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Abstract A Cosmological model with a viscous fluid in

Kaluza-Klein metric is obtained assuming a time-dependent

equation of state. The solution is in fact a generalization of

an earlier work by Hajj and Boutros for a perfect fluid. It

is also found that dimensional reduction of the extra space

takes place such that the five-dimensional universe naturally

evolves into an effective four-dimensional one. The dynami-

cal behavior of the model is examined and it is also found that

with a decrease in extra space the observable 3D space en-

tropy increases thus accounting for the large value of entropy

observable at present.
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1. Introduction

The study of higher-dimensional cosmological models is mo-

tivated mainly by the possibility of geometrically unifying

the fundamental interactions of the universe. In the context

of the Kaluza-Klein and super string theories higher dimen-

sions have recently acquired much significance. It has also
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been suggested that experimental detection of the time vari-

ation of the fundamental constants could provide strong ev-

idence for the existence of extra dimensions (Alverez and

Cavela, 1983; Marciano, 1984; Randjbar-Daemi et al., 1984).

The earlier suggestion of Kaluza-Klein regarding the topol-

ogy of the extra dimension has now been replaced by what

is called ‘Spontaneous Compactification’ where 4D space-

time expands while the extra dimensions contract to unob-

served plankian length scale or remain constant (Chodos and

Delweiler, 1980).

Several workers have recently obtained exact solutions

using higher-dimensional space-time for both cosmolog-

ical and non-cosmological cases with or without matter

(Chatterjee et al., 1990; Banerjee et al., 1990; Mayers and

Perry, 1986). But as far as our information goes there has

not been much work in literature where viscous fluid has

been considered with time-dependent equation of state in

higher dimensions. The presence of viscosity in the fluid

content introduces many homogeneous cosmological model

(Collins, 1971; Belinski and Khalatnikov, 1976). The dissi-

pative mechanism not only modifies the nature of singularity

usually occurring for perfect fluid but can also successfully

account for the large entropy per baryon in the present Uni-

verse. In view of the above we consider in this paper exact

solution for a imperfect fluid with time-dependent equation

of state p = λ(t)ρ. The solution obtained in the paper is real-

istic in the sense that physical properties such as mass density,

viscosity coefficient are positive throughout. It is further ob-

served that the entropy of the Universe increases both due

to the decreasing metric component of the fifth dimension

with time and also due to the presence of the viscous terms.

As g55 → 0, and ξ → 0, our solution reduces to that for 4D

space-time given by Hajj-Boutros (1991). Hence the solution

is in fact, a generalization of an earlier work by Hajj et al. for

a perfect fluid.
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2. Einstein’s field equations

We take the 5D line element in the form

ds2 = dt2 − R2

(1 + kr2/4)
(dx2 + dy2 + dz2) − A2 dm2 (1)

where k characterizes the spatial curvature. Unlike Wesson,

the fifth co-ordinate is taken to be space-like and the metric

coefficients are assumed to be functions of time only, i.e., A
and R are functions of time only.

The energy–momentum tensor of the viscous fluid (Landu

and Lifshitz, 1959) is given by

Tμν = (ρ + p1)VμVν + p1 gμν (2)

with

p1 = p − ξθ

where θ = va
;a and va va = 1 and ρ, p and ξ stand for mass

density, pressure and bulk viscosity, respectively.

By use of a comoving co-ordinate system vμ = δ
μ

0 in the

field equations

Rμν − 1

2
gμν R = Tμν (3)

From Eqs. (1)–(3) we get

[(R•)2 + k]/R2 + (R• A•)/R A = ρ/3 (4)

2R••/R + [(R•)2 + k]/R2 + 2(R• A•)/R A + A••/A

= −p + ξ (3R•/R + A•/A) (5)

R••/R + [(R•)2 + k]/R2 = 0 (6)

[‘•’ is differentiation with respect to ‘t’]
According to Wesson’s theory the fifth dimension is pa-

rameterization of the rest mass, hence we must have p5 = 0.

Hence from Eq. (6) we get

R2 = K1 + K2t − kt2 (7)

where K1 and K2 are arbitrary integration constants.

3. Solutions of field equations

In this section, we shall consider some restrictions on the

behavior of the bulk viscosity coefficient.

Following Belinski and Khalatnikov (1977), we assume

bulk viscosity co-efficient to be power function of matter

density. Thus,

ξ = ξ0 ρn, p = λ(t)ρ, ξ0 and n are constants. (8)

3.1. Case 1 (n = 0 and k < 0)

In this case one can adjust K1 and K2 such that Eq. (7) be-

comes a perfect square, we get

R = t (9)

As mentioned earlier, we assume an equation of state p =
λ(t)ρ and using Eq. (9), the field equations (4)–(6) give a

differential equation of the form

(A••/A) + (A•/A)[{(2 + 3λ)/t} − ξ0]

+ [{(3λ − 1)(1 + k)}/t2] − (3ξ0/t) = 0 (10)

From the condition of exactness of the above linear equa-

tion (10), a straight forward calculation (putting k = −1)

gives

λ(t) = c t−1 − (ξ0t/6) (11)

where c is an arbitrary integration constant.

Putting the value of λ(t) from Eq. (11) in Eq. (10), we get

A•• + A•{(2/t) + (3c/t2) − (3ξ0/2)} − A(3ξ0/t) = 0 (12)

Substituting (A•/A) = u, Eq. (12) transforms into

u• = −u2 − u{(2/t) + (3c/t2) − (3ξ0/2)} + (3ξ0/t)

= h(t)u2 + g(t)u + f (t) (13)

This is a Riccati type of equation which does not give any

simple solution. As a test case one can choose a very simple

form. As a particular solution of the Riccati equation, let

u = u1 = (a/t) + b. Using this expression, we get from Eq.

(13), a = −1 or a = −2 for c = 0.

For a = −2, we do not get A in a closed form. Hence we

do not consider this case.

For a = −1, the Eq. (13) is satisfied. By applying standard

procedure (Murphy p − 16), we obtain

[u + (1/t)]

[
C1 +

∫
e3tξ0/2dt

]
= e3tξ0/2 (14)
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where C1 is an arbitrary integration constant. We get from

Eq. (14)

A = A0

t[C1 + (2/3)ξ0e3tξ0/2]
(15)

where A0 is another arbitrary integration constant. This is a

new solution for a viscous fluid. As t → ∞, A → 0, we get

dimensional reduction phenomena. Now we put C1 = −C1

and from the field equation (4)–(6), it also follows that

ρ = 1

t[(2ξ0/3) − C1e−3tξ0/2]
(16)

P = λ(t)ρ = ξ0

6[C1e−3tξ0/2 − (2ξ0/3)]
(17)

The mass density vanishes at t → ∞ with an initial singu-

larity at t = 0, and also always remains positive.

We also study the dynamical behavior of the model. The

four volume V = R3 A starts from zero at t = 0 and vanishes

at

t0 = (2/3ξ0) ln[3(C1 + 1)/2ξ0] (18)

It also follows that the extra scale factor, starting from an

infinite extension at the Big-Bang reduces to the Plankian

length at the same point of the time t0.

3.2. Case 2

When the viscous factor is absent, i.e., ξ0 = 0 for c not equal

to zero, we get λ(t) = ct−1 and by solving the differential

equation (10), we get back the solutions originally derived

by Bhui (Bhui et al., 2005) for a perfect fluid.

3.3. Case 3

λ (t) should reproduce the observation values for different

epochs of the evolution of the Universe. When λ = 0, 1,

1/3, we get back the different solutions originally derived by

Banerjee (Banerjee et al., 1990) for viscous fluid.

4. Conclusions

We have presented here an interesting solution of the five-

dimensional world in Kaluza-Klein theory, with an energy

momentum tensor containing viscous fluid only. From the

solution of the metric coefficient A, it follows that with time

A goes to zero giving rise to the phenomenon of the dimen-

sional reduction for an expanding model. When the viscosity

coefficient ξ 0 vanishes, and g55 → 0 our solution goes over

to the solution of Hajj and Boutrous (1991) for a perfect fluid.

From the expressions for mass density and viscosity coeffi-

cient it is shown that they are, in general positive and vanish

at infinity with an initial singularity at t = 0.

We also consider the case of entropy production. From the

field equations it follows that

ρ• + 3(ρ + p)(R•/R) = −ρ(A•/A) + (3R•/R)ξθ (19)

If S be the entropy per baryon and n be the no density one can

define in our case in a comoving frame (considering p5 = 0).

nT (d S/dt) = ρ• + 3(ρ + p)(R•/R) (20)

which being combined with (19) gives

nTS• = (−ρ A•/A) + (3R•/R)2ξ (21)

The relation (21) shows that the decreasing value of A, the

first term causes the rise in entropy and second – a contribu-

tion from the bulk viscosity too enhances the increase rate of

the entropy as used.
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