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Abstract. Bermann [Nuovo Cimento B (1983), 74, 182] presented a law of variation of Hubble’s
parameter that yields constant deceleration parameter models of the Universe. In this paper, we study
some cosmological models with negative constant deceleration parameter within the framework of
Lyra geometry.
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Introduction

The origin of structure in the Universe is one of the greatest cosmological mysteries
even today. The present day observations indicate that the Universe at large scale
is homogeneous and isotropy and the accelerating phase of the Universe (recently
detected experimentally) (Gasperini et al., 2003). It is well known that exact solu-
tions of general theory of relativity for homogeneous space times belong to either
Bianchi types or Kantowski-Sachs (Roy Choudhuri, 1979).

In last few decades there has been considerable interest in alternative theory
of gravitation. The most important among them being scalar tensor theories pro-
posed by Lyra (1951) and Brans and Dicke (1961). Lyra proposed a modification
of Riemannian geometry by introducing a gauge function into the structure less
manifold that bears a close resemblances to Weyl’s geometry. In general relativ-
ity Einstein succeeded in geometrising gravitation by identifying the metric tensor
with gravitational potentials. In scalar tensor theory of Brans-Dicke on the other
hand, the scalar field remains alien to the geometry.

Lyra’s geometry is more in keeping with the spirit of Einstein’s principle of
geometrisation since both the scalar and tensor fields have more or less intrinsic
geometrical significance.

In consecutive investigations Sen (1957) and Sen and Dunn (1971) proposed a
new scalar tensor theory of gravitation and constructed an analog of the Einstein

Astrophysics and Space Science 299: 211–218, 2005.
C© Springer 2005



212 F. RAHAMAN ET AL.

field equation based on Lyra’s geometry which in normal gauge may be written as

Rik − 1/2 gik R + (3/2) ∗φi
∗φk − 3/4 gik

∗φm
∗φm = −8πGTik (1)

where ∗φi is the displacement vector and other symbols have their usual meaning
as in Riemannian geometry.

Halford (1970) has pointed out that the constant displacement field ∗φi in Lyra’s
geometry play the role of cosmological constant � in the normal general relativistic
treatment. According to Halford, the present theory predicts the same effects within
observational limits, as far as the classical solar system tests are concerned, as well
as tests based on the linearized form of field equations.

Subsequent investigations were done by several authors in scalar tensor theory
and cosmology within the framework of Lyra geometry (Halford, 1970; Bharma,
1974; Karade and Borikar, 1978; Beesham, 1986; Singh and Singh, 1991; Singh
and Desikan, 1997; Rahaman, Chakraborty and Bera, 2001, 2002).

In this paper we are discussing homogeneous Bianchi-I and Kantowski-Sachs
models with negative constant deceleration parameter within the framework of Lyra
geometry. This study will be quite justified because recent experiments extensively
show that the Universe is accelerating (Gasperini, 2003).

In Section 2, we study Bianchi-I space-time in which the material distribution
consists of a perfect fluid.

In Section 3, we consider Kantowski-Sachs model in the presence of mass less
scalar field with a flat potential based on Lyra geometry in normal gauge, i.e.,
displacement vector

∗φi = (β(t), 0, 0, 0) (2)

The paper ends with a summary in Section 4.

Bianchi-I Model

We consider an axially symmetric Bianchi-I metric, which is taken as

ds2 = −dt2 + A2(t) dx2 + B2(t) (dy2 + dz2) (3)

We take a perfect fluid form of energy momentum tensors

Tab = (ρ + p) UaUb − pgab; UiU
i = 1 (4)

where U i is the four velocity, p is the pressure and ρ is mass energy density.
We assume the equation of state as

p = mρ [0 ≤ m ≤ 1] (5)
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Now choosing units such that 8πG = 1, the field Eq. (1) for the metric (3) reduces
to

2(A1 B1/AB) + [(B1)2/B2] = ρ + 3/4 β2 (6)

2(B11/B) + [(B1)2/B2] = −p − 3/4 β2 (7)

(B11/B) + (A11/A) + (A1 B1/AB) = −p − 3/4 β2 (8)

where ‘1’ denotes the differentiation w.r.t. ‘t’.
We are going to consider only constant deceleration parameter model defined

by

q = −[V V 11/(V 1)2] = constant (9)

where V = (AB2)1/3 is the over all scale factor.
Here the constant is taken as negative (i.e., it is an accelerating model of the

Universe).
The solution of Eq. (9) is

V = [at + b]1/(1+q) (10)

where a, b are integration constants.
This equation implies, the condition of expansion is 1 + q > 0.
From Eqs. (7) and (8), we get

(B11/B) − (A11/A) + [(B1)2/B2] − (A1 B1/AB) = 0 (11)

which can be integrated to give

B2 A1 − ABB1 = h (12)

where h is an integration constant.
From Eq. (10), we get

(A1/A) + 2(B1/B) = 3(V 1/V ) = [3a/(1 + q)][at + b]−1 (13)

From Eq. (12), we get

(A1/A) − (B1/B) = h/V 3 = h [at + b]−3/(1+q) (14)
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Solving Eqs. (13) and (14), we get

A = A0[at + b]α exp [2δ(at + b)γ ] (15)

B = B0[at + b]α exp [−δ(at + b)γ ] (16)

where α = [1/(q + 1)], δ = [h(1 + q) / 3a(q − 2)], γ = [(q − 2)/(1 + q)] and
A0, B0 are integration constants.

The physical quantities that are important in cosmology are proper volume V3,
expansion scalar θ and shear scalar σ2 and Hubble’s parameter H and have the
following expressions for the above solutions:

V3 = [at + b]3/(1+q) (17)

θ = [3a/(1 + q)][at + b]−1 (18)

σ2 = (1/6)h2[at + b]−6/(1+q) (19)

H = [a/(1 + q)][at + b]−1 (20)

The expressions for β2(t) and ρ are given by

3/4(1 − m)β2(t) = 1/3ahα(2m + 24)[at + b]−(1+3α) − [a2α(3 m + 1)α − 2]

× [at + b]−2[1/3h2(1 − m)][at + b]−6α (21)

(1 − m)ρ = [2a2α(3α − 1)][at + b]−2+(4 ahα/3)[at + b]−(1+3α) (22)

BEHAVIOR OF THE MODEL

We see that the Universe starts at an initial epoch t0 = −b/a, which is a point sin-
gularity. At this instant, all the physical quantities diverge. Thus, the Universe starts
with an infinite rate of expansion and measure of anisotropy. So this is consistent
with the big bang model. Also one can comment on the final stage of the evolution
for this solution. As proper volume becomes infinitely large as t → ∞, the other
physical quantities such as density, pressure, shear etc. become insignificants. Also
one can note that shear tends to zero faster than the expansion.

In this model particle horizon exist because

∫ t

t0

dt1/V (t1) = {(q + 1)/aq}[{at + b}q/(1+q)
]t

t0
(23)

is a convergent integral.
For this model, the gauge function was large in the beginning but decreases with

the evolution of the model.
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Kantowski-Sachs Model

In this section we would like to consider Kantowski-Sachs model in the presence
of mass less scalar field φ(t) with a flat potential V (φ).

The energy momentum tensor is taken as (Halford, 1970; Bharma, 1974; Karade
and Borikar, 1978; Beesham, 1986; Singh and Singh, 1991; Singh and Desikan,
1997; Rahaman and Bera, 2001, 2002)

Tab = 1/2 ∂aφ∂bφ − [1/4(∂kφ∂kφ) + 1/2V (φ)] gab (24)

The φ field equation is (Stein Schabes, 1987)

(1/
√−g)∂a(

√−g ∂aφ) = −dV (φ)/dφ (25)

The metric ansatz for the Kantowski-Sachs space-time with topology of these spaces
as S1 × S2 is

ds2 = dt2 − A2(t) dr2 − B2(t)(dθ2 + sin 2θ dϕ2) (26)

The field Eq. (1) reduces to (φ will be rescaled by 2φ)

2(A1 B1/AB) + [(B1)2/B2] + (1/B2) = (φ1)2 + 1/2 V (φ) + 3/4 β2 (27)

2(B11 B) + [(B1)2/B2] + (1/B2) = −(φ1)2 + 1/2 V (φ) − 3/4 β2 (28)

(B11 B) + (A11/A) + (A1 B1/AB) = −(φ1)2 + 1/2 V (φ) − 3/4 β2 (29)

φ11 + φ1[(A1/A) + 2(B1/B)] = (φ1)2[d V (φ)/dφ] (30)

where ‘1’ denotes the differentiation w.r.t. ‘t’.
Here the potential can be approximated by a constant value (cf. Stein Schabes,

1987)

V (φ) = 2λ (31)

It may be noted that the coefficient of φ1 in Eq. (30) acts as a friction term and
it is larger for an isotropic model. So the φ−field moves slowly in an anisotropic
space-time.

Here we also consider constant deceleration parameter model.
Here V = (AB2)1/3 = [at + b]1/(1+q) as above [see Eq. (10)].
Taking now the following combination of Eqs. (27)–(29) + 2.(28), we get

(A11/A) + 2(A1 B1/AB) = λ (32)
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From Eq. (13), we get

(A1/A) + 2 (B1/B) = 3(V 1/V ) = [3a/ (1 + q)][at + b]−1 (33)

Eliminating (B1/B) from Eqs. (32) and (33), we get

R1 + R[3a/(1 + q)][at + b]−1 = λ (34)

where R = (A1/A).
Solving Eq. (34), we get

(A1/A) = [λ(1 + q)/a(4 + q)][at + b] + D[at + b]−3/(1+q) (35)

where D is an integration constant.
Thus, the expressions of A and B are

A = exp
[{λ(q + 1)/2a2(q + 4)}{at + b}2 + {D(q + 1)/a(q − 2)}

× {at + b}(q−2)/(1+q)
]

(36)

B2 = [at + b]3/1+q · exp − [{λ(q + 1)/2a2(q + 4)}{at + b}2

+{D(q + 1)/a(q − 2)}{at + b}(q−2)/(1+q)
]

(37)

Using Eq. (31), we get from Eq. (30) as

φ11 + φ1[(A1/A) + 2(B1/B)] = 0 (38)

Solving this we get,

φ1 = [φ0/A B2] (39)

(φ0 is an integration constant).
This implies

φ =
∫

[φ0/AB2]dt + φ00 (40)

(φ00 is another integration constant).
Thus, we get an expression of φ as

φ = [{φ0(q + 1)/a(q − 2)}{at + b}(q−2)/(1+q)
] + φ00 (41)
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Now the physical parameters take the following forms as

V3 = [at + b]3/(1+q) (42)

θ = [3a/(1 + q)][at + b]−1 (43)

σ2 = (1/6)
[{3a/2(q + 1)}{at + b}−1 + {(1 + q)/2a(q + 4)}{at + b}

+ D{at + b}−3/(1+q)
]

(44)

H = [a/(1 + q)][at + b]−1 (45)

3/4 β2 = [3λ/(4 + q)] + 2λ + [{3aD/(q + 1)}{at + b}−(q+4)/(1+q)
]

− [
D2 + φ2

0

][{at + b}−6/(1+q)
] − [{3a2(q + 4)/(q + 1)2}{at + b}−2

− [{λ2(q + 1)/a2(q + 4)2}{at + b}2 − [{2λD(q + 1)/a(q + 4)}
× {at + b}(q−2)/(1+q)

]
− [at + b]−3/(1+q) · exp

[{λ(q + 1)/2a2(q + 4)}{at + b}2

+ {D(q + 1)/a(q − 2)}{at + b}(q−2)/(1+q)
]

(46)

BEHAVIOR OF THE MODEL

From the above solutions we note that at the initial epoch t0 = −b/a, A → 1 and
B → 0. So it is a line singularity.

At the initial epoch θ, σ 2 are infinitely large. We also see that at t0 = −b/a, β2

diverges. So the Universe starts from an initial singularity where all the physi-
cal parameters have infinite value, and then expand indefinitely. This model has
particle horizon. As t → ∞, the expansion ceases and the gauge function be-
comes imaginary. Thus, the concept of Lyra geometry will not linger for infinite
time.

Summary

In this work, we discussed two cosmological models namely Bianchi-I and
Kantowski-Sachs models with constant deceleration parameter within the frame-
work of Lyra geometry. In the first case, we have taken an ad hoc energy momentum
tensor components but in the latter case we have used field theoretic approach with
a flat potential.

Since our models consist with constant deceleration parameter, the proper vol-
umes remain identical for both the models but the physical natures are different. For
both the models, Universe starts at an initial epoch t0 = −b/a, and then expands
indefinitely with an acceleration.
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