 − ρ)], and expand
(1/ρ) up to O[ρ4]. So, we can write (24) up t O[ρ4] as:

α = ρ + 1

3

(
1 − 2β/3

1 − 4β/3

)
ρ2

+ 1

3

(
1 − 8β/3 + 44β2/27

(1 − 4β/3)2

)
ρ3

+ 1431 − 5697β + 7596β2

2187(1 − 4β/3)3
ρ4 + O[ρ5].

(25)

Where α is defined as:

α =
(

μ

3(1 − 4β/3)(1 − μ)

)1/3

. (26)

This equation can be solved using Lagrange inversion
formula (Murray 1999) to obtain ρ in terms of α. Thus up

to O[α4], we have

ρ = α − 1

3

(
1 − 2β/3

1 − 4β/3

)
α2

− 1

9

(
1 − 16β/3 + 4β2

(1 − 4β/3)2

)
α3

− 1

3

(
23 − 91β + 148β2

(1 − 4β/3)3

)
α4 + O[α5]. (27)

4.2.2 Location of L2 (x̃ > 1 − μ)

At the point L2, we have r̃1 − r̃2 = 1, r̃1 = x̃ + μ, r̃2 = x̃ +
μ − 1.

So let , r̃2 = ρ, r̃1 = 1 + ρ, then substitution into (23)
gives:

μ

3(1 − μ)
= ρ3(1 + ρ + ρ2

3 + β
3ρ

)

(1 + ρ)2(1 − ρ3)
. (28)

After expansion up to O[ρ4], we get

γ = ρ − 1

3

(
1 + 14β/3

1 + 4β/3

)
ρ2

+ 1

3

(
1 + 8β/3 + 140β2/27

(1 + 4β/3)2

)
ρ3

+ 1 + 157β + (412/3)β2

81(1 + 4β/3)3
ρ4 + O[ρ5]. (29)

Where

γ =
(

μ

3(1 + 4β/3)(1 − μ)

)1/3

. (30)

Inverting (29) to obtain ρ in terms of γ , we obtain:

ρ = γ + 1

3

1 + 14β/3

1 + 4β/3
γ 2 − 1

9

1 − 32β/3 − 28β2

(1 + 4β/3)2
γ 3

− 1

81

31 + 227β − 158β2/3

(1 + 4β/3)3
γ 4 + O[γ 5].

(31)

4.2.3 Location of L3 (x̃ < −μ)

At the point L3, we have r̃2 − r̃1 = 1, r̃1 = −x̃ − μ, r̃2 =
−x̃ − μ + 1. So let , r̃1 = ρ, r̃2 = 1 + ρ, then substitution
into (23) gives:

μ

1 − μ
= (1 − β − ρ3)(1 + ρ)2

ρ3(3 + 3ρ + ρ2)
. (32)

Because of the occurrence of the term, ρ3, in the denom-
inator of (32) we replace ρ by (1 + u) , and expand 1/ρ up
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Table 1 Location of collinear points for different values of β

Equilibrium β = 0.0 β = 0.03 β = 0.05 β = 0.07 β = 0.1

point

L1 (0.93245, 0) (0.93248, 0) (0.93251, 0) (0.93253, 0) (0.93257, 0)

L2 (1.06883, 0) (1.06816, 0 ) (1.06772, 0) (1.06728, 0) (1.06663, 0)

L3 (−0.99932, 0) (−0.98933, 0) (−0.98267, 0) (−0.97601, 0) (−0.96602, 0)

to O[ρ3]. Thus we can write (32) up to O[u3] as:

μ

1 − μ
= −4β

7
+

(
1 − 19

21
β

)(
−12

7
u

)

+
(

1 − 989

1008
β

)(
−12

7
u

)2

+
(

1567

1728
− 5465

6048
β

)(
−12

7
u

)3

+ O[u4]. (33)

Using the method of successive approximations up to
O[(μ/1 − μ)3] and retaining only the linear terms of β , we
obtain

ρ = 1 + u = 1 − β

3
− 12

7

(
1 − 5

21
β

)(
μ

1 − μ

)

+ 12

7

(
1 − 1054

1008
β

)(
μ

1 − μ

)2

−
(

13223

20736
+ 27820

62208
β

)(
μ

1 − μ

)3

+ O

[
μ

1 − μ

]4

.

(34)

In the case where there is no radiation pressure, i.e. if
β = 0, we obtain from (22), (27), (31), and (34) the same
results as in the classical (RTBP) (Floria 2004) for both the
triangular and collinear points.

For numerical calculations, we consider our model of the
(ERTBP) to be composed of the Sun and Jupiter as primaries
and the particle is a space craft. Due to our previous choice
of units, we define the following quantities:

* the mass parameter μ = m2
m1+m2

= 9.5359 × 10−4,
* the eccentricity of the elliptic orbit of the primaries, e =

4.59 × 10−2.

We can obtain the location of the equilibrium (Lagrangian)
points for different values of the force ratio β ∈ [0,0.1] from
Tables 1 and 2.

5 Stability of the equilibrium points

For the stability analysis let x̃ = x̃0i and ỹ = ỹ0i be the co-
ordinates of the Lagrangian points Li; i = 1,2,3,4,5. Sup-
pose that the particle receive a small displacement from the

Table 2 Location of the triangular points for different values of β

Equilibrium point β (x, y)

0.0 (0.499046, ±0.866025)

0.03 (0.488996, ±0.860144)

L4,5 0.05 (0.482238, ±0.856101)

0.07 (0.475432, ±0.851955)

0.10 (0.465131, ±0.845538)

equilibrium position (x̃0, ỹ0,0) to the position (x̃0 +u, ỹ0 +
v,w) where (u, v,w) are small quantities. To obtain the
variation equations, we substitute the coordinates of the dis-
played point into the equations of motion (9), and expanding
in a Taylor’s series about the equilibrium points. Consider-
ing only the linear terms of the coordinates, we obtain the
linearized variation equations

u′′ − 2v′ = G(e,f )[(Ux̃x̃)0u + (Ux̃ỹ)0v + (Ux̃z̃)0w],
v′′ + 2u′ = G(e,f )[(Uỹx̃)0u + (Uỹỹ)0v + (Uỹz̃)0w],
w′′ + w = G(e,f )[(Uz̃x̃)0u + (Uz̃ỹ )0v + (Uz̃z̃)0w],

(35)

where the subscript (0) indicates that the second partial
derivatives are to be evaluated at the equilibrium points
(x̃0, ỹ0,0), and Uij = ∂2U/∂i∂j .

Since there is no stability outside the x̃ỹ-plane, we deal
with the last equation in the system (35) separately.

5.1 Stability of the equilibrium points in the x̃ỹ-plane

In the x̃ỹ-plane, we have Ux̃z̃ = Uỹz̃ = 0. So, the variation
equations will take the form

u′′ − 2v′ = G(e,f )[(Ux̃x̃)0u + (Ux̃ỹ)0v],
v′′ + 2u′ = G(e,f )[(Uỹx̃)0u + (Uỹỹ)0v]. (36)

Calculating the required partial derivatives included in
the system (36), we get

Ux̃x̃ = 1 − (1 − β)(1 − μ)

[
ρ2

1 − 3(x̃ + μ)2

ρ5
1

]

− μ

[
ρ2

2 − 3(x̃ + μ − 1)2

ρ5
2

]
, (37)
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Uỹỹ = 1 − (1 − β)(1 − μ)

[
ρ2

1 − 3ỹ2

ρ5
1

]

− μ

[
ρ2

2 − 3ỹ2

ρ5
2

]
, (38)

Ux̃ỹ = (1 − β)(1 − μ)

[
3(x̃ + μ)ỹ

ρ5
1

]

+ μ

[
3(x̃ + μ − 1)ỹ

ρ5
2

]
. (39)

5.2 Stability of the triangular points

Substituting the coordinates of the equilibrium points L4

and L5 from (22) into (37), (38) and (39), we obtain

(Ux̃x̃)0 = 3

4
[Q + μ2(4 − Q)(1 − Q)],

(Uỹỹ)0 = 3

4
[4 − Q − μ2(4 − Q)(1 − Q)],

(Ux̃ỹ)0 = ±3

4

√
Q

√
4 − Q(1 + μ2Q − 3μ2),

(40)

where the (+ve) sign in the third equation of (40) is for the
point L4, and the (−ve) sign is for the point L5, and

Q = (1 − β)2/3. (41)

Assuming the solution of the system (36) to be of the
form

u = A exp(λf ), v = B exp(λf ). (42)

Substituting into (36), we obtain

(λ2 − Cxx)A − (2λ + Cxy)B = 0,

(2λ − Cxy)A + (λ2 − Cyy)B = 0,
(43)

where

Cxx = G(e,f )(Ux̃x̃)0, Cxy = G(e,f )(Ux̃ỹ)0,

Cyy = G(e,f )(Uỹỹ)0.
(44)

The characteristic equation of the system (43) can be ob-
tained as the bi-quadratic equation

λ4 + (4 − Cxx − Cyy)λ
2 + (CxxCyy − C2

xy) = 0. (45)

This equation may be considered as a quadratic equation
in λ2 whose roots may be obtained as

λ2
1,2 = 1

2

[
−(4 − Cxx − Cyy)

∓
√

(4 − Cxx − Cyy)2 − 4(CxxCyy − C2
xy)

]
(46)

Table 3 The values of μ against β ∈ [0.0,0.12] for e = 0 and e =
0.04839

β e = 0.0 e = 0.04839

0.0 μ = 0.038520896 μ = 0.0558856

0.01 μ = 0.0384319 μ = 0.0557539

0.03 μ = 0.0382552 μ = 0.0554924

0.05 μ = 0.0380801 μ = 0.0552333

0.07 μ = 0.0379066 μ = 0.0549767

0.09 μ = 0.0377347 μ = 0.0547224

0.10 μ = 0.037649358 μ = 0.0545962

0.12 μ = 0.0374798 μ = 0.0543454

We have from (40), (44) the following relations:

Cxx + Cyy = 3G(e,f ),

CxxCyy − C2
xy = 9

4G2(e, f )(4 − Q)μ(1 − μ).
(47)

Thus using (47) and writing G(e,f ) in its explicit form
we obtain the characteristic roots of (46) as:

λ2
1,2 = 1

2

1 + 4e cosf

1 + e cosf

[
−1 ∓

√
1 − 9(4 − Q)μ(1 − μ)

(1 + 4e cosf )2

]
.

(48)

The stability of the triangular points requires that λ2 roots
must be negative to obtain pure imaginary roots, i.e. the con-
dition for stability requires that

9(4 − Q)μ(1 − μ) ≤ (1 + 4e cosf )2 (49)

which up to the linear term in the force ratio β , this condition
may be rewritten in the form:

(27 + 6β)μ(1 − μ) ≤ (1 + 4e cosf )2 (50)

when there is no radiation pressure, i.e. when β = 0, and the
primaries were moving in circular orbits, e = 0, (50) will
reduce to the well known condition for stability of the trian-
gular libration points L4 and L5 in the (CRTBP), that is

27μ(1 − μ) ≤ 1. (51)

For sufficiently small values of μ determined by the con-
dition (50) all the libration points will be stable. The max-
imum value of μ, depends on the value of β and e, can be
found from the relation

μ = 1

2
− 1

2

√
1 − 4 + 32e(1 + 2e)

27 + 6β
. (52)

Table 3 gives the values for μ against β ∈ [0.0,0.12] in
the circular case e = 0, and the eccentric case of Sun–Jupiter
as primaries and the relation (52) is drawn in Fig 3 between
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Fig. 3 The relation between μ

and β ∈ [0.0,0.12] for e = 0
(shown dashed) and
e = 0.04839 (shown solid)

Fig. 4 The u – f solution in the
vicinity of the L4 point

μ and β ∈ [0.0,0.12] for both circular (shown dashed) and
elliptic orbits (shown solid).

From the Table 3, we conclude that the permissible mass
parameter μ increases with the (S.R.P.), also in the eccentric
case this value is larger than that in the circular case.

Consider as a specific example the perturbed motion
around L4 with initial conditions

u0 = v0 = 10−5 and u′
0 = v′

0 = 0.

In this case when using the values in Table 3, with β =
0.1. Equations (47) with f = 0 give

c11 = 0.666998, c22 = 2.19452, c12 = 1.20738.

Substituting into (48), we find the roots of (45) as:

λ1,2 = ±i(1.06452), λ3.4 = ±i(0.0726614) (53)

i.e. all the roots are purely imaginary. Thus we conclude that
the equilibrium motion around the L4(or L5) point is stable.
The solutions for the perturbed motion around L4 may be
written as

u(f ) =
4∑

j=1

Aje
λj f , v(f ) =

4∑
j=1

Bje
λj f . (54)

The constants Aj and Bj are not independent; they are
related by (43). So we can deduce these relations as

Bj = λ2
j − c11

2λj + c12
Aj ; j = 1,2,3,4.

Applying the initial condition to the solution, we may
write the solutions as

u(f ) = 2.66648 × 10−5 cos(0.07266f )

− 1.66648 × 10−5 cos(1.0645f )

+ 8.30177 × 10−4 sin(0.07266f )

− 5.66659 × 10−5 sin(1.0645f ), (55)

v(f ) = 4.02077 × 10−5 cos(0.07266f )

− 3.02077 × 10−5 cos(1.0645f )

+ 4.5741 × 10−4 sin(0.07266f )

− 3.12217 × 10−5 sin(1.0645f ). (56)

Therefore the motion of the particle at the triangular
points is of an oscillatory type with periods (2π/1.0645) and



Astrophys Space Sci (2008) 313: 393–408 401

Fig. 5 The v – f solution in the
vicinity of the L4 point

Fig. 6 The graph of the
functions u(f ) for
f ∈ [0,27.75π]

Fig. 7 The graph of the functions v(f ) for f ∈ [0,27.75π]

(2π/0.07266). The solutions equations (55), (56) are shown
in Figs. 4, 5 respectively forf ∈ [0,2π].

The existence of these two frequencies in the solution to
the perturbed motion near to the L4 and L5 points can be
interpreted as follow:

The resulting motion of the particle is composed of two
different types:

(i) A short-period motion with frequency ≈ 2π (i.e. a pe-
riod that is close to the orbital period of the smaller pri-
mary μ).

(ii) A superimposed long-period with period ≈ 13.76(2π)

known as a libration around the equilibrium point L4.

The amplitudes of these motions are determined by the
constant Aj and Bj .

The graph of the solutions u(f ) and v(f ) are shown
in Figs. 6, 7 for f ∈ [0,27.75π]. The short-period mo-
tion (shown dashed) of the epicenter around the equilibrium
point with the particle simultaneously executing a long-
period motion around the epicenter is shown in Fig. 8 for
f ∈ [0,27.75π].

5.3 Stability of the collinear points

We shall now study the stability of the collinear points. Sub-
stituting ỹ = 0, into (37), (38), (39) we have (Ux̃ỹ)0 = 0.
Thus the characteristic equation (46) will be reduced to

λ4 + (4 − C̃xx − C̃yy)λ
2 + C̃xxC̃yy = 0, (57)
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Fig. 8 The graph of trajectory
in the vicinity of L4 point for
f ∈ [0,27.75π]

where

(Ux̃x̃)0 = 1 + 2(1 − β)
(1 − μ)

r̃3
1

+ 2
μ

r̃3
2

, (58)

(Uỹỹ)0 = 1 − (1 − β)
1 − μ

r̃3
1

− μ

r̃3
2

. (59)

We use the quantity A defined in (18) to rewrite (58) and
(59) as:

(Ux̃x̃)0 = 1 + 2A, (Uỹỹ)0 = 1 − A. (60)

Using (44), (60) we can write the characteristic equation
(57) in the form

λ4 + [4 − (2 + A)G(e,f )]λ2

+ G2(e, f )(1 + 2A)(1 − A) = 0. (61)

Since the product of the two square roots of this polyno-
mial must equal to the constant term, we conclude that

λ2
1λ

2
2 = G2(e, f )(1 + 2A)(1 − A),

where λ2
1 and λ2

2 are the two square roots of the polynomial
(61). The stability condition requires that the two square
roots must be negative, i.e.

λ2
1 < 0, λ2

2 < 0.

In other words, we must have

(1 + 2A)(1 − A) > 0. (62)

In addition to this the sum of the roots of the polynomial
(61) must be equal to the coefficient of λ2 with inverse sign,
i.e.

λ2
1 + λ2

2 = −[4 − (2 + A)G(e,f )]
and since we require that both λ2

1 and λ2
2 are negative, then

we must have

A < 2 + 4e cosf.

The maximum value for the right hand side of this in-
equality is (2 + 4e). So, we may put the extra condition for
stability as

A < 2 + 4e. (63)

Inequality (62) is satisfied if both the parentheses are neg-
ative or positive simultaneously. So, if both parentheses are
negative, we obtain the conditions of stability are

A < −0.5 and A > 1

which will give a contradiction for the value of A.
If both parentheses are positive, we obtain the conditions

of stability as

−1

2
< A < 1 (64)

which is in agreement with (63). We shall deal with each of
the collinear points separately.

5.3.1 The collinear point L1

At the point L1, we have

r̃1 + r̃2 = 1, r̃1 = x̃ + μ, r̃2 = 1 − μ − x̃. (65)

Using (27) and (61), with r̃2 = ρ. We obtain the quantity
A up to the second power of β , and the first power of the
mass ratio μ/(1 − μ) as

A = (1 − μ)

[{
4 + 4.16

(
μ

1 − μ

)1/3

+ 3.85

(
μ

1 − μ

)2/3

+ 2.7

(
μ

1 − μ

)}

−
{

5 + 1.62

(
μ

1 − μ

)1/3

+ 1.23

(
μ

1 − μ

)2/3

+ 0.11

(
μ

1 − μ

)}
β
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Fig. 9 The graph of the quantity A corresponding to L3 against β for
β ∈ [0.001,0.15]

Fig. 10 The graph of the trajectory in the vicinity of L1 point for
f ∈ [0,0.5π]

+
{

1.62

(
μ

1 − μ

)1/3

+ 3.9

(
μ

1 − μ

)2/3

+ 8.44

(
μ

1 − μ

)}
β2

]
. (66)

For μ = 9.5359 × 10−4, it is clear that A > 1, and the sta-
bility conditions (64) fails at the point L1. The graph of the
quantity A against β for β ∈ [0.01,0.15] is shown in Fig. 9.

With the same initial conditions as in the triangular case
we can obtain the solutions in the vicinity of L1 in the form

u(f ) = −3.5738 × 10−6 cos(2.12286f )

+2.61298 × 10−6 sin(2.12286f )

+5.70443 × 10−6e2.5622f

+7.8694 × 10−6e−2.5622f , (67)

v(f ) = 8.4692 × 10−6 cos(2.12286f )

+1.1584 × 10−6 sin(2.12286f )

−4.03336 × 106e2.56217f

+5.5641 × 10−6e−2.56217f . (68)

Fig. 11 The graph of the quantity A corresponding to L2 against β for
β ∈ [0.01,0.15]

We notice that the third term of these equations is the
dominant term and leads to exponential growth in both u

and v which leads to instability of this collinear point. The
graphs of the trajectory is shown in Fig. 10 for f ∈ [0,0.5π].

Now we shall examine the stability of the exterior points
L2 and L3.

5.3.2 The equilibrium point L2

At the point L2, we have

r̃1 − r̃2 = 1, r̃1 = x̃ + μ, r̃2 = x̃ + μ − 1. (69)

Following the same procedures as in the case of L1, we
get

A = (1 − μ)

[{
4 − 3.78

(
μ

1 − μ

)1/3

+ 1.59

(
μ

1 − μ

)2/3

− 2.7

(
μ

1 − μ

)}

+
{

3 − 5.98

(
μ

1 − μ

)1/3

− 32.44

(
μ

1 − μ

)2/3

+ 43.22

(
μ

1 − μ

)}
β

+
{

1.26

(
μ

1 − μ

)1/3

+ 65.67

(
μ

1 − μ

)2/3

+ 58.52

(
μ

1 − μ

)}
β2

]
. (70)

Again, for μ = 9.5359 × 10−4, it is clear that A > 1, and
the stability conditions (64) fails at the point L2. The graph
of the quantity A corresponding to L2 against β for β ∈
[0.01,0.15] is shown in Fig 11.

With the same initial conditions as in L1 case we can
obtain the solutions in the vicinity of L2 in the form
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Fig. 12 The graph of the trajectory around L2 scaled to 105 for
f ∈ [0,0.05π]

Fig. 13 The graph of the quantity A corresponding to L3 against β for
β ∈ [0.01,0.15]

u(f ) = −2.8157 × 10−6 cos(2.001f )

+ 2.8184 × 10−6 sin(2.001f )

+ 5.2123 × 10−6e2.3586f

+ 7.5034 × 10−6e−2.3586f , (71)

v(f ) = 8.6346 × 10−6 cos(2.0096f )

+ 8.6265 × 10−6 sin(2.0096f )

− 0.9765 × 10−6e2.3586f

+ 4.342 × 10−6e−2.3586f . (72)

The graph of the trajectory around L2 is shown in Fig. 12
for f ∈ [0,0.05π].
5.3.3 The collinear point L3

r̃2 − r̃1 = 1, r̃1 = −x̃ − μ, r̃2 = −x̃ − μ + 1. (73)

With similar procedure as the L1 and L2 cases we obtain
up to the second power in β

A = 1 + 123

28
μ + 337

588
μβ −

[
1

3
+ 2815

2352
μ

]
β2. (74)

Fig. 14 The graph of the solutions of (78) for f ∈ [0,2π]

Fig. 15 The graph of the solutions of (79) for f ∈ [0,2π]

The graph of the quantity A corresponding to L3 against
β for β ∈ [0.01,0.15] is shown in Fig. 13.

With β = 0.1, we have A = 1.0009 > 1, and we conclude
that the point L3 is unstable.

With the same initial conditions as in L1 case we can
obtain the solutions in the vicinity of L3 in the form

u(f ) = −2.5092 × 10−5 cos(1.673f )

+ 7.6216 × 10−9 sin(1.673f )

+ 1.7426 × 10−5e0.03414f

+ 1.7655 × 10−5e−0.03414f , (75)

v(f ) = 1.4288 × 10−8 cos(1.0673f )

+ 4.7037 × 10−5 sin(1.0673f )

− 7.303 × 10−4e0.03414f

+ 7.403 × 10−4e−0.03414f . (76)

These solutions of (75) and (76) are shown in Figs. 14
and 15 for f ∈ [0,2π]. Also the graph of trajectory around
L3 is shown in Fig. 16 for f ∈ [0,2π].

If we increase the force ratio β to the value 0.12, we ob-
tain a different configuration of the solution. Using (74) we
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obtain for β = 0.12, the quantity A = 0.999438 < 1. Thus
we conclude that for this value of β the motion in the vicin-
ity of L3 is stable. For β = 0.12 the solution can be written
as:

u(f ) = 3.52137 × 10−5 cos(0.054216f )

+ 3.80221 × 10−7 sin(0.054216f )

Fig. 16 The graph of trajectory around L3 scaled to 105 for
f ∈ [0,2π]

Fig. 17 The graph of the solution (80) for f ∈ [0,37.5π]

− 2.52137 × 10−5 cos(1.06616f )

− 1.93347 × 10−8 sin(1.06616f ), (77)

v(f ) = 1.00362 × 10−5 cos(0.054216f )

− 9.29494 × 10−5 sin(0.054216f )

− 3.62325 × 10−8 cos(1.06616f )

+ 4.724953 × 10−5 sin(1.06616f ). (78)

The graph of the solutions (77) and (78) are shown in
Figs. 17, 18 for f ∈ [0,37.5π]. Also the graph of the trajec-
tory around L3 is shown in Fig. 19 for f ∈ [0,37.5π].

As it is clear from Fig. 9, for all values of β ≥ 0.115,
the value of A < 0 and the motion in the vicinity of L3 is
stable. We must note that these values for β are very large in
realistic situation at least till now.

5.3.4 The z-equation

Consider now the third equation of the system (36). In the
x̃ỹ-plane, we have

Ux̃z̃ = Uỹz̃ = 0,

Fig. 18 The graph of the solution (81) for f ∈ [0,37.5π]

Fig. 19 The graph of the
trajectory around L3 for
β = 0.12 andf ∈ [0,37.5π]
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Uz̃z̃ = 1 − (1 − β)(1 − μ)

ρ3
1

− μ

ρ3
2

.

(i) At the triangular points, we have

ρ1 = (1 − β)1/3, ρ2 = 1.

Thus, we obtain Uz̃z̃ = 0, and the third equation of the
system (35), reduces to

w′′ + w = 0 (79)

which represents a simple harmonic motion with period
equals 2π .

(ii) At the collinear points we have

�z̃z̃ = 1 − A

1 + e cosf
. (80)

The third equation of the system (35), reduces to

w′′ = −
(

A + e cosf

1 + e cosf

)
w. (81)

Since at all the collinear points, the values of A > 1 (ex-
cept the special values for β ≥ 0.115 at the point L3), then
we conclude that (81) represents a simple harmonic motion
with different periods at each collinear point according to
the value of the quantity A.

6 Zero velocity curves

In the circular problem of three-bodies, where e = 0, f =
constant, r = 1, due to our choice of units. The system (8)
or (9) would be equivalent to the usual equations of motion
referred to axes rotating with constant angular velocity. The
system (9) reduce to the classical (CRTBP), and can be in-
tegrated by multiplying in turn by x̃′, ỹ′, z̃′ and added, we
obtain

(x̃′2 + ỹ′2 + z̃′2) = −z̃2 + 2U − CJ , (82)

where CJ is clearly the Jacobi integral in the scaled vari-
ables. Although the (CRTBP) is not integrable, there exists
a first integral of the system, the so called Jacobi integral. In
a rotating reference frame this problem has the property that
its Hamiltonian does not possesses an integral (the Jacobi-
integral). The existence of this integral helps to establish the
regions of possible motions for given sets of initial condi-
tions, to regularize the problem or to analyze the stability of
motions.

When e �= 0, on the other hand, if we multiply the three
equations (9) by x̃′, ỹ′, z̃′ in turn and added, we obtain

1

2

d

df
(x̃′2 + ỹ′2 + z̃′2)

= −1

2

dz̃2

df
+ r

(
∂U

∂x̃

dx̃

df
+ ∂U

∂ỹ

dỹ

df
+ ∂U

∂z̃

dz̃

df

)

= −1

2

dz̃2

df
+ r

dU

df
. (83)

Since U does not contain the time (true anomaly) explic-
itly. Therefore (83) can be formally integrated to give

x̃′2 + ỹ′2 + z̃′2 = −z̃2 + 2
∫ f

0

dU

1 + e cosf
. (84)

Due to the presence of (1 + e cosf ) in the denominator
of the integrand of (84), this equation is not possible in re-
ality to integrate to any corresponding form. Thus, as far as
the ERTBP is concerned, it does not admit this integral (Ja-
cobi integral) of the circular problem, at least not in its usual
sense.

In the elliptic problem, the energy along any orbit is a
time-dependent quantity. A consequence of this fact is, once
again, the non-existence of the Jacobi integral (Floria 2004).
The elliptic problem is thus fundamentally different from
the circular restricted problem. On the other hand, and in
spite of this intrinsic difficulty, certain adequate changes of
variables (like the use of the rotating pulsating system) bring
the analytical form of the equations for the orbit of the par-
ticle into formula which are similar to those governing the
(CRTBP), and then important conclusions can be drawn. As
we mentioned before, no exact, complete and general solu-
tion to the (ERTBP) can be obtained in finite term, but this
mathematical inconveniences is usually overcome or, at least
softened—by concentrating on the through investigation of
significant features and properties of certain special cases
of the problem based on simplifying hypotheses concerning
the mathematical model under discussion. Now if we define
the potential function as:

�(x̃, ỹ, z̃;f ) = U(x̃, ỹ, z̃)

1 + e cosf
, (85)

where � depends not only on the position coordinates of the
particle but also on the independent variable, f , we select
the start point, say, f = 0, and we consider only a part of the
trajectory between f = 0 and f = ε where ε is sufficiently
small positive quantity.

This restriction amounts to considering a sufficiently
small time interval, during which the primaries describe suf-
ficiently small arcs (Szebehely 1967) with this restriction,
we may define a Jacobi-constant in the elliptic case as:

CJ = V 2 − 1

(1 + e cosf )
(x̃2 + ỹ2 − z̃2e cosf )

− 2

(1 + e cosf )

[
(1 − β)(1 − μ)

r̃1
+ μ

r̃2

]
(86)
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Fig. 20a ZVCs about L4 at
β = 0.1 , e = 0.04839,
CJ = 3.07

Fig. 20b ZVCs about L4 at
β = 0.0, e = 0.04839,
CJ = 3.07

which allows us to talk about such concepts as the energy
manifold or the zero velocity surface (curves), at each given
instant of time. The zero velocity surfaces (curves) are now
pulsating with the frequency of the nominal elliptic motion.
Therefore at the planer (z̃ = 0) (ERTBP), the zero velocity
curves are obtained from the equation

x̃2 + ỹ2 + 2(1 − β)(1 − μ)

r̃1
+ 2μ

r̃2
= −C∗, (87)

where

C∗ = C(1 + e cosf ). (88)

Geometrically, this means that at every time (or any
value of the true anomaly, f ) different sets of zero ve-
locity curves are to be constructed at any instant (Sze-
behely 1967), the redrawn curves of zero velocity will
govern the motion by establishing forbidden regions. Fig-
ures 20a, 20b represent the zero velocity curves around
the point L4 in the case of the presence of SRP and
without it respectively, where we consider C = 3.07, e =
0.04839.
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7 Conclusion

The three dimensional elliptic restricted three-body problem
is described, and the effect of solar radiation pressure on the
location and stability of the Lagrangian points is studied. We
adopted a set of rotating pulsating axes centered at the cen-
ter of mass of the two primaries mS (Sun), and mJ (Jupiter).
We found that the radiation pressure plays the rule of reduc-
ing the effective mass of the Sun and slightly changes the
location of the Lagrangian points.

The force ratio, β = Frad./Fgrav. is used to derive new for-
mulas for the locations of the collinear equilibrium points.
It is shown that all the triangular librations points will be
stable for any value of μ ≤ 0.5, satisfying the condition
(27+6β)μ(1−μ) ≤ (1+4e cosf )2, where e and f are the
eccentricity and the true anomaly of either of the primaries.
Also, all the collinear points L1, L2 and L3 are unstable for
values of the radiation ratio β ≤ 0.1.

On examining the stability of the collinear point L3

for larger value of the radiation ratio β we found that at
the values of β ≥ 0.115, (which are hypothesis values) the
collinear point L3 is stable and we can draw a family of pe-
riodic orbits around it.

References

Arenstorf, R.F.: A new method of perturbation theory and its appli-
cation to the satellite problem of classical mechanics. J. Reine
Angew. Math. 221, 113–145 (1966)

Cors, J.M., Pinyol, C., Jume: Solar, periodic solutions in the spatial
restricted three-body problem. Physica D 154, 195–206 (2001)

Danby, J.M.A.: Stability of the triangular points in the elliptic restricted
problem of three bodies. Astron. J. 69, 165–172 (1964)

Floria, L.: On an analytical solution in the planar elliptic restricted
three-body problem. Monograf. Sem. Mat. Garacia de Galdeano
31, 135–144 (2004)

Jefferys, W.H.: Doubly symmetric periodic orbits in the three-
dimensional restricted problem. Astron. J. 70(6), 393–394 (1965)

Jefferys, W.H.: A new class of periodic solutions of the three-
dimensional restricted problem. Astron. J. 71(2), 99–102 (1966)

Katsiaris, G.: The 3-D elliptic problem. In: Recent Advances in Dy-
namical Astronomy, Cortina d’Ampezzo. Proc. of NATO Ad-
vanced Study Institute in Dynamical Astronomy. Reidel, Dor-
drecht (1972)

Montenbruck, O., Gill, E.: Satellite Orbits. Springer, Heidelberg
(2005)

Murray, C.D.: Solar System Dynamics. Cambridge University Press,
Cambridge (1999)

Olle, M., Pacha, J.: The 3D elliptic restricted three body problem: pe-
riodic orbits which bifurcate from limiting restricted problems.
Astron. Astrophys. 351, 1149–1164 (1991)

Roberts, G.E.: Linear stability of the elliptic Lagrangian triangle so-
lutions in the three-body problem. J. Differ. Equ. 182, 191–218
(2002)
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