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Abstract By a natural nonextensive generalization of the
conservation of energy in the q-kinetic theory, we study
the nonextensivity and the power-law distributions for the
many-body systems with the self-gravitating long-range in-
teractions. It is shown that the power-law distributions de-
scribe the long-range nature of the interactions and the non-
local correlations within the self-gravitating system with
the inhomogeneous velocity dispersion. A relation is estab-
lished between the nonextensive parameter q �= 1 and the
measurable quantities of the self-gravitating system: the ve-
locity dispersion and the mass density. Correspondingly, the
nonextensive parameter q can be uniquely determined from
the microscopic dynamical equation and thus the physical
interpretation of q different from unity can be clearly pre-
sented. We derive a nonlinear differential equation for the ra-
dial density dependence of the self-gravitating system with
the inhomogeneous velocity dispersion, which can correctly
describe the density distribution for the dark matter in the
above physical situation. We also apply this q-kinetic ap-
proach to analyze the nonextensivity of self-gravitating col-
lisionless systems and self-gravitating gaseous dynamical
systems, giving the power-law distributions the clear physi-
cal meaning.
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1 Introduction

As we know, almost all the systems treated in statistical me-
chanics with Boltzmann–Gibbs (BG) entropy have usually
been extensive and this property holds for the systems with
short-range interparticle forces. When we deal with the sys-
tems with long-range interparticle forces such as Newtonian
gravitational forces and Coulomb electric forces, where the
nonextensivity holds, the BG statistics may need to be gener-
alized for their statistical description (Cohen 2002; Baranger
2002; Plastino 2004, 2005; Boon and Tsallis 2005; Tsallis
et al. 2005; Tamarit and Anteneodo 2005; Abe et al. 2005;
Du 2004a, 2004b, 2004c, 2004d). In recent years, nonex-
tensive statistics (Tsallis statistics or q-statistics) based on
Tsallis entropy has been proposed as a generalization of BG
statistics. This new statistics is attracting a great of atten-
tion since it has been developed as a very useful tool for
statistical description of the complex systems whose certain
properties are beyond the scope of BG statistics due to, for
instance, the long-range interactions (Gell-Mann and Tsal-
lis 2004; Abe and Okamoto 2001; Boon and Tsallis 2005;
Tsallis et al. 2005; Tamarit and Anteneodo 2005; Abe et al.
2005; Plastino 2005). It has been applied extensively to deal
with increasing varieties of interesting physical problems,
among which self-gravitating systems and plasma systems
offer the best framework for searching into the nonextensive
effects because the long-range interactions between parti-
cles play a fundamental role in determining the properties of
such systems (Lima et al. 2002, 2000; Lavagno and Quarati
2006; Du 2004a, 2004b, 2004c, 2004d, 2005, 2006a; Leub-
ner 2004, 2005; Leubner and Voros 2004).

A lot of works on the applications of the q-statistics to
the fields of astrophysics have been made in recent years.
However, in the light of present understanding, the statisti-
cal base suitable for the long-rang interacting systems, such
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as the self-gravitating system with inhomogeneous veloc-
ity dispersion, has still not been well established and, espe-
cially, the true physical nature of the nonextensive parameter
q has not been well understood yet (Cohen 2002; Baranger
2002; Plastino 2004, 2005; Boon and Tsallis 2005; Tsallis
et al. 2005; Tamarit and Anteneodo 2005; Abe et al. 2005).
We need to know under what circumstances, e.g. which
class of nonextensive systems and under what physical situ-
ation, should the q-statistics be used for their statistical de-
scription. It has been very important how to understand the
physical meaning of q and how to determine this parameter
from the microscopic dynamics of the systems with long-
range interactions (for instance, the self-gravitating sys-
tems) in the q-statistics and its applications to astrophysics
and other fields (Tsallis and Brigatti 2004; Tsallis 2004;
Tsallis et al. 2002; Pluchino et al. 2004; Almeida 2001;
Lavagno and Quarati 2006, Du 2004a, 2004b, 2004c, 2004d,
2005, 2006a; Shaikh et al. 2006; Wuensche et al. 2004;
Wu and Chen 2007).

Usually, the structure and stability of the self-gravitating
many-body systems being at the statistical equilibrium are
studied in terms of the maximization of the thermodynamic
potential (BG entropy) under the constraints of fixed total
mass and fixed total energy. This thermodynamic approach
leads to Maxwell–Boltzmann (MB) distribution, an isother-
mal configuration that has been studied for a long time
in the context of the self-gravitating systems such as stel-
lar and galactic structure (Chandrasekhar 1942; Binney and
Tremaine 1987). However, the isothermal sphere is found
to be with infinite mass and infinite energy, thus exposed
to contradiction with the requirement for finite mass and fi-
nite energy. Moreover, due to the long-range nature of the
gravitational forces, the self-gravitating system is generally
nonequilibrium and open. It often could reach to the hydro-
static equilibrium or the nonequilibrium stationary-state, but
not to the state of thermal equilibrium. The isothermal con-
figuration known about the self-gravitating systems is cor-
responding to the meta-stable locally mixing state only, not
the true equilibrium state.

The kinetic theory of the systems with long-range inter-
particle interactions has not been well understood yet. The
main difficulties for the self-gravitating many-body systems
are how rigorously to deal with the kinetics about the many-
body collisions due to the long-range nature of the inter-
particle gravitational interactions. The simplest case of such
examples is the two-body encounters (Binney and Tremaine
1987): the motion of one particle is driven by the gravita-
tional potential of the whole system and so the particle ex-
periences quite a lot of two-body encounters. In a sense,
each particle is constantly feeling the influences by all the
other particles of the system. The long-range interactions
and the non-local or global correlations within the system
make the energy of particles not to be constant during the

tow-body encounters. In other words, the total energy of
the particles is nonextensive. While the total momentum
of tow particles is also not conservation during the tow-
body encounters because of presence of the external force
field, which is different from the cases in the systems with
short-range interparticle interactions. These facts inspire us
to seek the new kinetic approach to describe the global cor-
relations and the nonextensive thermodynamic properties of
the self-gravitating many-body systems. The nonextensive
q-statistics based on Tsallis’ entropy may be relevant for
the non-local description of such systems (Plastino 2005;
Leubner 2005; Du 2006a, 2006b, 2006c).

In this paper, we study the nonextensivity and the pos-
sible power-law distributions for the systems with self-
gravitating long-range interactions from the q-kinetic theory
based on Tsallis entropy. Correspondingly, we determine the
nonextensive parameter q from the microscopic dynamical
equations under the different astrophysical situations, pre-
senting the distribution functions the physical meanings. In
Sect. 2, we deal with the generalized Boltzmann equation
in the q-kinetic theory and discuss the necessary and suffi-
cient condition for the solutions when the systems reach the
q-equilibrium so as to derive the power-law distributions.
In Sect. 3, we deal with the power-law distribution func-
tions for three different astrophysical situations, where the
nonextensivity of the self-gravitating many-body systems is
studied by introducing the q-generalization of the conser-
vation of energy. We derive the formula expressions of the
nonextensive parameter q and so present the power-law dis-
tributions clearly physical interpretations. Finally in Sect. 4,
we give the summary and conclusions.

2 The generalized Boltzmann equation and the
q-kinetic theory

To begin with, we briefly recall the standard kinetic theory
in BG statistics. When we consider the system with N parti-
cles interacting via the Newtonian gravitation F = −∇ϕ(r),
if let f (r,v, t) be the distribution function of the parti-
cles at time t , position r and with the velocity v, the dy-
namical behavior of the system can be described usually
by the Boltzmann equation (Chapman and Cowling 1970;
Wang 1978),

∂f

∂t
+ v · ∂f

∂r
− ∇ϕ · ∂f

∂v
= C(f ), (1)

where ϕ is the potential and C(f )is the collision term that,
under the approximation of two-body collision, is given by

C(f ) =
∫ ∫

(f ′f ′
1 − ff1)dv1�d�. (2)
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By using the H theorem we get C(f ) = 0 and

lnf + lnf1 = lnf ′ + lnf ′
1 (3)

when the system reaches the equilibrium state. The behav-
ior of (3) is like a moving constant (conservation quantity).
With the assumption that the total particle numbers, the total
momentums and the total kinetic energy of the tow particles
conserve during the tow-body collisions, we can derive the
celebrated MB distribution function as the equilibrium dis-
tribution of the system, expressed by

f (r,v) =
(

m

2πkT

) 3
2

n(r) exp

(
−mv2

2kT

)
, (4)

where T temperature is a constant and m is the mass of
each particle. The density distribution is therefore given by
n(r) = n0 exp[−m[ϕ(r)−ϕ0]/kT ], where n0 and ϕ0 are the
density of particles and the gravitational potential at r = 0,
respectively. In the galactic dynamics, this equilibrium dis-
tribution is usually be written for the spherically symmetric
stellar systems (Binney and Tremaine 1987) as

f (r,v) = ρ1

(2πσ 2)3/2
exp

(
−

1
2 v2 − ψ(r)

σ 2

)
, (5)

an isothermal configuration that has been studied for a long
time in the context of the self-gravitating systems such as
stellar and galactic structure, where σ is called the velocity
dispersion, formally corresponding to σ = √

kT /m,ψ(r) =
−ϕ(r)+ϕ0 is called the relative potential, and ρ1 is the den-
sity at r = 0. The gravitational potential should satisfy the
Poisson’s equation, i.e.

∇2ϕ = 4πGmn = 4πGρ. (6)

We now may introduce Tsallis entropy and the nonexten-
sive statistics. Tsallis entropy (Tsallis 1988) is

Sq = −k
∑

i

p
q
i lnq pi, (7)

where k is the Boltzmann constant, pi is the probability
that the system under consideration is in its ith configura-
tion such that

∑
i pi = 1, q is a real number whose devi-

ation from unity is considered for measuring the degree of
nonextensivity of the system, and the q-logarithmic function
is defined by

lnq f = f 1−q − 1

1 − q
. (8)

Correspondingly, the q-exponential function is defined by

eq(f ) = [1 + (1 − q)f ]1/1−q, (9)

BG entropy and the standard logarithmic function in BG
statistics are recovered from them if we take q → 1, SB =
limq→1 Sq = −k

∑
i pi lnpi , and limq→1 lnq f = lnf . The

most distinguishing feature of the q-statistics is the nonex-
tensivity (pseudoadditivity) for the entropy and the energy.
If two compositions A and B are independent in the sense
of factorization of the microstate probabilities with the en-
ergy spectrum {εA

i } and {εB
j }, respectively, the Tsallis en-

tropy and the energy spectrum corresponding to the com-
posite system A ⊕ B can be written, respectively, by

Sq(A ⊕ B) = Sq(A) + Sq(B)

+ (1 − q)k−1Sq(A)Sq(B) and
(10)

εA⊕B
ij (q) = 1

(1 − q)β
{1 − [1 − β(1 − q)εA

i ]

× [1 − β(1 − q)εB
j ]},

where β is the Lagrange parameters: β = 1/kT . Thus the
entropy and the energy are both nonextensive in Tsallis
q-statistics. When we take the q → 1 limit, the extensivity
(the standard additivity) of them in BG statistics is perfectly
recovered.

In the q-kinetic theory based on the Tsallis entropy, if let
fq(r,v, t)be the nonextensive distribution function of par-
ticles in the system with the long-range interacting poten-
tial ϕ(r), Boltzmann equation (1) can be generally general-
ized by the q-equation,

∂fq

∂t
+ v · ∂fq

∂r
− ∇ϕ · ∂fq

∂v
= Cq(fq), (11)

where Cq is called the q-collision term through which the
nonextensivity effects can be incorporated. Under the as-
sumption of tow-body collisions, it may be defined as

Cq(fq) =
∫ ∫

Rq(fq, f ′
q)�dv1d�, (12)

where (Lima et al. 2001)

Rq(fq, f ′)q = eq(f ′q−1 lnq f ′
q + f ′

q1
q−1 lnq f ′

q1)

− eq(f q−1 lnq fq + f
q−1
q1 lnq fq1).

In the limit q → 1, we have limq→1 Rq = f ′f ′
1 − ff1, thus

recovering the form in the standard kinetic theory. By us-
ing a nonextensive generalization of the “molecular chaos
hypothesis” to Tsallis statistics, it has been verified (Lima
et al. 2001) that the solutions of the generalized Boltz-
mann equation (11) stratify the q-H theorem and they con-
verge irreversibly towards the equilibrium q-distribution,
fq(r,v). The necessary and sufficient condition for such a
q-equilibrium is

lnq fq + lnq fq1 = lnq f ′
q + lnq f ′

q1, (13)
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which determines the distribution function for the q-equilib-
rium. This implies that the sum of q-logarithms becomes
the moving constant during the q-collisions. When fq(r,v)

is determined by the condition (13), we have Cq(fq) = 0
and (11) becomes

v · ∂fq

∂r
− ∇ϕ · ∂fq

∂v
= 0. (14)

In other words, both the collisions and the movements
would not lead to any variations of the q-distribution. This
q-distribution function is stable. For the convenience to use,
equivalently we can write (14) as

v · ∇f
1−q
q − ∇ϕ · ∇vf

1−q
q = 0, (15)

where we have denoted ∇ = ∂/∂r and ∇v = ∂/∂v. Actually,
(15) is similar to the Vlasov equation, which can also be de-
rived directly by the Jeans theorem (Binney and Tremaine
1987). It should be kept in mind that any distribution func-
tions that are considered for describing the equilibrium of
the nonextensive system with long-range potential must sat-
isfy (15).

3 The power-law distributions from the q-kinetic
theory

We now apply (13) to the systems with self-gravitating long-
range interactions to determine their distribution functions,
then we use (15) to investigate the properties of the distri-
bution functions and to determine the formula expression
of the nonextensive parameter. With the q-kinetic theory,
we firstly need to know who are the moving constants dur-
ing the tow-body q-collisions. In the galactic dynamics, the
collision is usually referred to the encounter since the true
collision between particles is very few. The encounters are
some slowly dynamical processes, representing the interpar-
ticle long-range interactions (while the usual collision is a
rapid dynamical process, it plays a main role in the gaseous
dynamics). For the self-gravitating systems, the total par-
ticle number conserves during the encounters, but the total
momentum does not conserve because of presence of the ex-
ternal force field. Due to the self-gravitating long-range in-
teractions and the non-local or global correlations within the
system, generally speaking, the energy of particles behaves
nonextensively. For example, the total energy of particles is
not constant before and after the tow-body encounters, es-
pecially when the system is endowing a violent relaxation
where the potential function varies with time (Binney and
Tremaine 1987).

3.1 The power-law distribution for the nonextensive
system with self-gravitating long-range interactions

For the nonextensive system with the self-gravitating long-
range interactions, in a sense, each particle is constantly
feeling the influences by all the other particles in the sys-
tem due to the long-range nature of gravitation. Addition-
ally, if the system is endowing a violent relaxation, the po-
tential function varies with time, which implies that only the
particle number behaves as the moving constant, while the
total energy and the total momentum are both not constant
during the two-body encounters. We regard the two-body
encounters as the tow-body q-collisions, the total energy of
particles is nonextensive, and the nonextensive form of total
energy can be considered as the moving constant during the
tow-body q-collisions, i.e.

εK+P
q + εK+P

q1 = ε′K+P
q + ε′K+P

q1 . (16)

Thus, from (13) we have

lnq fq = a0 + a1εq
K+P , (17)

where a0 and a1 are the arbitrary coefficients, the upper in-
dex K denotes the kinetic energy, P the potential energy.
The energy is taken as

εK+P
q (q) = 1

(1 − q)β

{
1 −

[
1 − β(1 − q)

1

2
mv2

]

× [1 + β(1 − q)mψ]
}
, (18)

where we have used (10). The nonextensive form of total en-
ergy represents the long-range interparticle interactions and
the non-local correlations within the system. For instance,
two particles can be considered as two compositions before
the encounter and they can be regarded as one “system” after
the encounter, so the total energy of the “system” is nonex-
tensive during the two-body encounter. While the nonexten-
sive form of the energy can be expressed as (18) in terms
of (10) because v and r are independent variables and then
K and P are independent in the sense of factorization of the
probabilities. Therefore, (16) is a naturally generalized form
of the conservation of energy for the nonextensive system
with the long-range interactions. In the limit q → 1, we have
εK+P

1 = 1
2mv2 − mψ , thus recovering the standard energy

additivity.
Let a0 = (A

1−q
q − 1)/(1 − q) and a1 = −βA

1−q
q , from

(17) we can derive a power-law distribution function,

fq(r,v) = Aq [1 − (1 − q)βεK+P
q ]1/1−q

= Aq [1 + (1 − q)βmψ]1/1−q

× [1 − (1 − q)βmv2/2]1/1−q . (19)
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Or, with the velocity dispersion σ 2 instead of kT /m, this
distribution function can be equivalently written as

fq(r,v) = Bqρ1

(2πσ 2)3/2
[1 + (1 − q)ψ/σ 2] 1

1−q

× [1 − (1 − q)v2/2σ 2] 1
1−q , (20)

where we have denoted Aq = Bqρ1/(2πσ 2)3/2. Bq is a
q-dependent normalized constant. The velocity dispersion
σ is now a function of the space coordinate r. From (20) we
can get the density distribution function,

ρ = ρ1[1 + (1 − q)ψ/σ 2] 1
1−q

= ρ1[1 − (1 − q)(ϕ − ϕ0)/σ
2] 1

1−q . (21)

In the limit q → 1, the MB distribution (5) is perfectly re-
covered from (20). Thus, the MB distribution is generalized
for q �= 1 by the power-law one.

As we know, any functions considered as the equilibrium
distribution of the self-gravitating system must satisfy (15).
We now investigate the properties of the above distribution
function and determine the corresponding nonextensive pa-
rameter q . For (20) we consider

∇f
1−q
q =

[
1 − (1 − q)

v2

2σ 2

]{[
1 − (1 − q)

ψ

σ 2

]
∇A

1−q
q

− A
1−q
q (1 − q)∇

(
ψ

σ 2

)}

+ A
1−q
q

[
1 − (1 − q)

ψ

σ 2

]
(1 − q)v2σ−3∇σ, (22)

∇vf
1−q
q = −A

1−q
q

[
1 − (1 − q)

ψ

σ 2

]
(1 − q)σ−2v. (23)

Substituting them into (15) we have

v ·
[

1 − (1 − q)
v2

2σ 2

]{[
1 − (1 − q)

ψ

σ 2

]
∇A

1−q
q

− A
1−q
q (1 − q)∇

(
ψ

σ 2

)}

+ v · A1−q
q

[
1 − (1 − q)

ψ

σ 2

]
(1 − q)v2σ−3∇σ

+ ∇ϕ · A1−q
q

[
1 − (1 − q)

ψ

σ 2

]
(1 − q)σ−2v = 0. (24)

In this equation, the sum of coefficients of the first power and
the third power for the velocity v must vanish, respectively,
because v and r are independent variables. Thus, we obtain
the sum of coefficients of the first power of v,
[

1 − (1 − q)
ψ

σ 2

]
∇A

1−q
q − A

1−q
q (1 − q)∇

(
ψ

σ 2

)

+ (1 − q)A
1−q
q

[
1 − (1 − q)

ψ

σ 2

]∇ϕ

σ 2
= 0, (25)

and the sum of coefficients of the third power of v,

−1 − q

2σ 2

{[
1 − (1 − q)

ψ

σ 2

]
∇A

1−q
q − A

1−q
q (1 − q)∇

(
ψ

σ 2

)}

+ (1 − q)A
1−q
q

[
1 − (1 − q)

ψ

σ 2

]
σ−3∇σ = 0. (26)

Combining (25) with (26), we find an exact formula expres-
sion between the nonextensive parameter 1 − q , the velocity
dispersion gradient and the gravitational acceleration:

(1 − q)∇ϕ + 2σ∇σ = 0. (27)

For spherically symmetric systems, it can be written as

1 − q = −2σ
dσ

dr

/
dϕ

dr
= −2σ

dσ

dr

/
GM(r)

r2
. (28)

These relations imply that q is equal to unity if and only
if ∇σ is equal to zero. So the power-law distribution func-
tion (20) with q different from unity describes the non-
equilibrium characteristic of the self-gravitating system. The
above formula expressions relate the nonextensive parame-
ter q to the velocity dispersion and the gravitational acceler-
ation, thus presenting q �= 1 a clearly physical interpretation.
It is clear that the values of (1 − q) represent the character-
istic of the long-range interactions and the non-local corre-
lations within the system. If combining (27) with Poisson’s
equation, we can connect 1 − q with the mass density and
the inhomogeneous velocity dispersion by

σ∇2σ + (∇σ)2 = −2πG(1 − q)ρ. (29)

So we find

1 − q = −σ∇2σ + (∇σ)2

2πGρ
. (30)

The values of q can be determined completely by the in-
teresting measurable quantities: the velocity dispersion and
the mass density; everything of its connections with the non-
equilibrium characteristics of the system can be taken in at a
glance. Therefore, (20) represents the properties of the non-
local or the global correlations within the system with the
self-gravitating long-range interactions when being at the
nonequilibrium stationary-state.

Furthermore, we use Poisson’s equation (6), ∇2ψ =
−4πGρ, which can be expressed for spherically symmetric
systems by

1

r2

d

dr

(
r2 dψ

dr

)
= −4πGρ. (31)
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Combining (31) with the density distribution (21) and
eliminating the potential function ψ , we can derive a
second-order nonlinear differential equation for the radial
density dependence of the self-gravitating system,

d2ρ

dr2
+ 2

r

dρ

dr
− q

ρ

(
dρ

dr

)2

+ 2

σ

(
dσ

dr

)(
dρ

dr

)

+ 4πG

σ 2
ρ2

(
ρ

ρ1

)q−1

= 0. (32)

This equation is exactly the same as that one proposed
recently for the density distribution of dark matter if let
dσ/dr = 0 (Leubner 2005), thus generalizing Leubner’s
equation to the system with the inhomogeneous velocity dis-
persion. We may connect it with the density profile for a dark
matter, which was found accurately to reproduce the den-
sity profiles generated by N -body and hydrodynamic sim-
ulations for the self-gravitating systems. If we let q = 1,
then (32) becomes

d2ρ

dr2
+ 2

r

dρ

dr
− 1

ρ

(
dρ

dr

)2

+ 4πG

σ 2
ρ2 = 0. (33)

This is just the form in the case of the MB isothermal sphere
(Binney and Tremaine 1987).

3.2 The power-law distribution for the self-gravitating
collisionless system

If the particles are moving in a smooth mean potential
ψ(r)of the whole self-gravitating system, then they may
be approximately assumed to be collisionless, in which the
week interactions between the particles are actually ignored
or neglected (Binney and Tremaine 1987). For such a col-
lisionless system, the q-collision term in (11) is believed to
vanish. For this case, it is usually expected that the total en-
ergy of the particles is fixed and it behaves like the moving
constant, i.e.

m

(
1

2
v2 + ψ

)
+ m1

(
1

2
v2

1 + ψ1

)

= m

(
1

2
v′2 + ψ ′

)
+ m1

(
1

2
v′2

1 + ψ ′
1

)
. (34)

Of course, the total particle number conserves, but the total
momentum does not conserve because of presence of the
external force field. Thus, from (13) we have

lnq fq = a0 + a1m

(
1

2
v2 − ψ

)
, (35)

where a0 and a1 are the arbitrary coefficients. Let a0 =
(A

1−q
q − 1)/(1 − q) and a1 = −βA

1−q
q , we can derive the

power-law distribution function,

fq(r,v) = Aq

[
1 − (1 − q)

m

kT

(
v2

2
− ψ

)]1/1−q

, (36)

where Aq is a q-dependent normalized parameter. As usual,
if we use the velocity dispersion σ 2 instead of kT /m in (36),
it can be written equivalently by

fq(r,v) = Bqρ1

(2πσ 2)3/2

[
1 − (1 − q)

v2/2 − ψ

σ 2

]1/1−q

, (37)

where we have denoted Aq = Bqρ1/(2πσ 2)3/2. It is clear
that in the limit q → 1 this distribution recovers the MB dis-
tribution correctly. The power-law distribution function (37)
is just that one presented for a collisionless stellar system
by Lima and Souza (2005) in terms of a phenomenological
analysis.

In (35), if let a0 = 1/(q − 1) and a1 = A1−q/(q − 1)m,
we can write the power-law distribution as

fq(r,v) = A

[
−v2

2
+ ψ

]1/1−q

, (38)

where A is also a q-dependent normalized parameter.
Therefore, (37) and (38) actually represent an identical
q-equilibrium state. Now we may give them a clear micro-
scopic dynamical meaning. Equation (38) is just the dis-
tribution function derived in terms of maximizing Tsallis
entropy for a fixed total mass and fixed total energy (Plas-
tino and Plastino 1993; Taruya and Sakagami 2002), where
A was defined by A = [(q − 1)β/q]1/1−q . By a formal
comparison between the distribution function (38) and the
so-called stellar polytropic distribution, some authors of-
ten connected the nonextensive parameter q with the poly-
trope index n using the relation n = 3

2 + 1/(q − 1). And
just for this reason, many authors have often called this
distribution the stellar polytropes (Chavanis and Sire 2005;
Sakagami and Taruya 2004; Chavanis 2006). However, we
will prove here that such an understanding may be incor-
rect, and (38) or (37) is not the polytropic distribution but
the Tsallis isothermal spheres.

The properties of the distribution functions, (37) or (38)
can be studied by using (15) because any distribution
functions used for describing the equilibrium of the self-
gravitating system must satisfy this equation. For (37), we
may consider

∇f
1−q
q = −

[
Bqρ1

(2π)3/2

]
(1 − q)σ−3(1−q)−1

×
[

3∇σ − ∇ψ

σ
− (5 − 3q)

∇σ

σ 2

(
v2

2
− ψ

)]
,

(39)

∇vf
1−q
q = −

[
Bqρ1

(2π)3/2

]
(1 − q)σ−3(1−q)−2v. (40)

Substitute them into (15) we have

−v ·
[

3∇σ − σ−1∇ψ − (5 − 3q)σ−2∇σ

(
v2

2
− ψ

)]
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+ σ−1v · ∇ϕ = 0. (41)

Let the sum of coefficients for the first power and the third
power of the velocity v vanish, respectively, we find, for any
values of q ,

∇σ = 0. (42)

This implies that the distribution function (37) represents the
isothermal processes in the system. Also, if we substitute the
distribution function (38) into (15), we have, for any values
of q ,

∇A = 0, i.e. ∇T = 0. (43)

Thus (38) also represents the isothermal processes in the
system.

The above analyses show that the power-law distribu-
tion functions, (37) and (38), are both the Tsallis isother-
mal spheres for any q �= 1, and when q = 1 they become the
MB isothermal sphere. So, strictly speaking, the power-law
distribution function (38) is not in agreement with the poly-
tropic state we have usually known, because the polytropic
process is a nonisothermal ones with the various polytropic
index n, only when the index n → ∞ is it isothermal. Thus
from the q-kinetic theory we can derive the power-law dis-
tribution functions, (37) and (38), of the self-gravitating col-
lisionless systems, but also obtain the clearly understanding
of their physical properties.

3.3 The power-law distribution for the self-gravitating
gaseous dynamical system

For the self-gravitating gaseous dynamical systems, such as
the matter inside a normal star, instead of the encounter,
the collisions between the particles play a main role in the
gaseous dynamics. The collisions are the rapid dynamical
processes. While the nonextensivity effects introduced by
the encounters (i.e. slow dynamical processes in the gas with
interparticle long-range interactions) can be incorporated as
the q-collision in the nonextensive q-kinetic theory. For this
case, the total particle number, the total moment and the to-
tal kinetic energy conserve during the two-body q-collisions
and they behave like the moving constants (Chapman and
Cowling 1970; Wang 1978), i.e.

mv + m1v1 = mv′ + m1v′
1,

(44)
1

2
mv2 + 1

2
m1v

2
1 = 1

2
mv′2 + 1

2
m1v

′
1

2
.

So, from (13) we have

lnq fq = a0 + a1 · mv + a2
1

2
mv2, (45)

where a0 and a2 are arbitrary coefficients and a1 is an ar-
bitrary constant vector. If let a0 = (B1−q − 1)/(1 − q) −
1
2mβv2

0B1−q , a1 = −βB1−qv0 and a2 = −βB1−q , then we
can derive the power-law distribution function in the famil-
iar form,

fq(r,v) = B

[
1 − (1 − q)

m(v − v0)
2

2kT

]1/1−q

, (46)

where v0 is the barycentric velocity of the system, B =
Bqρ(m/2πkT )3/2 and Bq is a q-dependent normalized con-
stant. Formally the distribution function (46) is the same as
the q-Maxwell’s distribution proposed by Silva et al. (1998),
but now the density ρ and temperature T are dependent on
the space coordinate r. So, (46) generalizes the MB distrib-
ution to the inhomogeneous case in the q-kinetic theory.

To study the properties of the power-law distribution (46)
and determine the corresponding nonextensive parameter q ,
we may consider

∇f
1−q
q =

[
1 − (1 − q)

m(v − v0)
2

2kT

]
∇B1−q

− B1−q(1 − q)
m(v − v0)

2

2k
∇

(
1

T

)
, (47)

∇vf
1−q
q = −B1−q(1 − q)

m(v − v0)

kT
,

and substitute them into (15),
[

1 − (1 − q)
m(v − v0)

2

2kT

]
v · ∇B1−q

− B1−q(1 − q)
m(v − v0)

2

2k
v · ∇

(
1

T

)

+ B1−q(1 − q)
m(v − v0)

kT
· ∇ϕ = 0. (48)

In this equation, the sum of coefficients for the zeroth, the
first, the second and the third power of the velocity v must
vanish, respectively. For the coefficients of the first power
of v, we have

∇B1−q − (1 − q)
mv2

0

2kT

[
∇B1−q + B1−qT ∇

(
1

T

)]

+ B1−q(1 − q)
m∇ϕ

kT
= 0, (49)

For the coefficients of the second and the third power of v,
we have

∇B1−q + B1−qT ∇
(

1

T

)
= 0. (50)

For the terms of the zeroth power of v, we find

v0 · ∇ϕ = 0. (51)
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Substituting (50) into (49) we get

∇B1−q + B1−q(1 − q)
m∇ϕ

kT
= 0. (52)

Combining (52) with (50), we exactly find a relation be-
tween the nonextensive parameter q , the temperature gradi-
ent and the gravitational acceleration:

k∇T + (1 − q)m∇ϕ = 0. (53)

The fact that q is different from unity if and only if ∇T �= 0
is got at a glance. This formula expression for q was derived
firstly in 2004 (Du 2004a, 2004b). And then it led to a test
of nonextensive statistics by the solar sound speed measured
in helioseismology (Du 2006b). From the above q-kinetic
analyses we clearly know which class of nonextensive sys-
tems and under what physical situations the generalized MB
distribution (46) is suitable for their statistical description.

Applying Poisson’s equation to (53) we easily get

1 − q = −k∇2T/4πGρm. (54)

Equations (53) and (54) relate closely q �= 1 to the non-
local or global characteristics of the gaseous dynamical sys-
tem with the self-gravitating long-range interactions when it
is in the nonequilibrium stationary-state, thus presenting a
clearly physical interpretation for the parameter q different
from unity.

The other property of the power-law distribution (46) can
be analyzed from the condition (51). This condition gives
a constraint to v0, the macroscopic entirety-moving velocity
of the gaseous system, when the system reaches the nonequi-
librium stationary-state. It requires that v0 should always be
vertical to the gravitational force.

Furthermore, from (52) we can derive the density distri-
bution,

ρ(r) = ρ1

(
T

T0

)3/2

exp

[
−m

k

∫ ∇ϕ

T
· dr + mϕ0

kT0

]
, (55)

where ρ1, T0, ϕ0 are the integral constants, they denote the
density, the temperature and the potential at r = 0, respec-
tively. If q = 1 we have ∇T = 0 and T = T0 = constant, and
then (55) recovers the density profiles in the standard MB
distribution. Thus, (46) generalizes the MB distribution in
the q-kinetic theory for the nonequilibrium self-gravitating
gaseous system with the non-local characteristics: ∇T �= 0.

4 Summary and conclusions

In this article, we apply the nonextensive q-kinetic the-
ory based on Tsallis entropy to study the power-law dis-
tributions for the many-body systems with self-gravitating

long-range interactions. We first deal with the generalized
Boltzmann equation in the q-kinetic theory that may be
used for governing the self-gravitating system. On the ba-
sis of the q-H theorem, the solutions of the generalized
Boltzmann equation can converge irreversibly towards the
q-equilibrium distribution function, fq(r,v), therefore they
must satisfy (13), a necessary and sufficient condition for
this q-equilibrium of the system. Equation (13) implies that
the sum of q-logarithms is the moving constant during the
two-body q-collisions. In the light of the different phys-
ical situations of the system under consideration, we are
able to derive the q-equilibrium distribution functions, the
q-dependent power-law distributions. Furthermore, by us-
ing the microscopic dynamical equation (15), the properties
of the power-law distribution functions can be precisely ana-
lyzed, the formula expressions of the corresponding nonex-
tensive parameter q can been uniquely determined, and so
the physical interpretations of q different from unity can be
clearly presented.

Under three different physical situations for the self-
gravitating systems, we deal with the nonextensive power-
law distributions in the q-kinetic theory.

Firstly, we consider the self-gravitating many-body sys-
tem where the two-body encounters play a main role in the
microscopic dynamics. Due to the long-range nature of the
self-gravitating interactions and the non-local or global cor-
relations within the system, in a sense, each particle is con-
stantly feeling the influences by all the other particles in
the system. The energy of particles behaves nonextensively.
Thus, only the particle number is the moving constant dur-
ing the two-body encounters, while the total energy and the
total momentum are both not the moving constant. For such
a case, the total energy of particles is nonextensive. The en-
counters can be regarded as the q-collisions and the nonex-
tensive form of the energy can be considered as the moving
constant during the two-body q-collisions. So we obtain the
power-law distribution function, (20), for the nonextensive
system with self-gravitating long-range interactions. Fur-
thermore, using the microscopic dynamical equation (15),
we study the physical properties of the power-law distrib-
ution function and obtain the formula expression of the q

parameter, (27). Moreover, by the formula (30) we establish
a relation between the nonextensive parameter q and the in-
teresting measurable quantities: the velocity dispersion gra-
dient and the mass density of the system, thus presenting
q �= 1 a clearly physical interpretation. We show that (20)
generalizes the MB distribution to the physical situation
of the system with the inhomogeneous velocity dispersion
(i.e. dσ/dr �= 0) and so correctly describes the non-local
or global correlations within the self-gravitating many-body
system being in the nonequilibrium stationary-state.

Using Poisson’s equation, we also derive a second-order
nonlinear differential equation for the radial density depen-
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dence of the self-gravitating system (32), which can de-
scribe the radial density distribution of the dark matter un-
der the physical situation of dσ/dr �= 0. It was found to
be able to reproduce accurately the density profiles gener-
ated by N -body and hydrodynamic simulations for the self-
gravitating systems. When q = 1, this equation correctly re-
duces to the case of MB isothermal sphere.

Secondly, we study the so-called self-gravitating colli-
sionless system, where the total energy of the particles is
fixed during their moving in the mean potential ψ(r) of the
whole system. For this case, the particle number and the to-
tal energy behave like the moving constant. We derive the
power-law distribution function (37) or, equivalently, (38). It
is shown that this power-law distribution function describes
the physical situation of Tsallis isothermal sphere, which is
with the homogeneous velocity dispersion: ∇σ = 0 for the
arbitrary values of q �= 1. It is not the stellar polytropic as
called by some authors because (38) is not in agreement with
the properties of polytropic state. When we take q = 1, the
MB isothermal sphere is recovered from the power-law dis-
tribution.

Thirdly, we revisit the self-gravitating gaseous dynam-
ical system, where the interparticle collisions play a main
role in the gas dynamics. While the nonextensivity effects
introduced by the interparticle long-range interactions can
be incorporated as the q-collision. For such a case, we think
that the total particle number, the total moment and the to-
tal kinetic energy conserve during the tow-body q-collisions
and they behave like the moving constant, so the power-law
distribution function (46) is obtained, which is shown to rep-
resent the non-local or global correlations within the self-
gravitating gas being in the nonequilibrium stationary-state
with ∇T �= 0.

All the power-law distribution functions for the systems
with self-gravitating long-range interactions can be derived
by the condition (13) if only we have known or determined
the moving constants in accordance with the different physi-
cal situations of the interacting particles in the systems. Fur-
thermore, the formula expressions of the nonextensive pa-
rameter q different from unity for the various cases can be
determined by using the dynamical equation (15), and there-
fore their physical meanings can be clearly presented.
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