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Abstract A systematic study of the linear thermal instability

of a self-gravitating magnetic molecular cloud is carried out

for the case when the unperturbed background is subject to

local expansion or contraction. We consider the ambipolar

diffusion, or ion-neutral friction on the perturbed states. In

this way, we obtain a non-dimensional characteristic equa-

tion that reduces to the prior characteristic equation in the

non-gravitating stationary background. By parametric ma-

nipulation of this characteristic equation, we conclude that

there are, not only oblate condensation forming solutions,

but also prolate solutions according to local expansion or

contraction of the background. We obtain the conditions for

existence of the Field lengths that thermal instability in the

molecular clouds can occur. If these conditions establish,

small-scale condensations in the form of spherical, oblate, or

prolate shape may be produced via thermal instability.

Keywords ISM: clouds · ISM: molecules · ISM:

structure · Instabilities · Star: formation

1. Introduction

With the increase in the observational resolution, smaller

sizes of density fluctuations have been detected. Direct imag-

ing of 12CO in nearby clouds revealed substructures with

scales of ∼0.01pc (∼0.01M�) (Peng et al., 1998; Sakamoto

and Sunada, 2003). Studies of the time variability of absorp-

tion lines indicates the presence of small-scale clumps in
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the dense gas on scales so small as ∼5 × 10−5 pc (∼10AU),

with masses of ∼5 × 10−9 M� (Moore and Marscher, 1995;

Rollinde et al., 2003).

As a general rule, neither subparsec nor AU-scale con-

densations in molecular clouds are spherical (Ryden, 1996).

Jones and Basu (2002) have recently decipher intrinsic three-

dimensional shape distributions of molecular clouds, cloud

cores, Bok globules, and condensations. They find out that

molecular clouds mapped in 12CO are intrinsically triaxial

but more nearly prolate than oblate, while the smaller cloud

cores, Bok globules, and small-scale condensations are also

intrinsically triaxial but more nearly oblate than prolate.

Small-scale condensations appear to be immediate precur-

sor of large-scale clumps (dense cores with significant Jeans

mass) via merging and collisions; they constitute the initial

conditions for star formation. Therefore, the understanding

of the origin and merging of these small-scale condensations

is of fundamental importance for a consistent theory of star

formation and galactic evolution.

The origin and shape of these small-scale condensations

is a disputable issue. Anisotropic heating and fragmenta-

tion via gravitational collapse is an important reason for

oblate/prolate large-scale clumps with significant Jeans mass

(e.g. Nelson and Langer, 1997; Indebetouw and Zweibel,

2000; Hartmann, 2002). The above scenario is not correct

for small-scale condensations, because they have low gas

density and small sizes, thus, their masses are significantly

smaller than their corresponding Jeans mass. According to

this feature, the only remaining responsible parameters may

be turbulence and/or thermal instability.

Gammie et al. (2003) have recently studied the effect of

turbulence in three dimensional analogs of clumps using a

set of self consistent, time-dependent, numerical models of

molecular clouds. The models follow the decay of initially

supersonic turbulence in an isothermal, self-gravitating,
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magnetized fluid. They have concluded that nearly 90% of

the clumps are formed in prolate and 10% of them are oblate.

In molecular clouds, the dispersion velocity inferred from

molecular line width is often larger than the gas sound speed

inferred from transition temperatures (Solomon et al., 1987).

Magnetohydrodynamic turbulence may be responsible for

the stirring of these clouds (Arons and Max, 1975). Because

of these turbulent motions, molecular clouds must be tran-

sient structures, and are probably dispersed after not much

more than ∼107 yr (Larson, 1981). Since cooling time-scale

of molecular clouds is approximately ∼103 − 104 yr (Gilden,

1984), thermal instability may be a coordinated trigger mech-

anism to form condensations. Turbulence, in the second

stage, can deform these small-scale condensations in shape

and orient them relative to the background magnetic fields.

Observations and theoretical studies establish that mag-

netic fields play an important role in shaping the structure

and dynamics of molecular clouds and their substructures

(e.g. Basu, 2000; Fiege and Pudritz, 2000; Hennebelle, 2003).

The relative alignment of the projected magnetic field with

the projected minor axis of the condensations is an important

diagnostic.

In conformity with the above explanation, Nejad-Asghar

and Ghanbari (2003 hereafter NG) interested to investigate

the effect of ambipolar diffusion on the thermal instabil-

ity and formation of small-scale condensations in the mag-

netic molecular clouds. They concluded that there are solu-

tions where the thermal instability allows compression along

the magnetic field but not perpendicular to it. NG inferred

that this aspect might be evidence in formation of the ob-

served oblate small-scale condensations in magnetic molec-

ular clouds.

In this paper we want to testify and develop the work of

NG by including self-gravity and local background contrac-

tion/expansion. We present the basic equations, background

evolution, and the linearized equations in Section 2. Section 3

deals with exponential growth rate and parametric solutions

that culminates in formation of oblate, prolate, and spherical

condensations. Section 4 allocates to a conclusion and some

future prospects.

2. The equations of the problem

The basic equations, including self-gravity and ambipolar

diffusion, are given first in general (§2.1) and then specialized

for the homogeneous contracting/expanding molecular cloud

(§ 2.2) and for small perturbations to that medium (§ 2.3).

2.1. Equations

In principle, the ion velocity vi and the neutral velocity vn in

molecular clouds, should be determined by solving separate

fluid equations for these species (Draine, 1986), including

their coupling by collision processes. But, in the time-scale

of cooling considered here, (103 − 104 yr , Gilden, 1984), two

fluids of ion and neutral are well coupled together, and we

can use the basic equations as follows (Shu, 1992)

dρ

dt
+ ρ∇ · v = 0 (1)

ρ
dv
dt

+ ∇ p + ∇
(

B2

8π

)
− (B · ∇)

B
4π

+ ρ∇ψ = 0 (2)

1

γ − 1

dp

dt
− γ

γ − 1

p

ρ

dρ

dt
+ ρ� − ∇ · (K∇T ) = 0 (3)

dB
dt

+ B(∇ · v) − (B · ∇)v

= ∇ ×
{

B
4πηερ1+ν

× [B × (∇ × B)]

}
(4)

∇2ψ = 4πGρ (5)

p − R

μ
ρT = 0 (6)

where variables and parameters have their usual meanings

and η ≈ 2.46 × 1014cm3.g−1.s−1 is the collision drag in

molecular clouds (see McDaniel and Mason, 1973). We

use the relation ρi = ερν
n (ε ≈ 1.83 × 10−17cm−3/2.g1/2,

ν = 1/2) between ion and neutral densities (Umebayasi and

Nakano, 1980), and in a good approximation we choose

ρ = ρn + ρi ≈ ρn .

�(ρ, T ) = 
(ρ, T ) − �tot is the net cooling function

(erg.s−1.g−1), where �tot is the total heating rate and 
(ρ, T )

is the cooling rate which can be written as (Goldsmith and

Langer, 1978; Neufeld et al., 1995)


(ρ, T ) = 
0ρ
δT β (7)

where 
0, δ, and β are constants. The range of β is 1.4

to 2.9. The constant δ is greater than zero for optically

thin case and less than zero for optically thick case (see

Fig. 1).

Models of the molecular clouds identify several different

heating mechanisms. In this paper, we consider the heating

rates of cosmic rays, H2 formation, H2 dissociation, grain

photoelectrons, and collisions with warm dust, as a con-

stant�0 (Glassgold and Langer, 1974; Goldsmith and Langer,

1978). The heating of the gas by magnetic ion-neutral slip is

discussed in detail by Scalo (1977); a simple estimate of this

heating rate is

�AD = ηερνv2
d (8)
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Fig. 1 Logarithm of the cooling rate, 
(n0, T0) = 
0nδ
0T β

0 , versus
number density in molecular clouds, n0(cm−3). The values of δ and
β are shown in this figure

where vd is the drift velocity of ions

vd = 1

4πηερ1+v
| (∇ × B) × B | . (9)

In order of magnitude, if κ B0 changes on a typical scale of

λ, then

vd ∼ (κ B0)2

4πηερ1+νλ
, (10)

and ambipolar diffusion heating rate is given by

�AD = �′
0ρ

−(2+ν) (11)

where �′
0 is defined as

�′
0 ≡ (κ B0)4

16π2ηελ2
. (12)

The gravitational heating rate is found by setting the rate of

compressional/expansional work per particle, pd(n−1)/dt ,
equal to the rate of change of gravitational energy per particle,

[d(PEtot)/dt]/(nV ), where PEtot is the gravitational potential

energy of the volume V . For a uniform sphere of radius λ,

we find

�grav = �′′
0ρ3/2 (13)

where �′′
0 is defined as

�′′
0 ≡ (4πG)3/2

5
√

3
[−ȧ(τ )]λ2 (14)

where ȧ(τ ) is the contraction/expansion parameter rate (see

§ 2.2).

2.2. Background evolution

As a basis for the small-perturbation analysis, we assume

a homogeneous background which is expanding/contracting

uniformly, so that the unperturbed quantities only depend on

time. The background quantities will be denoted with the

subscript 0. The expansion is given by

r = a(t)x (15)

where r is the Eulerian coordinate, x is the Lagrangian coor-

dinate and a(t) is the expansion/contraction parameter. Using

Equation (15), the unperturbed velocity field is given by

v0(r, t) = da/dt

a
r. (16)

for the background evolution, the basic Equations (1)–(6)

reduce to

ρ0(t) = ρ0(t = 0)a(t)−3, p0(t) = p0(t = 0)a(t)−3γ

T0(t) = T0(t = 0)a(t)−3(γ−1), B0(t) = B0(t = 0)a(t)−2 (17)

where a(t) follows the differential equation

a(τ )2ä(τ ) = −1 (18)

where the dot over the symbol indicates the derivative respect

to a non-dimensional variable τ ≡ [ 4
3
πGρ0(t = 0)]1/2t .

2.3. Linearized equations

Density fluctuation ratios in the molecular substructures is in

the order of ∼10 (Falgarone et al., 1992; Pan et al., 2001).

Therefore, the linear regime of the thermal instability might

lead to some significant results for small-scale condensation

formation.

To obtain a linearized system of equations, we split each

variable into unperturbed and perturbed components, indi-

cating the latter with a subscript 1. Eulerian del operator is
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applied to the equations and all equations are rewritten in

terms of the Lagrangian coordinate x. The resulting linear

system has coefficients which depend on t but not on x. We

then carry out a spatial Fourier analysis, with Fourier compo-

nents proportional to exp(ik · x), so that k is the Lagrangian

wave vector.

Simplifying the resulted linear system by repeated use of

the background Equation (17); we obtain

d

dt

(
ρ1

ρ0

)
+ i k̃ · v1 = 0 (19)

dv1

dt
+ da/at

a
v1 + i

cs

γ τs

k̃

k̃

(
p1

p0

)
+ i

B0 · B1

4πρ0

k̃

−i
k̃ · B0

4πρ0

B1 − i
k̃

k̃
2
τ 2

g

(
ρ1

ρ0

)
= 0 (20)

d

dt

(
p1

p0

)
+ iγ k̃ · v1 +

(
1

τcρ
+ 1

τK

)(
p1

p0

)
+

(
1

τcT
− 1

τcρ
− 1

τK

)(
ρ1

ρ0

)
= 0 (21)

dB1

dt
+ iB0(k̃ · v1) − i(k̃ · B0)v1 + 2da/dt

a
B1

+k̃ ×
{

B0

4πηερ1+ν
0

× [B0 × (k̃ × B1)]

}
= 0 (22)

where cs = √
γ p0/ρ0 and k̃ = k/a are, respectively, the adi-

abatic background sound speed and the Eulerian wave vector.

The other symbols have the following definitions:

τs ≡ 1

k̃cs
, τg ≡ 1√

4πGρ0

, τK ≡ Rρ0

μ(γ − 1)K k̃2
,

τcT ≡ RT0

μ(γ − 1)ρ0(∂�/∂ρ)T
, τcρ ≡ R

μ(γ − 1)(∂�/∂T )ρ
;

(23)

that are the characteristic time-scale of sound waves, self-

gravity perturbation waves, thermal conduction, isothermal

and isobaric differential cooling, respectively.

We use the coordinate system ux , uy , and uz as specified

by NG. Equations (20) and (22) may be used to uncouple v1y-

the perturbed velocity in the plane perpendicular to both B0

and k- from the rest of the problem. With the choice of expo-

nential perturbation (eht ), disturbances perpendicular to the

(B0 − k)-plane, have a solution which displays existence or

non-existence of the Alfvén waves. Amplitude of the Alfvén

waves are damped via expansion of the medium and/or with

ion-neutral friction, while, it must grow with injection of

energy in contracting medium.

Fig. 2 Logarithm of the Field length (at unit of parsec) in the typical
molecular clouds versus number density, n0(cm−3)

The motion in the other modes are constrained to the xz-

plane, and are governed by the matrix equation,

Y (1) = AY (24)

where Y is a 5 × 1 matrix as

Y =

⎛⎜⎜⎜⎜⎜⎜⎝

ρ1/ρ0

p1/p0

av1x

av1z

sin θ

(
B1z

B0

)
− cos θ

(
B1x

B0

)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and Y (1) is its first time derivative. The 5 × 5 matrix of the

coefficients, A, is defined as

A=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 − i sin θ

csτs a − i cos θ
csτs a 0

1
τcρ

+ 1
τK

− 1
τcT

− 1
τcρ

− 1
τK

− iγ sin θ

csτs a − iγ cos θ

csτs a 0
icsτs a sin θ

τ 2
g

ics a sin θ

γ τs
0 0 − icsτs a

τ 2
AL

icsτs a cos θ

τ 2
g

ics a cos θ

γ τs
0 0 0

0 0 − i
csτs a 0 − 1

κ2τAD

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where θ is the angle between k and B0, and

τAL ≡ 1

k̃vA
=

√
4πρ0

k̃B0

, τAD ≡ 1

k̃vd
= 4πηερ1+ν

0

k̃
2
(κ B0)2

(25)

are the characteristic time-scales of the Alfvén waves and

ambipolar diffusion, respectively.
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3. Exponential growth rate

The standard exponential growth rate provides the following

formal solution for all the perturbations:

yi (t) = yi (t = 0)exp(ht), (26)

where real(h) represents the growth/decay rate. Inserting

the background evolution Equation ( [17]) and exponential

growth form (Equation [26]), into Equation (24); we obtain

Y (1) = hY + CY (27)

where C is a diagonal matrix as

C ≡ 1

τe
diag[3, 3γ, 1, 1, 2] (28)

where | τe |= a
|da/dt | represent contraction/expansion time-

scale. Existence of solution for Equation (27), needs the fol-

lowing condition:

Det[hI + C − A] = 0 (29)

where I is the unitary matrix. By introducing the non-

dimensional quantities

y ≡ hτs, σρ ≡ τs

τcT
, σT ≡ τs

τcρ
+ τs

τK
,

α ≡
(

τs

τAL

)2

, D ≡ τs

κ2τAD
, Gg ≡

(
τs

τg

)2

, Ee ≡ τs

τe
,

(30)

we find a five-degree linear characteristic Equation that with-

out self-gravity and expansion/contraction of the background

(Gg = 0, Ee = 0), reduces to the Equation (22) of NG. We

use the Laguerre method to find the roots of this characteristic

equation.

3.1. The sound domain

When the sound period, τs , is much smaller than the other

characteristic time-scales, we can neglect the effect of α, D,

Gg , and Ee. The characteristic Equation reduces to a three-

degree linear Equation. There are three solutions: two sound

waves and one condensation mode. The stable region for this

case is shown in the Fig. 1 of NG.

For the temperatures and densities that thermal instability

is destabilizing, there exist a critical length (Field length) de-

fined as the maximum wavelength which thermal conduction

can suppress the instability. Inserting the defined time-scales

(Equation [23]), into the definitions of σρ and σT ; we obtain

σρ = μ(γ − 1)

RT0k̃cs

(n0, T0)(δ + 2.5ξ − 1.5χ ) (31)

σT = μ(γ − 1)

RT0k̃cs

(n0, T0)β

[
1 +

(
λ0

λ

)2]
(32)

where ξ and χ are

ξ ≡ �AD


(n0, T0)
, χ ≡ �grav


(n0, T0)
(33)

Fig. 3 The stable, isobaric
instability, and isentropic
instability of the medium which
can occur according to the
different values of ξ − 0.6χ , for
(a) T0 = 10K and (b)
T0 = 100K
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Fig. 4 The typical values of α,
D, Ee, and Gg in molecular
clouds

and λ0 is a defined wavelength as follows:

λ0 ≡
√

K T0

βn0
(n0, T0)
. (34)

The values of the λ0(pc) for typical data in the molecular

clouds is given in Fig. 2. According to this figure, we choose

wavelengths in the range of λ(pc) ≈ 10−4 − 10−1 pc, that are

interesting in formation of the small-scale condensations.

We can now define a generalized Field length for two cases

as follows:

� δ + 2.5ξ − 1.5χ > β, which σρ > 0, that is upwards of

the σT − σρ plane:

λ
(i)
F = λ0√

δ + 2.5ξ − 1.5χ

β
− 1

(35)

� δ + 2.5ξ − 1.5χ < − 2
3
β, which σρ < 0, that is down-

wards of the σT − σρ plane:

λ
(i i)
F = λ0√

3
2

1.5χ − δ − 2.5ξ

β
− 1

. (36)
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Fig. 5 Regions of stability(×), spherical instability(•), and oblate
instability(−) for the case of Gg = 0.1 and Ee = 0, for a typical value
of α = 5.0 and D = 1.0. The decreased stability region in the isobaric
instability criterion (line O A), occurs by the increasing of internal pres-
sure via existence of self-gravity

If δ + 2.5ξ − 1.5χ sets between − 2
3
β and β, the Field

length can not be defined, thus, the medium is stable for

all wavelengths. Otherwise, for wavelengths greater than the

defined Field lengths (equation [35] and [36]), the medium

is unstable. This case is shown in Fig. 3 for two temperatures

of 10K and 100K .

Before proceeding any further, we must have a real phys-

ical feeling of defined non-dimensional parameters: α, D,

Ee, and Gg . We consider some typical magnetic molecular

clouds with density between 102cm−3 to 105cm−3, temper-

atures in the range of T0 ≈ 10 − 100K , and magnetic field

strength B0 ≈ 10μG (Myers and Goodman, 1988, Crutcher,

1999). The typical values of α, D, Ee, and Gg are shown in

Fig. 4.

3.2. The magnetic domain

Wherever the Alfvén period and the ambipolar diffusion

time-scale are important in the magnetic molecular clouds,

we can not ignore the effect of α and D in the characteristic

Equation. This case has recently been investigated by NG,

without self-gravity and local expansion/contracion of the

background (Gg ≈ 0, Ee ≈ 0). They conclude that there are

solutions where the thermal instability allows compression

along the magnetic field but not perpendicular to it (see Fig. 2

and Fig. 4 of NG). Maximum effect of the magnetic domain

for the oblate condensation formation is occurred when am-

bipolar diffusion time-scale is nearly equal to the period of

sound waves D ≈ 1.0 (i.e. τs ≈ κ2τAD).

3.3. The self-gravity and expansion/contraction domain

In this subsection we investigate the effect of the self-gravity

and the expansion/contraction of background. If we consider

the effect of the self gravity without expansion/contraction of

the background, the isobaric instability criterion (line OA of

Fig. 1 of NG) is modified via bringing this line downwards.

This case is shown in Fig. 5, for a typical value of α = 5.0

and D = 1.0. Physically, this means that self-gravity causes

to increase the internal pressure, thus, isobaric instability

must occur at a decreased σρ for each σT .

If the background is expanding (Ee > 0), its expansion

energy causes to stabilize the medium. This case is shown

in Fig. 6 for a typical value of α = 5.0 and D = 1.0. In the

isentropic instability criterion (line OB), expansion energy

causes to stabilize the medium in the direction of the mag-

netic field and perpendicular to it. On the other hand, in the

isobaric instability criterion (line OA), it only causes to sta-

bilize the medium in perpendicular to the magnetic field,

corresponding to decreased pressure via ion-neutral friction.

For contracting background (Ee < 0), contraction energy

injected to the medium, thus, its stability is decreased and

converted to a prolate instability. Diffusion of neutrals rel-

ative to the freezed ions in the perpendicular direction of

the magnetic field is the reason of this prolate instability.

This case is shown in Fig. 7 for a typical value of α = 5.0

and D = 1.0. When the parameters of a magnetic molecular

cloud set, locally, in this region of σT − σρ plane, prolate

condensation may be produced via thermal instability.

4. Summary and prospects

In this paper we perform linear analysis of thermal insta-

bility in a locally uniform expanding/contracting magnetic

molecular clouds which, in the perturbed state, is under-

going ambipolar diffusion. Thermal conduction and self-

gravity have also been included as fundamental ingredients.

The small-perturbation problem yields a system of ordinary

differential Equations with five independent solutions. We

choose an exponential growth rate which convert the system

of ordinary differential Equations into a five-degree complete

characteristic Equation. If we neglect the self-gravity and

expansion/contraction of the background, the characteristic

Equation reduces to the prior results of NG. We have used

the Laguerre method to find the roots of this complete char-

acteristic equation.

In sound domain, two of the solutions have the character

of oscillatory modes (sound waves) and the third one is a

non-oscillatory (or condensation) solution. We adopt a para-
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Fig. 6 Regions of stability( ×),
spherical instability(•), and
oblate instability(−) in the
expanding background, for a
typical value of α = 5.0 and
D = 1.0, with (a) Ee = 0.01
and Gg = 0.1, and (b) Ee = 0.1
and Gg = 0

Fig. 7 Regions of spherical
instability(•), and prolate
instability(|) in the contracting
background, for a typical value
of α = 5.0 and D = 1.0, with
(a) Ee = −0.01 and Gg = 0.1,
and (b) Ee = −0.1 and Gg = 0

metric net cooling function and find for perturbations with

wavelengths greater than the Field length, thermal instability

causes the medium to condense. Figure 3 shows the condition

of instability in the molecular clouds which their cooling rates

are presented in Fig. 1.

We choose a wide range of density and temperature in the

molecular clouds with typical magnetic field strength B0 ≈
10μG. Interesting wavelengths in the problem are around

the Field length which is shown in Fig. 2. According to this

figure, we consider wavelengths around 10−4 − 10−1 pc for

small-scale condensations. The typical values of α, D, Ee,

and Gg are shown in Fig. 4.

In magnetic domain, without self-gravity and expan-

sion/contraction of the background, there are solutions

where the thermal instability allows compression along the

magnetic field but not perpendicular to it. Maximum cases

of these oblate condensation solutions are occurred when the

ambipolar diffusion time-scale equals to the period of sound

waves (D ≈ 1).

Figures 5 to 7 show results that come into existence by

considering of self-gravity and local expansion/contraction

of the magnetic molecular cloud. We deduce that the self-

gravity causes to increase the internal pressure, thus, isobaric

instability must occurs at a decreased σρ for each σT . There-

fore, instability of the medium is increased. In the expanding

background, expansion energy in the isentropic instability,

causes to stabilize the medium in the direction of the magnetic

field and perpendicular to it, while, in the isobaric instability

it only stabilize the medium in the perpendicular direction.

In the contracting background, stability of the medium is de-
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creased and converted to the prolate instability via injection

of contraction energy and diffusion of free neutrals relative

to freezed ions.

In this paper we conclude that linear thermal instability can

produce small-scale condensations in spherical, oblate, or

prolate. We try to analyze a rather involved problem linearly,

because, before this process overcome, turbulence causes

to interaction and merging of these newly formed condensa-

tions. Physically, we expect that merging of these small-scale

condensations culminate in the large-scale clumps that are

star bearing regions in our world. Authors are now prepar-

ing a complete simulated turbulent magnetic molecular cloud

with condensations produced by thermal instability. It would

be interested to investigate the effect of interaction, merger,

and coagulation of these small-scale condensations with

smoothed particle hydrodynamics (SPH) method.
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