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Abstract. In this article the charged analogues of recently derived Buchdahl’s type fluid spheres have
been obtained by considering a particular form of electric field intensity. In this process, Einstein–
Maxwell field equations yield eight different classes of solutions, joining smoothly with the exterior
Reissner–Nordstrom metric at the pressure free intersurface. Out of the eight solutions only seven
could be utilized to represent superdense star models with ultrahigh surface density of the order
2 × 1014 gm cm−3. The maximum masses of the star models were found to be 8.223931M� and
8.460857M� subject to strong and weak energy conditions, respectively, which are much higher than
the maximum masses 3.82M� and 4.57M� allowed in the neutral cases. The velocity of sound seen
to be less than that of light throughout the star models.
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1. Introduction

Since the inception of Reissner–Nordstrom metric, research workers have been busy
in deriving interior regular charged perfect fluid solutions. A good account of the
same can be had from the work of B.V. Ivanov (Ivanov, 2002a, b). The relevance of
the study of charged fluid distributions is connected with the following interesting
facts such as:

(i) Charge dust (CD) (pressure free distribution) may be realized in the slight
ionization of neutral hydrogen.

(ii) CD may possess arbitrary mass and radius, can attain very large redshifts, their
exteriors can be made arbitrarily near to the exterior of an extreme charged
black hole.

(iii) A classical model of an electron is likely to be represented by CD if many of its
characteristics remain finite and non-trivial while the junction radius shrinks
to zero.

(iv) Besides many other speciality, the charge in the fluid distribution helps in
countering the gravitational collapse by means of the coulombian repulsion
together with the pressure gradient.

Many workers have studied the number of charged fluids in different contexts
in the past and recently too (Treves and Turolla, 1999; Bonnor, 1960, 1980, 1998;

Astrophysics and Space Science 299: 43–59, 2005.
C© Springer 2005



44 Y.K. GUPTA AND M. KUMAR

Bonner and Wickramasuria, 1975, Felice et al., 1995, 1999; Ray et al., 2003, 2004;
Anninos and Rothman, 2001). Some others (Patel et al., 1997; Tikekar and Singh,
1998; Patel and Pandya, 1986) have considered the charged analogues of Vaidya-
Tikekar types of fluid spheres, then utilized to depict the uncharged superdense
star models with ultrahigh surface density (Vaidya and Tikekar, 1982). In the re-
cent past (Sharma et al., 2001) have presented very general class of charged ana-
logues of Vaidya-Tikekar type fluid spheres, which contains all such solutions ob-
tained by others as special cases. In fact Vaidya–Tikekar fluid spheres are described
by space-time with the hypersurfaces t = const as 3-spheroids. The said space–
time can easily be seen as special case of what had been chosen by Buchdahl,
which includes the hypersurfaces as 3-hyperboloids too (Buchdahl, 1959). All
the Buchdahl’s type fluid spheres have already been obtained and analysed by
Gupta and Jasim (Gupta and Jasim, 2000, 2003). In the present article the authors
have obtained most general class of charged Buchdahl’s type fluid spheres join-
ing smoothly with the Reissner-Nordstrom Metric at the pressure free boundary
and utilized them to represent superdense star with surface density of the order
2 × 1014 gm cm−3. The later are analysed numerically subject to the energy con-
ditions throughout the star. Out of the eight solutions so obtained only seven could
satisfy the required conditions. Consequently the maximum masses of the star mod-
els were found to be 8.223931M� and 8.460857M� subject to strong and weak
energy conditions respectively. It is worth pointing out here that the maximum
masses obtained by Gupta and Jasim (2000, 2003) were 3.82M� and 4.57M�

respectively in the neutral cases. All the solutions obtained by others in the pre-
vailing circumstances and conditions, can be seen as special cases of the present
work.

2. Field Equations

Let us take the following spherically symmetric metric to describe the space–time
of a charged fluid sphere

ds2 = −eλdr2 − r2(dθ2 + sin2 θ dφ2) + eυdt2 (1)

The functions λ(r ) and υ(r ) are to satisfy the Einstein–Maxwell equations

Ri
j − 1

2
Rδi

j = −κ

[
(c2ρ + p)viv j − pδi

j + 1

4π

(
−Fim Fjm + 1

4
δi

j Fmn Fmn

)]
,

(2)

where κ = 8πG
c4 , ρ, p and vi denote matter density, fluid pressure and the unit

time-like flow vector of the fluid, respectively and Fik being the skew symmetric
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electromagnetic field tensor satisfying the Maxwell equations

Fik; j + Fkj ;i + Fji ;k = 0, (3)
∂

∂xk
(
√−gFik) = −4π

√−g j i , (4)

where j i = σvi represents the four-current vector of charged fluid while the charged
density is denoted by σ .

The field Eq. (2) with respect to the metric Eq.(1) reduce to (Dionysiou, 1982)

−υ ′

r
e−λ + (1 − e−λ)

r2
= −κp + q2

r4
(5)

−
[
υ ′′

2
− λ′υ ′

4
+ υ ′2

4
+ υ ′ − λ′

2r

]
e−λ = −κp − q2

r4
(6)

λ′

r
e−λ + (1 − e−λ)

r2
= κc2ρ + q2

r4
(7)

where

q(r ) = 4π

∫ r

0
σr2eλ/2dr = r2

√
−F14 F14 = r2 F41e(λ+υ)/2 (8)

represents the total charge contained with in the sphere of radius r . The Eq. (4)
reduces to

∂

∂r

(
e(λ+ν)/2r2 F41

) = −4πe(λ+ν)/2r2 j4 (9)

Beyond the pressure free interface r = a the charged fluid sphere is expected to
join with the Reissner–Nordstrom metric:

ds2 = −
(

1 − 2m

r
+ e2

r2

)−1

dr2 − r2(dθ2 + sin2 θ dφ2) +
(

1 − 2m

r
+ e2

r2

)
dt2

(10)

where m is the gravitational mass of the distribution such that

m = µ(a) + ε(a)

while

µ(a) = κ

2

∫ a

0
ρr2dr, ε(a) = κ

2

∫ a

0
rσqeλ/2dr , e = q(a) (11)
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ε(a) is the mass equivalence of the electromagnetic energy of distribution while
µ(a) is the mass and e is the total charge inside the sphere (Florides, 1983).

In the present article we propose a charged fluid distributions by considering the
electric field intensity

q2

r4
= C2r2β2

2(Cr2 + 1)2
(12)

and the metric potential

eλ = K (1 + Cr2)

K + Cr2
, C > 0 (13)

where C, K, β being constants.
The later was proposed by Buchdahl to ensure the density gradient negative for

the uncharged case. However the expression considered for electric intensity has
already been considered by the other workers (Patel and Koppar, 1987; Sharma
et al., 2001; Patel et al., 1997) and is such that the Einstein-Maxwell field equation
reduces to hypergeometric equation after some appropriate substitutions. Also the
electric intensity so assumed has negative gradient with zero value at the center.

The consistency of the field Eqs. (5)–(7) using Eqs. (12) and (13) yield the
hypergeometric equation

(1 − X2)
d2 y

d X2
+ X

dy

d X
+ (1 − K + Kβ2)y = 0, (14)

where

X =
√

K

K − 1

√
1 + Cr2

K
, K < 0 or K > 1

and

eυ = y2

The range 0 < K < 1 has been left as it corresponds to negative density at the
centre.

The same set up with K < 0 and C = −K/R2 has been used by Vaidya
and Tikekar (1982) to describe the uncharged (β = 0) isentropic superdense star
models. Also they had shown that the hypersurfaces t = const are spheroids in
this case. It is trivially easy to prove that the hypersurfaces t = const turns out to
hyperboloids if one considers K > 1 and C = K/R2 (Figure 1).
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The expression for energy density and pressure can be had from (5), (7), (12)
and (13) as

κc2ρ = 4C(K − 1)(3 + Cr2) − Kβ2C2r2

4K (1 + Cr2)2
(15)

κp = −2y′

r y

(K + Cr2)

K (1 + Cr2)
− C(K − 1)

K (1 + Cr2)
+ C2r2β2

2(Cr2 + 1)2
(16)

Figure 1. Plots for density, pressure, electric intensity and velocity of sound subject to the SEC for
maximum masses (bold data in the Table I) corresponding to the Cases: A1, A2, A3, A4, B1, B2 and
B3, respectively. (In the above plot, density for the Case B1 is multiplied by 10−3).

(Continued on next page)
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Figure 1. (Continued ).

The expression for the pressure gradient and density gradient can be written
as:

κc2 dρ

dr
= C2r [2(1 − K )(5 + Cr2) − Kβ2(1 − Cr2)]

K (1 + Cr2)3
(17)

κ
dp

dr
= C2β2r (Cr2 + 3)

(Cr2 + 1)3
− 1

2
eλ(c2ρ + p)

[
m(r )

r2
− q2

r3
+ κpr

2

]
(18)
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where

m(r ) = Cr3[2(K − 1)(1 + Cr2) + C Kβ2r2]

4K (1 + Cr2)2

such that

e−λ = 1 − 2m(r )

r
+ q2

r2

The speed of sound

The sphere being charged, it is not possible on the present naive phenomenological
level to say what the speed of propagation of a sound wave of arbitrary frequency will
be. However, if the frequency is sufficiently large the adiabatic speed of propagation
by the fluid is presumably by (Buchdahl, 1979)

v2 = dp

dρ

= c2
{

K C2β2(Cr2 + 3) − K eλκ(c2ρ + p)
( M(r )

r3 − q2

r4 + κp
2

)
(1 + Cr2)3

}
C2[2(1 − K )(5 + Cr2) − Kβ2(1 − Cr2)]

(19)

Also if the ratio of the surface density ρa to central density ρ0 is λ = ρa

ρo
then

using (15) we get

1 + Ca2 = S +
√

{S2 + 24λ(6 − S)}
12λ

, (1 + Ca2 > 0)

while surface density ρa is taken out to be 2×1014 gm cm−3. Where S = 2− Kβ2

(K−1)
and C = 8πG Kρ0

3c2(K−1) = 1.24479×10−13 K
(K−1)λ , however the expression for the pressure can be

derived as follows:

Case A: For K < 0, X = sin θ , is an appropriate choice (spheroidal case).
Differentiating (14) with respect to X and then letting dy/d X = G, we get

d2G

dθ2
+ (2 − K + Kβ2)G = 0 (20)

which yields solutions for various G depending upon the nature of the parameter K
and β and the corresponding solution of the Eq. (20) can be furnished as:

G = A[cosh(mθ ) + B sinh(mθ )], 2 − K + Kβ2 = −m2, (21)

G = A[θ + B], 2 − K + Kβ2 = o (22)
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G = A[sin(mθ + B)], 2 − K + Kβ2 = m2(�= 1), (23)

G = A[cos(θ ) + H sin(θ )], 2 − K + Kβ2 = 1 (24)

inserting Eqs. (21)–(24) into Eqs. (14) and (16) we get the following expressions
for y and pressure corresponding to various cases:

A(1): For 2 − K + Kβ2 = −m2,

y = A

(m2 + 1)
[m cos θ sinh(mθ ) + sin θ cosh(mθ )

+ B(m cos θ cosh(mθ ) + sin θ sinh(mθ ))]

κp = 2C(m2 + 1)

(1 − K )K cos2 θ

×
[

cosh(mθ ) + B sinh(mθ )

m cot θ sinh(mθ ) + cosh(mθ ) + B(cot θ cosh(mθ ) + sinh(mθ ))

]

+ C

K cos2 θ
+ C2r2β2

2(Cr2 + 1)2
(21a)

A(2): For 2 − K + Kβ2 = 0,

y = A(cos θ + θ sin θ + B sin θ ),

κp = 2C

(1 − K )K cos2 θ

[
sin θ (θ + B)

(θ sin θ + cos θ + B sin θ )

]

+ C

K cos2 θ
+ C2r2β2

2(Cr2 + 1)2
(22a)

A(3): For 2 − K + Kβ2 = m2(�= 1),

y = A

(1 − m2)
[m cos θ cos(mθ + B) + sin θ sin(mθ + B)]

κp = 2C(m2 − 1)

(K − 1)K cos2 θ

[
sin θ sin(mθ + B)

m cos θ cos(mθ + B) + sin θ sin(mθ + B)

]

+ C

K cos2 θ
+ C2r2β2

2(Cr2 + 1)2
(23a)

A(4): For 2 − K + Kβ2 = 1,

y = A

2
(θ + sin θ cos θ + B)

κp = 4C

(1 − K )K

[
tan θ

θ + sin θ cos θ + B

]
+ C

K cos2 θ
+ C2r2β2

2(Cr2 + 1)2
(24a)
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Case B: For K > 1, X = cosh θ , is an appropriate choice (hyperboloidal case).
Differentiating (14) with respect to X and then letting dy/d X = G, we get

d2G

dθ2
− (2 − K + Kβ2)G = 0, (25)

which yields solutions for various G depending upon the nature of the param-
eter K and β and the corresponding solution of the Eq. (25) can be furnished
as:

G = A[cos(mθ + B)], 2 − K + Kβ2 = −m2 (26)

G = A[θ + B], 2 − K + Kβ2 = o (27)

G = A[cosh(mθ ) + B sinh(mθ ))], 2 − K + Kβ2 = m2(�=1) (28)

G = A [sinh(θ ) + H cosh(θ )] , 2 − K + Kβ2 = 1 (29)

inserting the Eqs. (26)–(29) into Eqs. (14) and (16) we get the following expres-
sions of y and the corresponding expressions for pressure for the respective cases
furnished as:

B(1): For 2 − K + Kβ2 = −m2,

y = A

(m2 + 1)
[m sinh θ sin(mθ + B) + cosh θ cos(mθ + B)]

κp = 2C(m2 + 1)

(K − 1)K sinh2 θ

[
1

1 + m tanh θ tan(mθ + B)

]

− C

K sinh2 θ
+ C2r2β2

2(Cr2 + 1)2
(26a)

B(2): For 2 − K + Kβ2 = 0,

y = A(θ cosh θ − sinh θ + B cosh θ ),

κp = 2C

(K − 1)K sinh2 θ

[
(θ + B)

(θ + B) cosh θ − sinh θ

]

− C

K sinh2 θ
+ C2r2β2

2(Cr2 + 1)2
(27a)

B(3): For 2 − K + Kβ2 = m2(�=1),

y = A

(m2 − 1)
[m sinh θ{sinh(mθ ) + B cosh(mθ )}

− cosh θ{cosh(mθ ) + B sinh(mθ )}]
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κp = 2C(m2 − 1)

(K − 1)K sinh2 θ

×
[

cosh(mθ ) + B sinh(mθ )

m tanh θ{sinh(mθ ) + B cosh(mθ )} − {cosh(mθ ) + B sinh(mθ )}
]

− C

K sinh2 θ
+ C2r2β2

2(Cr2 + 1)2
(28a)

B(4): For 2 − K + Kβ2 = 1,

y = A

2
(sinh θ cosh θ − θ + B)

κp = 4C

(K − 1)K

[
coth θ

sinh θ cosh θ − θ + B

]
− C

K sinh2 θ
+ C2r2β2

2(Cr2 + 1)2
(29a)

3. Physical Analysis of the Solutions

The physical validity of the charged fluid sphere (CFS) depends upon the following
conditions (called reality conditions or energy conditions) inside and on the the
sphere r = a such that

(i) ρ > o, 0 ≤ r ≤ a,
(ii) p > o, r < a,

(iii) p = o, r = a
(iv) dp/dr < 0, dρ/dr < 0, 0 < r < a
(v) c2ρ ≥ p weak energy condition (WEC) or c2ρ ≥ 3p strong energy condition

(SEC)
(vi) The velocity of sound (dp/dρ)1/2 should be less than that of light throughout

the CFS (0 ≤ r ≤ a).

Beside the above the CFS is expected to join smoothly with the Nordstrom
metric, which requires the continuity of eλ, ev and q across the pressure free
interface r = a.

(K + Ca2)

K (1 + Ca2)
= 1 − 2m(a)

a
+ e2

a2
(30)

y2 =
(

1 − 2m(a)

a
+ e2

a2

)
(31)

q(a) = e (32)

p(r=a) = 0 (33)

The conditions (30) and (32) are automatically satisfied subject to the preposition
(11) however (31) and (33) can provide the unique values of arbitrary constants A
and B in each of the cases A(1) to A(4) and B(1) to B(4).
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4. Numerical Results for Various Cases

From the expressions of m(r ) and C , it can easily be derived that ∂m
∂λ

< 0 and
∂m
∂β2 > 0.

However the physical constraints in terms of the reality conditions have severely
restricted the magnitude of mass. An attempt has been made to get maximum mass
(effectively M/M�) in each case. M and M� denote mass of the model and solar
mass respectively.

Various physical quantities such as ρ, p, dp/dr, dρ/dr, c2ρ − p (WEC), c2ρ −
3p (SEC), (dp/dρ)1/2 (velocity of sound), j4 (the only surviving component of
the 4-current vector) and M/M� have been calculated numerically for o ≤ x ≤ 1,
(x = r/a) and the data so obtained is analysed subject to the reality conditions.

The data for the various cases reveals the following informations:

Case A(1): (β2 > 1 − 2
K ),

It is observed that the mass increases with the increase of charge for o < λ ≤ 0.5,
however it decreases with the increase of charge when 0.5 < λ < 1, (let us call
this behavior as S). Physically valid solutions are possible only for −3 ≤ K < 0.
This case provides the maximum mass e.g. 8.4609M� (WEC) for λ = .32, β =
1.83, K = −1 and 8.2239 M� (SEC) for λ = .33, β = 1.82, K = −1.

Case A(2): (β2 = 1 − 2
K ),

Physical solutions are valid only in the −15 ≤ K < 0. Behavior S is still true.
The maximum mass for (SEC) 7.8221M� for λ = .25, β = 1.5275, K = −1.5
and 8.0297M� (WEC) for λ = .25, β = 1.5275, K = −1.5.

Case A(3): (β2 < 1 − 2
K ),

This is the case when the charged model is reducible its neutral counterpart in
the absence of charge. Physically valid solutions are available for all K however the
mass continues to be same for |K | ≥ 500. Behaviour S holds good. The maximum
mass turns out to be 8.0115M� (WEC) for K = −1, λ = .34, β = 1.73 and
7.7808M� (SEC) for K = −1, λ = .35, β = 1.73.

Case A(4): (β2 = 1 − 1
K ),

Physically valid cases are possible for all K however the mass continues to be
same for |K | ≥ 500. Case is similar to A(3). The maximum mass is found to be
6.8211M� (SEC) for K = −2, β = 1.2247, λ = .24 and 7.1753M� (WEC) for
K = −2, β = 1.2247, λ = .22.

Case B(1): (β2 < 1 − 2
K ),
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Physically valid sets of results are possible for all K > 1 however the mass does
not change after K = 1000, β ≤ .98 otherwise pressure turnout to be negative.
The maximum mass is 5.9451M� (WEC) for λ = .024, β = .99, K = 1000 and
5.5410M� (SEC) for λ = .06, β = .85, K = 1000.

Case B(2): (β2 = 1 − 2
K ),

Physical situation allows 2 ≤ K ≤ 2.5. Naturally for K = 2 uncharged Case
is recovered. Same maximum mass 2.7454M� is obtained for (WEC) as well as
(SEC) for K = 2.5, β = .4473 and λ = 10−4. For each K , β lies in the interval
(0,1) for the physically valid case.

Case B(3): (β2 > 1 − 2
K ),

The case is valid for 1 < K < 2.5. Behaviour S is valid. Beyond K > 2.5 the
pressure is negative. The maximum mass is given by 2.7437M� for (SEC) and
(WEC) given K = 2.5, λ = .001 and β = .45.

Case B(4): (β2 = 1 − 1
K ),

No physically reasonable set of data is available for any K. The pressure con-
tinues to be negative for all the combination of K, β and λ.

Analytical base of the result can be understood by the following analysis:
Expression for the pressure reads as

κp = 4C

(K − 1)K

[
coth θ

sinh θ cosh θ − θ + B

]
− C

K sinh2 θ
+ C2r2β2

2(Cr2 + 1)2

while pressure at the center (p0) is given by

κp0 = 4C

(K − 1)K

[
coth θ0

sinh θ0 cosh θ0 − θ0 + B

]
− C

K sinh2 θ0
(34)

Let us say p0 > 0 i.e.

4C

(K − 1)K

[
coth θ0

sinh θ0 cosh θ0 − θ0 + B

]
− C

K sinh2 θ0
> 0 (35)

owing the data,

sinh θa =
√

1 + c1

K − 1
, B = θa + D

√
K

K − 1
and c1 = Ca2.
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and

D = c1(9 − K ) + 10 − 2K

(K − 1)(c1 + 2)
(36)

we get

4

{K + √
K (K − 1)(B − θ0)} >

(K − 1)

K
(37)

It is obvious that right hand side quantity of the above expression is positive (for
K > 1), therefore the left hand side of the above expression must also be positive.
Now if the quantity

K +
√

K (K − 1)(B − θ0) < 0 (38)

or

coth

[
8(c1 + 1)

√
K

(K − 1)2(c1 + 2)

]
>

[√
(c1 + K )

√
K − √

(c1 + 1)√
(c1 + K ) − √

K (c1 + 1)

]
(39)

We see that the numerator of RHS is positive while denominator is negative and
hence the RHS is negative. Also coth θ > 0 for θ > 0, so the above inequality (39)
and hence (38) is also true. Which implies that (37) is not true and therefore the
preposition made in (35) (i.e. p0 > 0) is wrong and so po < 0 (pressure is negative
at the center).

5. Conclusions

All the exact solutions of charged Fluid spheres described by spherically sym-
metric space–time proposed by Buchdahl, have been obtained by considering the
particular form of electric intensity. The class of solutions represented by the Case
A(3) have already been derived and discussed by Sharma et al. (2001). While all
the other workers mentioned in the introduction have derived the special cases of
A(3). The Cases B(1), B(2) and B(3) contain the solutions which are reducible
to the uncharged fluid spheres in the absence of charge (i.e. β = 0). It is worth
pointing out here that the cases e.g. A(1), A(2), A(4), B(1), B(2), B(3) and B(4)
are appearing at the very first time as for as authors are aware. All the eight solu-
tions derived above are analysed numerically after joining them smoothly with the
Reissner–Nordstrom Metric at the pressure free boundary. And hence discussed the
limitations on the guiding parameters K, β and λ subject to the prescribed energy
conditions. The sample values of mass M/M�, and radii are depicted in the Table I
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TABLE I

The star of maximum mass with its radius corresponding to various values of the guiding parameters
K, β and λ

Radius Max. Radius Max.
K λ β (Km) M/M� λ β (Km) M/M�

Case (A1)

−3 .125 1.291 17.134 7.601 .13 1.295 17.162 7.516

−2.5 .15 1.35 17.646 7.725 .155 1.342 17.707 7.633

−2 .175 1.45 18.201 8.077 .18 1.45 18.220 7.978

−1.5 .235 1.53 19.271 8.135 .25 1.53 19.250 7.822

−1.4 .25 1.56 19.497 8.160 .26 1.56 19.474 7.946

−1 .32 1.83 20.357 8.461 .33 1.82 20.326 8.224

−.8 .4 1.88 21.097 7.966 .4 2.00 21.803 7.919

−.45 .6 2.34 21.610 6.528 .6 2.34 21.610 6.528

−.20 .71 5.10 22.756 7.815 .71 5.10 22.756 7.815

Case (A2)

−15 .04 1.065 14.273 6.427 – – – –

−10 .05 1.095 14.721 6.625 – – – –

−5 .08 1.183 15.861 7.142 – – – –

−3 .13 1.291 17.179 7.515 – – – –

−2 .18 1.414 18.349 7.975 .19 1.414 18.377 7.781

−1.5 .24 1.528 19.274 8.030 .25 1.528 19.257 7.822

−1 .34 1.732 20.497 8.011 .35 1.732 20.424 7.780

−.8 .4 1.871 21.119 7.969 .41 1.871 21.013 7.722

−.5 .55 2.236 21.902 7.229 .56 2.236 21.709 6.947

−.25 .77 3.0 20.979 4.926 .77 3.000 20.979 4.926

Case (A3)

−500 .032 .95 14.056 5.906 .05 .9 14.817 5.706

−100 .034 .95 14.201 5.958 .055 .9 14.997 5.718

−50 .033 1 13.965 6.066 .058 .9 15.149 5.767

−25 .04 1 14.393 6.178 .045 1 14.538 6.127

−15 .05 1 14.922 6.304 .058 1 15.105 6.211

−7 .07 1.1 15.560 6.757 .1 1 16.424 6.297

−5 .1 1.1 16.521 6.817 .11 1.1 16.625 6.669

−3 .14 1.2 17.606 7.315 .163 1.2 17.715 6.930

−2 .199 1.35 18.610 7.599 .204 1.35 18.615 7.505

−1 .34 1.73 20.503 8.012 .35 1.73 20.429 7.781

Case (A4)

−250 .026 1.002 13.516 5.977 – – – –

−100 .026 1.005 13.556 6.030 – – – –

(Continued on next page)
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TABLE I

(Continued )

Radius Max. Radius Max.
K λ β (Km) M/M� λ β (Km) M/M�

−50 .03 1.010 13.790 6.092 – – – –

−25 .036 1.020 14.147 6.220 – – – –

−15 .045 1.033 14.612 6.370 – – – –

−10 .06 1.049 15.215 6.494 – – – –

−5 .1 1.095 16.540 6.815 .11 1.095 16.644 6.667

−3 .15 1.155 17.823 7.126 .17 1.155 17.891 6.797

−2 .22 1.225 18.999 7.175 .24 1.225 18.958 6.821

−1 .39 1.414 20.807 6.942 .45 1.414 20.096 5.758

Case (B1)

3 .03 .1 13.754 2.885 .06 .1 13.986 2.732

8 .04 .6 14.738 4.576 .06 .6 15.013 4.401

15 .06 .65 15.398 4.874 .08 .65 15.601 4.679

25 .07 .65 15.761 4.975 .10 .65 15.989 4.673
50 .02. .97 13.212 5.799 .05 .85 14.849 5.495

100 027 .96 13.690 5.844 .06 .85 15.127 5.469

150 .024 .98 13.467 5.895 .06 .85 15.159 5.496

500 .024 .99 13.447 5.936 .06 .85 15.203 5.533

1000 .024 .99 13.457 5.945 .06 .85 15.213 5.541

Case (B2)

2.1 .001 .218 11.573 2.148 .003 .218 11.631 2.138

2.2 .001 .302 11.574 2.317 .002 .302 11.576 2.317

2.3 .001 .361 11.574 2.472 .001 .361 11.574 2.472

2.4 .001 .408 11.574 2.615 .001 .408 11.574 2.615

2.5 .001 .447 11.574 2.745 .001 .447 11.574 2.745

Case (B3)

1.1 .001 .05 4.908 .153 .001 .05 4.908 .153

1.5 .001 .2 9.177 1.096 .001 .2 9.177 1.096

1.7 .001 .28 10.010 1.525 .001 .28 10.010 1.525

1.9 .001 .325 10.640 1.892 .001 .325 10.640 1.892

2.0 .001 .36 10.822 2.064 .001 .36 10.822 2.064

2.1 .001 .367 11.113 2.209 .001 .367 11.113 2.209

2.3 .001 .42 11.333 2.500 .001 .42 11.333 2.500

2.5 .001 .45 11.590 2.744 .001 .45 11.590 2.744

For 0 ≤ p ≤ c2ρ & dp/dρ ≤ c2 (WEC).
For 0 ≤ 3p ≤ c2ρ & dp/dρ ≤ c2 (SEC).
M� = 1.475 Km, G = 6.673 × 10−8 cm3/gm sec2, c = 2.997 × 1010 cm/sec.
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under the heading strong and weak energy conditions for the various values of
K, β and λ. The graphs for pressure, density, J4 and velocity of sound are being
traced for each case. Overall the charged Fluid spheres of maximum mass M be-
longs to the spheroidal case A(1) are found to be 8.223931M� and 8.460857M�

for strong and weak energy conditions, respectively. The corresponding radii are
given as 20.3261 Km. and 20.3569 Km, respectively. It is already known that in
the absence of charge, the maximum mass contained by the neutral star models
were found to be 3.82M� and 4.57M� for strong and weak energy conditions,
respectively.
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