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Abstract A new class of exact solutions of Einstein’s field

equations with perfect fluid for an LRS Bianchi type-I space-

time is obtained by using a time dependent deceleration pa-

rameter. We have obtained a general solution of the field

equations from which three models of the universe are de-

rived: exponential, polynomial and sinusoidal form respec-

tively. The behaviour of these models of the universe are also

discussed in the frame of reference of recent supernovae Ia

observations.

Keywords Cosmology · Deceleration parameter · Variable

cosmological term

1. Introduction

The Bianchi cosmologies play an important role in theoreti-

cal cosmology and have been much studied since the 1960s.

A Bianchi cosmology represents a spatially homogeneous

universe, since by definition the spacetime admits a three-

parameter group of isometries whose orbits are spacelike

hyper-surfaces. These models can be used to analyze aspects

of the physical Universe which pertain to or which may be af-

fected by anisotropy in the rate of expansion, for example , the

cosmic microwave background radiation, nucleosynthesis in

the early universe, and the question of the isotropization of

the universe itself (MacCallum, 1979). For simplification and
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description of the large scale behaviour of the actual universe,

locally rotationally symmetric [henceforth referred as LRS]

Bianchi I spacetime have widely studied (Hajj-Boutros et al.,

1987; Ram, 1989; Mazumder, 1994; Pradhan et al., 2001;

Pradhan and Vishwakarma, 2000, 2002, 2004; Chakrabarty

and Pradhan, 2001; Mohanty et al., 2003). When the Bianchi

I spacetime expands equally in two spatial directions it is

called locally rotationally symmetric. These kinds of models

are interesting because Lidsey (1992) showed that they are

equivalent to a flat (FRW) universe with a self-interesting

scalar field and a free massless scalar field, but produced no

explicit example. Some explicit solutions were pointed out

in references (Aguirregabiria et al., 1993, 1966).

The Einstein’s field equations are coupled system of high

non-linear differential equations and we seek physical solu-

tions to the field equations for their applications in cosmol-

ogy and astrophysics. In order to solve the field equations

we normally assume a form for the matter content or that

spacetime admits killing vector symmetries (Kramer et al.,

1980). Solutions to the field equations may also be gener-

ated by applying a law of variation for Hubble’s parameter

which was proposed by Berman (1983). In simple cases the

Hubble law yields a constant value of deceleration parame-

ter. It is worth observing that most of the well-known models

of Einstein’s theory and Brans-Deke theory with curvature

parameter k = 0, including inflationary models, are mod-

els with constant deceleration parameter. In earlier literature

cosmological models with a constant deceleration parameter

have been studied by Berman (1983), Berman and Gomide

(1988), Johri and Desikan (1994), Singh and Desikan (1997),

Maharaj and Naidoo (1993), Pradhan et al. (2001), Pradhan

and Aotemshi (2002) and others. But redshift magnitude test

has had a chequered history. During the 1960s and the 1970s,

it was used to draw very categorical conclusions. The decel-

eration parameter q0 was then claimed to lie between 0 and
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1 and thus it was claimed that the universe is decelerating.

Today’s situation, we feel, is hardly different. Observations

(Knop et al., 2003; Riess et al., 2004) of Type Ia Supernovae

(SNe) allow to probe the expansion history of the universe.

The main conclusion of these observations is that the expan-

sion of the universe is accelerating. So we can consider the

cosmological models with variable cosmological term and

deceleration parameter. The readers are advised to see the

papers by Vishwakarma and Narlikar (2005) and Virey et al.

(2005) and references therein for a review on the determina-

tion of the deceleration parameter from Supernovae data.

Motivated with the situation discussed above, in this paper

we can focus upon the problem of establishing a formalism

for studying the relativistic evolution for a time dependent

deceleration parameter in an expanding universe. This paper

is organized as follows. The metric and the field equations

are presented in Section 2. In Section 3 we deal with a general

solution. The Sections 4, 5, and 6 contain the three different

cases for the solutions in exponential, polynomial and sinu-

soidal forms respectively. Finally in Section 7 concluding

remarks will be given.

2. The metric and field equations

We consider the LRS Bianchi type-I metric in the form

ds2 = dt2 − A2dx2 − B2(dy2 + dz2), (1)

where A and B are functions of x and t . The energy

momentum-tensor in the presence of perfect fluid has the

form

Ti j = (ρ + p)ui u j − pgi j , (2)

where ρ, p are the energy density, thermodynamical pressure

respectively and ui is the four velocity vector satisfying the

relations

ui u
i = 1, (3)

The Einstein’s field equations (in gravitational units c = 1,

G = 1) read as

Ri j − 1

2
Rgi j + �gi j = −8πTi j , (4)

where Ri j is the Ricci tensor; R = gi j Ri j is the Ricci scalar.

The Einstein’s field Equations (4) for the line element (1) has

been set up as

2B̈

B
+ Ḃ2

B2
− B ′2

A2 B2
= −8πp + �, (5)

Ḃ ′ − B ′ Ȧ
A

= 0, (6)

Ä

A
+ B̈

B
+ Ȧ Ḃ

AB
− B ′′

A2 B
+ A′ B ′

A3 B
= −8πp + �, (7)

2B ′′

A2 B
− 2A′ B ′

A3 B
+ B ′2

A2 B2
− 2 Ȧ Ḃ

AB
− Ḃ2

B2
= 8πρ − �. (8)

The energy conservation equation yields

ρ̇ + (p + ρ)

(
Ȧ

A
+ 2Ḃ

B

)
+ �̇ = 0, (9)

where dots and primes indicate partial differentiation with

respect to t and x respectively.

In order to completely determine the system, we choose a

barotropic equation of state

p = γρ, 0 ≤ γ ≤ 1. (10)

3. Solution of the field equations

Equation (6), after integration, yields

A = B ′

�
, (11)

where � is an arbitrary function of x . Equations (5) and (7),

with the use of Equation (11), reduces to

B

B ′
d

dx

(
B̈

B

)
+ Ḃ

B ′
d

dt

(
B ′

B

)
+ �2

B2

(
1 − B

B ′
�′

�

)
= 0. (12)

If we assume B ′
B to be a function of x alone, then A and B are

separable in x and t . Hence, after integrating Equation (12)

gives

B = �S(t), (13)

where S is a scale factor which is an arbitrary function of t .
Thus from Equations (11) and (13), we have

A = �′

�
S. (14)

Now the metric (1) is reduced to the form

ds2 = dt2 − S2[d X2 + e2X (dy2 + dz2)], (15)

where X = ln �. The mass-density, pressure and Ricci scalar

are obtained as

8πρ = 3

S2
[Ṡ2 − 1] + �, (16)
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Fig. 1 The plot of scale factor
S(t) vs time with parameters
k1 = 0.01, k2 = 0.5, and
γ = 0.5

8πp = 1

S2
[1 − Ṡ2 − 2S̈] − �, (17)

R = 6

S2
[S̈ + Ṡ2 − 1]. (18)

The function S(t) remains undetermined. To obtain its ex-

plicit dependence on t , one may have to introduce additional

assumption. To achieve this, we assume the deceleration pa-

rameter to be variable, i.e.

q = − SS̈

Ṡ2
= −

(
Ḣ + H 2

H 2

)
= b(variable), (19)

where H = Ṡ
S is the Hubble parameter. The above equation

may be rewritten as

S̈

S
+ b

Ṡ2

S2
= 0. (20)

The general solution of Equation (20) is given by∫
e
∫

b
S d Sd S = t + k, (21)

where k is an integrating constant.

In order to solve the problem completely, we have to

choose
∫

b
S d S in such a manner so that Equation (21) be

integrable.

Let us consider∫
b

S
d S = ln L(S), (22)

which does not effect the nature of generality of solution.

Hence from Equations (21) and (22), one can obtain∫
L(S)d S = t + k. (23)

Of course the choice of L(S) is quite arbitrary but, since

we are looking for physically viable models of the universe

consistent with observations, we consider the following three

cases:

4. Solution in the exponential form

Let us consider L(S) = 1
k1 S , where k1 is an arbitrary constant.

In this case, on integrating, Equation (23) gives the exact

solution

S(t) = k2ek1t , (24)

where k2 is an arbitrary constant. Using Equations (10) and

(24) in Equations (16)–(18), the mass-density, cosmological

term and Ricci scalar are obtained as

ρ(t) =
{

(3γ + 1)

γ + 1
− 3

8π

}
1

k2
2e2k1t

− 2k2
1

(1 + γ )k2

1

ek1t

−
{

(3γ + 1)

γ + 1
− 3

8π

}
k2

1, (25)

�(t) =
{

1

k2
2e2k1t

− k2
1

}(
3γ

1 + γ

)
− 2k2

1

(1 + γ )k2

1

ek1t
, (26)

R = 6
(
k2

1k2ek1t − 1
)

k2
2e2k1t

+ 6k2
1 . (27)

From Equation (24), since scale factor can not be nega-

tive, we find S(t) is positive if k2 > 0. From Fig.1, it can be

deduced that at the early stages of the universe i.e. near t = 0,

the scale factor of the universe had been approximately con-

stant and had increased very slowly. At an specific time the

universe has exploded suddenly and it has expanded to large

scale. This fits nicely with Big Bang scenario.

From Equations (25) and (26), it is observed that ρ(t) > 0

and �(t) > 0 for 0 < t < ∞ if 0 < k2 < 1. Figure 2 clearly

shows this behaviour of ρ(t).
From Equation (26), we observe that the cosmological

term is a decreasing function of time and it approaches

a small value as time progresses (i.e. the present epoch),

which explains the small and positive value of � at present

(Perlmutter et al., 1997, 1998, 1999; Riess et al., 1998, 2004;

Garnavich et al., 1998a, b; Schmidt et al., 1998). Figure 3

clearly shows this behaviour of � as decreasing function of

time. From Equation (27), we see that the Ricci scalar remain
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Fig. 2 The plot of energy density ρ(t) vs time with parameters k1 =
0.01, k2 = 0.5, and γ = 0.5

positive for

k1 >
1√

k2(1 + k2)
.

5. Solution in the polynomial form

Let L(S) = 1
2k3

√
S+k4

, where k3 and k4 are constants.

In this case, on integrating, Equation (23) gives the exact

solution

S(t) = α1t2 + α2t + α3, (28)

where α1, α2 and α3 are arbitrary constants. Using

Equations (10) and (28) in Equations (16)–(18), the mass-

density, cosmological term and Ricci scalar are obtained as

ρ(t) = [(1 + 3γ ) − (1 + 3γ )(2α1t + α2)2 − 4α1]

(1 + γ )(α1t2 + α2t + α3)2
, (29)

�(t) = [(2α1t + α2)2 − 2α1 − 1]

4π (1 + γ )(α1t2 + α2t + α3)2
, (30)

R = 6[(2α1t + α2)2 + 2α1 − 1]

(α1t2 + α2t + α3)2
(31)

From Equation (28), it is observed that S(t) > 0 for 0 ≤
t < ∞ if α1, α2 and α3 are positive constants. From Figure 4,

it is observed that the scale factor is a decreasing function of

time which means that our universe is expanding.

In order to have ρ > 0 for 0 ≤ t < ∞, we must have α2
2 >

2α1 + 1. From Equation (31) we observe that Ricci scalar

remains positive if α2
2 > 1−2α1

6
. This condition also implies

that α1 < 1
2
. Figure 5 clearly shows the decreasing behaviour

of ρ(t) as time increases and is always positive the interesting
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Fig. 3 The plot of cosmological term (�) vs time with parameters
k1 = 0.01, k2 = 0.5, and γ = 0.5
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Fig. 4 The plot of scale factor S(t) vs time with parameters α1 = 1.00,
α2 = 4.00, α3 = 1.00 and γ = 0.5

point is that all physical parameters in our model are defined

at t = 0 and we do not have any singularity.

It is observed from Equation (30) that �(t) remains al-

ways negative but decreasing function of time. From the

Fig. 6 it can be seen the behaviour of � as a decreasing func-

tion of time. By decreasing we mean its absolute magnitude

approaches zero which is acceptable physically. A negative

cosmological term adds to the attractive gravity of matter;

therefore, universe with a negative cosmological term is in-

variably doomed to recollapse. A positive cosmological term

resists the attractive gravity of matter due to its negative pres-

sure. For most universe cosmological term eventually domi-

nates over the attraction of matter and drives the universe to

expands exponentially.

6. Solution in the sinusoidal form

If we set L(S) = 1

β
√

1−S2
, where β is constant.
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Fig. 5 The plot of energy density ρ(t) vs time with parameters α1 =
1.00, α2 = 4.00, α3 = 1.00 and γ = 0.5
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Fig. 6 The plot of cosmological term (�) vs time with parameters
α1 = 1.00, α2 = 4.00, α3 = 1.00 and γ = 0.5

In this case, on integrating, Equation (23) gives the exact

solution

S = M sin(βt) + N cos(βt) + β1, (32)

where M , N and β1 are constants. Using Equations (10) and

(32) in Equations (16)–(18), the mass-density, cosmological

term and Ricci scalar are obtained as

4π (1 + γ )ρ

= [β2(M cos(βt) − N sin(βt))2 + β2(M sin(βt) − N cos(β1t)) − 1]

(M sin(βt) + N cos(βt) + β1)2
(33)

(1 + γ )�

= − [(1 + 3γ )β2(M cos(βt) − N sin(βt))2 − (1 + 3γ ) − 2k2
1 (M sin(βt) + N cos(βt))]

(M sin(βt) + N cos(βt) + β1)2

(34)

R = 6[(Mβ cos(βt) − Nβ sin(βt))2 − β2(M sin(βt) + N cos(βt)) − 1]

(M sin(βt) + N cos(βt) + β1)2
(35)

0 infinity

t
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Fig. 7 The plot of scale factor S(t) vs time with parameters M = 2.00,
N = 1.00, β = 10.00, β1 = 0.2, and γ = 0.5

0 infinity

t
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Fig. 8 The plot of energy density ρ(t) vs time with parameters M =
2.00, N = 1.00, β = 10.00, β1 = 0.2, and γ = 0.5

Since, in this case, we have many alternatives for choosing

values of M , N , β, β1, it is just enough to look for suitable

values of these parameters, such that the physical initial and

boundary conditions are satisfied. We are trying to find feasi-

ble interpretation and situations relevant to this case. Further

study in this case is in progress.

From the Fig. 7 it is observed that at early stages of the

universe, the scale of the universe increases gently and then

decreases sharply, and afterwords it will oscillate for ever.

From Fig. 8 and Fig. 9 we conclude that at early stages of

the universe the matter is created as a result of loss of vacuum

energy and at a particular epoch it has started to oscillate for

ever due to sinusoidal property. It worths mention here that

in this case oscillation takes place in positive quadrant which

has physical meaning.
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Fig. 9 The plot of cosmological term (�) vs time with parameters
M = 2.00, N = 1.00, β = 10.00, β1 = 0.2, and γ = 0.5

7. Conclusions

In this paper we have described a new class of LRS Bianchi

type I cosmological models with a perfect fluid as the source

of matter by applying a variable deceleration parameter. Gen-

erally, the models are expanding, non-shearing and isotropic

in nature.

The cosmological term in the model in Section 4 is a de-

creasing function of time and this approaches a small value

as time increases (i.e. present epoch). The value of the cos-

mological “term” for this model is found to be small and

positive which is supported by the results from recent super-

novae observations obtained by the High-Z Supernova Team

and Supernova Cosmological Project (Perlmutter et al., 1997,

1998, 1999; Riess et al., 1998, 2004; Garnavich et al., 1998;

Schmidt et al., 1998). The cosmological term in the model in

Section 5 is also a decreasing function of time but it is always

negative. A negative cosmological term adds to the attractive

gravity of matter; therefore, universe with a negative cosmo-

logical term is invariably doomed to recollapse. The cosmo-

logical term in Section 6 also decreases while time increases

to a specific instant. During this period as we can understand

from Fig. 9, we will have enough matter creation to force the

universe to oscillate for ever due to sinusoidal property of

�. This means we always have annihilation and creation of

matter permanently. At this point one more sentence may be

added to our discussion and i.e. as the graphs for � and ρ in

this case the explosion of the universe at the early stages of

its creation has been only a consequence of matter creation.
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