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Abstract Legal reasoning requires identification through search of authoritative

legal texts (such as statutes, constitutions, or prior judicial opinions) that apply to a

given legal question. In this paper, using a network representation of US Supreme

Court opinions that integrates citation connectivity and topical similarity, we model

the activity of law search as an organizing principle in the evolution of the corpus of

legal texts. The network model and (parametrized) probabilistic search behavior

generates a Pagerank-style ranking of the texts that in turn gives rise to a natural
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geometry of the opinion corpus. This enables us to then measure the ways in which

new judicial opinions affect the topography of the network and its future evolution.

While we deploy it here on the US Supreme Court opinion corpus, there are obvious

extensions to large evolving bodies of legal text (or text corpora in general). The

model is a proxy for the way in which new opinions influence the search behavior of

litigants and judges and thus affect the law. This type of ‘‘legal search effect’’ is a

new legal consequence of research practice that has not been previously identified in

jurisprudential thought and has never before been subject to empirical analysis. We

quantitatively estimate the extent of this effect and find significant relationships

between search-related network structures and propensity of future citation. This

finding indicates that ‘‘search influence’’ is a pathway through which judicial

opinions can affect future legal development.

Keywords Topic model � Law search � Citation networks � Multi-networks �
PageRank � Network curvature

1 Introduction

Judicial decision-making is characterized by the application by courts of author-

itative rules to the stylized presentation of disputed claims between competing

litigants. These authoritative rules are set forth in legal source materials such as

constitutions, statutes, and written opinions supporting prior decisions. For a legal

source to have bearing on a current dispute, it must be retrievable by the relevant

legal actors. The problem of organizing legal texts into a comprehensible whole has

been recognized since Justinian I’s Corpus Juris Civilis issued in 529–534. The

acute problems of identifying relevant legal sources (i.e., legal precedent) presented

by the common law tradition has spurred codification and classification efforts that

have ranged from Blackstone’s ‘‘Commentaries on the Laws of England

(1765–1769)’’ to the codification movement in the late nineteenth century (Garoupa

and Morriss 2012), to the development and spread of the West American Digest

System in the twentieth century (West 1909). Most recently, the effect of

digitization on the evolution of the law, primarily in its impact on legal research, has

become a subject of inquiry (see e.g., Berring 1986, 1987; Fronk 2010; Hanson and

Allan 2002; Hellyer 2005; Katsh 1993; McGinnis and Wasick 2015; Schauer and

Wise 2000).

In this paper we consider the textual corpus of legal sources as an evolving

landscape that carries a natural geometry and comprises regions of the law whose

development and shifting boundaries are influenced by the dynamics and feedback

of law search. Everything devolves from a model of the process of legal research

carried out in the corpus in which ‘‘actors’’ start from a case or opinion and then

build out an understanding of the relevant issues by (1) following citations, (2)

searching for cases that cite the initial case of interest, and (3) identifying textually
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similar cases. These actions have a natural network—more precisely, a multinet-

work—formulation, in which legal sources are connected to each other based on

citation information and textual similarity as described by a topic model

representation of their textual content. Topic models represent texts (embodied as

word-frequency distributions or ‘‘bag-of-words’’ representations) as mixtures of

topics. ‘‘Topic’’ as used in this sense has a technical meaning and is defined as a

probability distribution over the vocabulary in the corpus. Topics are uncovered and

discovered according to a well-known and by now widely deployed methodology

(see e.g., Blei 2012) that we briefly describe below. Our use of three kinds of

connectivity (as opposed to one) in the text corpus structures the corpus in a

multinetwork representation, a combinatorial structure that has proved useful in a

number of different contexts, such as biology and economics (e.g., Barigozzi et al.

2011; Blinov et al. 2012; Kivelä et al. 2014). In this work we introduce for the first

time the multinetwork concept to the novel contexts of text-mining and text search,

with a specific application to judicial texts.

We use the multinetwork framework to define a notion of search generalizing the

Markov model (discrete time random walk) that encodes Google’s famous

‘‘websurfer’’ webpage search model (Brin and Page 1998). The webpage ranking

system Pagerank is simply the stationary vector of this model (Bryan and Leise

2006). Rankings are of course useful (and of course profitable), but the random walk

also will give rise to a natural notion of distance on the underlying state space,

roughly defined in terms of the expected time (number of steps) needed to go from

one state to another and it is this metric point of view that we explore herein. In our

setting, distance reflects the ease with which a human user of the legal corpus could

navigate from one legal source to another, based on a weighted combination of

searches along the underlying citation and topical similarity networks. The latter is

usually reduced to a keyword search in standard resources (e.g., through a

commercial database such as Lexis-Nexis). The derived inter-opinion distances

support the discovery of well-defined regions (in this case, groups of legal sources)

that are relatively close to each other, but relatively distant from other regions.

Distance is also a proxy for relevance. When new judicial decisions are issued and

the supporting opinions are incorporated into the legal corpus, they interact with

search technology to change the legal sources that will be discovered during the

next search. For example, some new opinions can link together previously distant

opinions, making them more easily discoverable. In turn, these new connections can

foster new arguments. This is a new kind of legal effect that, as far as we know, has

never been identified as a theoretical possibility, much less formalized and subjected

to an empirical test.

The random walk setting also enables the creation/definition of a notion of

curvature for the underlying state space (think of a state space as the cities and

towns in a landscape of rolling hills and valleys). As per the usual interpretation of

this geometric notion, the more negative the curvature of a region1 of the legal

1 The standard example of a point of negative curvature is the saddle point—so named for the curvature

of the center of a riding saddle. A marble placed there would rapidly move away from the point, if in an

indeterminate direction.
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landscape, the easier it is to navigate to legal sources outside that region from legal

sources that are inside of the region. Curvature may change over time as new legal

sources are added to the corpus. An increase in curvature in a given region2

indicates increasing difficulty in navigating from the interior of the region to legal

sources outside it. This has the interpretation that the region has become more

isolated from the rest of the legal corpus and thus is less relevant to new opinions

outside of the region. We refer to this effect as puddling. The opposite effect

wherein curvature decreases is referred to as drainage. Drainage is characterized by

ease of navigation from points (legal sources) inside the region to those that are

outside. Notions of network curvature have only just begun to make their way into

applied literature. Some early work has adapted the idea of Ricci curvature to the

network setting, mainly for its relation to various isoperimetric inequalities (see e.g.,

Chung and Yau 1996; Lin and Yau 2010). More recent work approaches the idea

from the point of view of optimal transport (Ollivier 2009). This in turn makes

strong connections to discrete Markov chains—as does ours—but this other work is

quite different from the approach taken herein.

Use of the citation network to measure the influence of judicial opinions is now

well-studied (see e.g., Bommarito et al. 2009; Fowler and Jeon 2008; Fowler et al.

2007), although interesting potential avenues of this kind of investigation in the

judicial context remain underexplored (see e.g. Uzzi et al. 2013 for a citation

network analysis in the context of scientific articles). Topic models, however, have

only just very recently entered legal studies and have already showed great promise

as a foundation for new quantitative avenues of analysis (George et al. 2014;

Livermore et al. 2017; Nardi and Moe 2014; Rice 2012).

Citation networks and topic modeling are examples of computational methods

useful to legal studies. Early conversations concerning law and digitization focused

on distinction in ‘‘context’’ between digital and physical forms, for example,

whether digitization enhanced or reduced reading comprehension or facilitated or

undermined serendipity in conducting searches. In particular, the legal significance

of the effects of various search modalities (citation-based, keyword, unstructured

text) are only just becoming apparent (see e.g. McGinnis and Wasick 2015). Our

work may suggest ways to begin to quantify some of these effects and empirical

studies comparing our search model with actual human search results is in

preparation. In this paper we focus on the collection of all U.S. Supreme Court cases

from 1951 to 2002. A project to extend our work to include the Circuit courts is

already underway.

In the next section we explain in a bit more detail the mathematical background

and framework. Section 3 presents our results, showing that the precise notions of

puddling and drainage correspond to a measurable waning and waxing respectively

of relevance over time. We also briefly introduce the publicly accessible database

and user interface (www.bendingthelaw.org) that we have constructed for the

engagement with and visualization of the multinetwork of opinions. We then con-

clude with some thoughts about next steps and extensions of this work. Two

technical appendices provides a more detailed mathematical justification (based on

2 A well is a standard example of a point of positive curvature.
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Riemannian geometry) for our definition of multinetwork curvature as well as

motivation for a certain parameter choice in the analysis. The paper can be read

without these sections, but we include them for the sake of completeness.

2 The mathematical framework

2.1 A random walk model for legal research

The geometry we construct for the legal corpus is based on an encoding of the

corpus as a multinetwork that supports the legal search process. We frame legal

search in this setting as a probabilistic process of ‘‘local’’ exploration of the opinion

corpus modeling the way in which a user of the legal corpus might navigate from

opinion to opinion while researching an issue. This navigation is naturally viewed as

a Markov chain (see e.g., Grinstead and Snell 1997), formulated as a matrix T of

transition probabilities where the states are indexed by the opinions: given opinions

a and b the value of the entry T(a, b) is the probability of ‘‘moving to’’ opinion

b ‘‘from’’ opinion a in an exploration of the legal corpus.3 More precisely, framing

this as a ‘‘random walk’’ in ‘‘opinion space’’ T(a, b) is the probability of moving at

the next step to case b, given that you are currently at case a, i.e., the conditional

probability

Tða; bÞ ¼ PðbjaÞ;

in standard notation.

The transition probabilities are constructed as a combination of a several terms,

reflecting our stylized model of navigation of the space of legal opinions.4 We

assume the possibility of three basic types of local exploration from an initial

opinion a: (1) consideration of opinions cited by a; (2) consideration of opinions

that cite to a, and (3) consideration of opinions that are textually similar to a. Our

Markov chain (transition matrix) is thus represented as a linear combination of the

individual chains, Tcited�by; Tcited; and Tsim.

We allow for the possibility that an exploratory mode (i.e., the weights given to

the three forms of connection in the network) can vary for any given search. It may

depend on the searcher, where he/she is in the overall research process, and the

current opinion. The last of these is the easiest to embody and in this case the overall

chain can be written as

3 T varies over time as new opinions are introduced, but very slowly in comparison with the legal search

process. Our use of the chain is with respect to the search that is accomplished at some instant in time, so

we can assume the process is time homogenous and represented by a matrix.
4 Other legal sources, including statutes and constitutions, have other types of internal ordering (such as

organization by chapter or article) that may be relevant for law search. For purposes of this analysis, we

restrict our application to the body of U.S. Supreme Court opinions and do not incorporate other sources

of law. The framework of search that we develop, however, is generalizable to these other legal sources.
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Tða; bÞ ¼ pcitedðaÞTcitedða; bÞ þ pcited�byðaÞTcited�byða; bÞ
þ psimðaÞTsimða; bÞ

ð1Þ

with the proviso that pcitedðaÞ� 0, pcited�byðaÞ� 0, psimðaÞ� 0, and

pcitedðaÞ þ pcited�byðaÞ þ psimðaÞ ¼ 1

at each state a. As per the notation, the weights may vary by initial state (a), though

in what follows we will typically have them globally constant. In fact, for the sake

of analysis we will assume these weights are uniform (each equal to 1
3
). Our

implementation allows the weights to vary (cf. Sect. 3.2). In general, throughout this

paper, we typically choose our parameters to be simple natural choices, reflecting

the initiatory nature of this paper and the early stages of this project. Any particular

parameter of groups of parameters could be optimized with more data and an

appropriate training paradigm. Ideally, the weights would be determined by training

them with respect to an appropriate objective function, and the ideal objective

function would be related to the effectiveness of the exploration. This would require

feedback from users, and in Sect. 3.2 we discuss an implementation which could

eventually allow for such a training paradigm to be implemented.

2.2 Construction of the components Tcited; Tcited�by; and Tsim

The transition matrices Tcited and Tcited�by, based on the citation network are

straightforward to construct. A natural and standard choice is to weight equally all

opinions cited by a given opinion, and similarly for all opinions that cite the given

opinion. Thus, if opinion a cites opinions b1; . . .; bk then Tcitedða; biÞ ¼ 1
k
. Similarly,

if a is cited by opinions b1; . . .; bk, then Tcited�byða; biÞ ¼ 1
k
: While we choose to

work with equal weights, this weighting could be modified in some way, perhaps

accounting for some notion of the importance of an opinion. To find the citation

network we make use of the excellent ‘‘Supreme Court Citation Network Data’’

database created by Fowler and Jeon (cf. Supreme Court 2015).

Navigation via textual similarity using something deeper than keywords is a

novel contribution of this work and for this we make use of a topic model. A

detailed description of topic modeling is beyond the scope of this paper, but a short

description will suffice for the purposes of exposition. Very briefly, a topic—in the

technical sense—is a probability distribution over a vocabulary. Topic modeling is

the unsupervised derivation of a set of such distributions that represents a text

corpus of documents (technically defined as a roughly contiguous set of words in the

corpus, that is usually itself composed of larger portions of text—e.g., full opinions

as opposed to the word blocks it comprises). Topics are defined according to a

simple generative bag-of-words model5 for the documents in the corpus: given a

document, first a topic is chosen at random and then a word is chosen at random

within the topic. The topics are then the best fit solution to the actual bag-of-words

5 ‘‘Bag-of-words’’ means that the document is summarized as the probability (frequency) distribution of

the words comprising it.
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representation of the documents. Recalling that bag-of-words is essentially a

representation of each document as a word distribution, the topic model derives the

‘‘atomic’’ probability distributions that express each document in the corpus as a

mixture of such atoms. The wide applicability of topic models in many disciplines

has made for a broad community of topic modelers and the topic modeling

technology has quickly become an ‘‘off-the-shelf’’ technology ready for deployment

(see e.g., MALLET 2015) with a minimum of start-up cost. See Blei (2012) for one

of the many friendly explanations of topic modeling.

The only supervision in the basic topic modeling algorithm is the choice of

number of topics to be computed. We choose to use 100 topics, which for our corpus

of 21,893 opinions (documents) is adequate. The most widely discussed method for

choosing the number of topics involves treating the number of topics as a model

parameter and inferring it from the data (Griffiths and Steyvers 2004). This method

requires, however, more computational resources than are typically available as

resources needed increase rapidly with the number of topics allowed. With such a

large corpus of (long) documents, for example, fitting a corpus with 1000 topics is

not possible in a reasonable amount of time. The approach we adopt—and we think

it reflects the current best practice—is to choose a maximum number of topics based

on time and computational resources available. Picking a larger number of topics

than the data supports is not a risk because the widely used specifications of the

topic model [used by MALLET (2015) and in the software we use Buntine and

Mishra (2014)] will simply leave them empty. For example, if the data suggest that

50 topic distributions is sufficient to account for the data, fitting a model with a

maximum of 100 topics will recover the same model as fitting the model with a

maximum of 50 topics.

When the topic modeling is completed we therefore have a set of topics

Topic1; . . .; Topic100, where each word w in the vocabulary has a weight in each

topic TopickðwÞ� 0 and any given opinion a is represented as a distribution over

topics,
P

k akðaÞ Topick

P
k akðaÞ ¼ 1; akðaÞ� 0

� �
. Table 1 shows the most

highly weighted words in five of the topics. The indexing of the topics in the

table is not relevant. The labels (in parentheses) are assigned by the user (in this case

the authors of this paper). The full set of topics for our SCOTUS dataset is available

online.6

While there are a number of different kinds of topic models (see e.g., Blei 2007;

Blei and Lafferty 2006; Roberts et al. 2013), the ‘‘latent Dirichlet allocation’’

(LDA) model (the ‘‘Dirichlet’’ refers to an underlying assumption of a Dirichlet

distribution in the model) is perhaps the best known and most widely used (Blei

et al. 2003). This is the topic model that we use here.

With the topic modeling accomplished, we are now in a position to construct

Tsim. For this, we only consider as relevant to a given opinion the ‘‘top’’ topics and

similarly for a given topic, only consider as relevant to our exploration those

opinions who express it most strongly. More precisely, we fix integer parameters NT
and NO and for a given opinion a identify the NT most heavily weighted topics

expressed in opinion a (using the akðaÞ to define the weight) and for a given topic

6 http://www.bendingthelaw.com/topicdata.
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Topick identify the NO opinions in which Topick was most strongly expressed

(using the ak here as well).7 Intuitively we view this as the process of a search

returning the top NT topics related to the initial opinion a followed by a search of

the top NO opinions associated to each of these top topics. To weight the final results

of the search, for the given opinion a we create an NT � NO matrix in which the i, j

entry is the index of the jth most significant opinion in the corpus for the ith most

significant topic in opinion a. If we define Wa;b to be the number of times opinion b

occurs in this matrix, then Tsim is the random walk produced by normalizing

according to these weights. More precisely, for any b with Wa;b [ 0,

Tsimða; bÞ ¼ Wa;bP
c Wa;c

:

With this we have now defined each component random walk for our cumulative

walk T.

2.3 The exploration geometry

The cumulative Markov chain

T ¼ pcitedTcited þ pcited�byTcited�by þ psimTsim

is a natural generalization of the random walk (the ‘‘random surfer’’) whose equi-

librium distribution is the source of the original PageRank algorithm underlying the

early implementation of the Google search engine (Brin and Page 1998). Of interest

to us is the geometry that this search model (or any random walk) produces. In

Table 1 Some representative topics derived from the SCOTUS corpus

Topic1 (jury process) Topic2 (housing) Topic8 (evidence) Topic58 (abortion) Topic59 (search)

Jury Housing Court Abortion Search

Trial Lease Case State Warrant

Evidence Property Evidence Woman Fourth

Defendant Rent Record Medical Amendment

Error credit Fact Physician Evidence

Verdict Building Question Life Arrest

Reasonable Bond Facts Health Police

Instruction Tenant Did Roe Cause

Doubt real Issue Consent Probable

Instructions Rental Findings Statute Seizure

7 The use of ak can be justified for NT by the interpretation Pð Topic kjaÞ ¼ ak. While assuming that

cases are equally relevant a priori, we have for a fixed Topick that

Pðaj TopickÞ ¼
PðaÞ

Pð Topic
k
Þ Pð TopickjaÞ / Pð TopickjaÞ ¼ ak; so we can use ak to order NO as well.
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particular, this kind of Markov-based search produces a metric on the network space

that we call PageDist.8 We call the induced geometry an exploration geometry.9

To define PageDist we attach one last parameter r to the random walk of (1): at

each step assume a probability r [ 0 of continuing the exploration. Then given

r and starting at an opinion a, the expected number of visits to opinion b is

Rða; bÞ ¼
X1

k¼0

rkTkða; bÞ ð2Þ

where as per usual, Tkða; bÞ is the probability of transition from a to b in k steps.

Intuitively, Rða; �Þ forms an exploration neighborhood of opinion a in the sense that

the higher the value of R(a, b) the more opinion b is considered to be in a neigh-

borhood of a. Notice, r governs the size of this neighborhood as a sort of radius. If

r ¼ 0 then the neighborhood consist of only the opinion a, while if r ¼ 1 (and the

chain is irreducible) then the series diverges everywhere and the whole space is a’s

exploration neighborhood. So we need a value between 0 and 1 and in what follows

we chose r ¼ 1
2
to keep it simple. As discussed above, with a fixed objective

function and enough training data one could could optimize this choice of r (perhaps

even locally).

By comparing the overlap of the neighborhoods defined by different opinions we

can form a metric PageDist, given by

PageDist ða; bÞ ¼ Rða; �Þ � Rðb; �Þj jj jp ð3Þ

where p denotes the p-norm.10 Notice that if the neighborhood description of a and

b nearly agree then this will be near zero, and if they are very distant R(a, x) will be

nearly zero when R(b, x) is large and vice versa, resulting in a large value of

PageDist ða; bÞ (in other words, a large distance between the opinions). So the

PageDist metric will capture a notion of distance within the landscape. Figure 1

shows the distribution of distances among our corpus of Supreme Court opinions. In

what follows, we chose the Euclidean norm (p ¼ 2) to keep it simple. Again, with a

fixed objective function and enough training data the choice of p could also be

optimized.

The random walk setting also makes possible a definition of curvature that

encodes a level of difficulty for escape from a given point in the execution of a

random walk. If the degree of difficulty is large, a walk will have a tendency to get

‘‘stuck’’ in the neighborhood of the state. This can be interpreted as an opinion that

doesn’t connect usefully with its surrounding or nearby opinions. Conversely, a

more ‘‘fluid’’ area around an opinion suggests that it engages usefully with the

8 We are indebted to Peter Doyle for early conversations regarding the geometrization of Markov chains

and PageDist.
9 It is worth noting that another natural candidate for a textual geometry is given in Leibon and

Rockmore (2013) wherein the concept of a network with directions is introduced. Therein, ‘‘directions’’

function as ‘‘points at infinity’’, producing a hyperbolic metric on the network. For this—and any text

corpus—the pure topics provide an obvious choice of direction.

10 Recall that this notation means
P

x jRða; xÞ � Rðb; xÞjp
� �1=p

.
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broader opinion landscape. This kind of idea will be key to understanding the

relevance of an opinion.

This ability to ‘‘escape’’ from a region while random walking is a problem

studied widely in a variety of mathematical contexts. We take inspiration from the

study of Brownian motion on manifolds and from this define for the random walk on

the network a local notion of curvature as

jðaÞ ¼ logðRða; aÞ � 1Þ: ð4Þ

In ‘‘Appendix A’’ we explain from a technical point of view why this corresponds to

scalar curvature from Riemannian geometry and thus provides a natural definition.

For us the key is that as the network evolves a measure of change in the local

connectivity of the opinions can be expressed in terms of changing j. We think of

this change as a measure of how the network is bending. Let us make this precise.

Given the node set N of a network with a transition matrix T reflecting a Markov

process on the nodes, let S � N, be some subset of nodes. A Markov chain on N

induces a chain on the subset S by using the weights

WSða; bÞ ¼ Pða; bÞ þ
X

k2NnS; a6¼b

Pða; kÞPðk; bÞ;

for a; b 2 S. Note that we are simply lumping together into one term all transitions a

to b that go outside of S. We form a new transition matrix P(a, b; S, N) normalizing

WSða; bÞ so that the weights sum to one at each vertex. We call this the induced

local exploration. This induces a corresponding exploration geometry and a

Fig. 1 Here we see a histogram of the PageDist values when computed on the legal corpus. Each sample
is a pair of points (opinions) in the corpus and this histogram includes all distinct pairs of points. The

modes in the histogram correspond to pairs in distinct regions. We choose p ¼ 2, r ¼ 1
2
, and

NT ¼ NO ¼ 10
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curvature j (defined as in (3,4)) for S relative to N which we denote as jða; S;NÞ.
Bending will encode the change in curvature as S grows.

Consider the network at two different time points t0\t1 with corresponding node

sets N0 and N1. Since the opinion corpus only grows in time, N0 � N1. Then we can

quantify a change in the induced exploration geometry as

Bending ðN1;N0ÞðaÞ ¼ jða;N0;N1Þ � jða;N0;N0Þ ð5Þ

where jða;N0;N0Þ ¼ jðaÞ in the network at time t0. Identifying the network with

the timestamp we might also write

Bending ða; t1 [ t0Þ ¼ jða; t1 [ t0Þ � jða; t0Þ: ð6Þ

Bending is easy to interpret, it indicates whether the induced geometry at a point

evolves in such a way that it became easier or more difficult to escape from the

point. Regions where it becomes more difficult to make such transitions we call

puddling regions and regions where it becomes easier are called drainage regions.

A precise definition works with the distribution of bending values: we call the subset

corresponding to the bottom quartile of Bending ð�; t1; t0Þ the Drainage region

(relative to the defining era)—or Drainage ðt1; t0Þ. Similarly, we call the subset

corresponding to the top quartile of Bending ð�; t1; t0Þ the Puddling region (relative

to the defining era)—or Puddling ðt1; t0Þ. Figure 2 shows the distribution of

jð�; 1990Þ as well as the bending of 1995 relative to 1990 in the Supreme Court

opinion corpus (Bendingð�; 1995[ 1990Þ).

3 Results

The metrics we have developed enable us to determine the ‘‘relevance’’ of an

opinion, as defined by its proximity to new opinions that are added to the corpus.

Fig. 2 On the left we see a histogram of the the curvature jð�; 1990Þ computed on the corpus at 1990,
and on the right we see the bending Bending ð�; 1995[ 1990Þ. This gives a sense of the variation of the
curvature over time. Notice, the curvature histogram on the left is far from uniform. The bending
histogram on the right is very telling. The right tail is the Puddling region and the left tail the Drainage
region
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3.1 Metrics for relevance

To exhibit the utility of our various definitions we first quantify what it means for a

case to be ‘‘relevant’’. Our proxy is that it is nearby (in terms of PageDist). Thus, let

Nt denote the set of nodes (opinions) in the network (corpus) at time t. Given

t2 � t1 � t0, define the set of relevant cases (at some threshold d) as

Rel t2;t1;t0;d ¼fa 2 Nt0 j PageDist ða; bÞ\d; for some b 2 Nt2 � Nt1g: ð7Þ

This set (with these parameter values) comprises the ‘‘early’’ opinions a at time t0
(i.e., those that could serve as precedent) that find themselves close to newly arrived

(later) opinions (those issued in the period between t1 and t2). This means that the

opinions in Rel t2;t1;t0;d are those opinions published no later than t0 that are close to

the new opinions published between times t1 and t2.

The threshold d can be set based on various criteria. A natural way to set d is by

taking into account the PageDist distribution. A guiding principle is to set d

according to the percentage of cases that we want to declare as ‘‘relevant’’ over a

given initial or baseline period. For fixed time periods t0\t1\t2, as the threshold d

increases, so does the fraction of opinions in the corpus at time t0 that are considered

relevant. Conversely, as the fraction of cases that will be viewed as relevant grows,

this implicitly corresponds to an increased threshold d.

We further define the Initial Relevance Probability (IRP) (for t1 [ t0 and a given

threshold d) as the fraction of opinions present at time t0 that are in Rel t1;t0;t0;d—

i.e., the fraction of opinions that remain relevant at time t1 according to a threshold

d. Our goal is to understand how to predict which cases remain relevant as time goes

on. Figure 3 shows how IRP varies with relevance to future cases

Pð Rel t2;t1;t0;d j Rel t1;t0;t0;dÞ.11 Therein we plot (using t0 ¼ 1990, t1 ¼ 1995, and

t2 ¼ 2000)

Momentum ¼ Pð Rel t2;t1;t0;d j Rel t1;t0;t0;dÞ � IRP

against IRP (recall that since d increases monotonically with IRP, we can view both

axes as functions of d). Thus, ‘‘Momentum’’ measures the fraction of opinions that

continue to be relevant. This behaves as might be expected, with an increasing

percentage of opinions remaining relevant, until such a time as too many initial

cases are tossed in, some of which will be opinions that have become vestigial.

Our goal is to identify the region R which contains the recent legal action. If we

imagine that we have constructed a random region with each of our independent

samples, then Pð Rel t2;t1;t0;d j Rel t1;t0;t0;dÞ 	 IRP. So the Momentum measures how

far beyond random our construction is, and we define the optimally ‘‘relevant’’

region as the one that’s furthest beyond random. Let us now fix d ¼ dmax so as to

correspond to the IRP ¼ 0:2 in Fig. 3. With the choice of d set, we now have fixed

the parameter by which we identify opinions as relevant. A mathematical

justification for this choice can be found in ‘‘Appendix B’’.

11 Note that the conditional notation has the usual interpretation of PðA j BÞ ¼ #ðA \ BÞ=#B.
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Having fixed d we can now examine the interaction between curvature and

relevance, and in particular, the effect of being in either the drainage or puddling

groups as respects the relevance of future cases. Let us start by defining our Future

Relevance Probability relative to a condition A as

FRPðAÞ¼Pð Rel t2;t1;t0;dmax
j Rel t1;t0;t0;dmax

&AÞ: ð8Þ

This measures how much knowing a condition A helps to predict future relevance.

And our goal is to see whether knowing something about the dynamic geometry,

namely if we are in a drainage or puddling region, helps us predict whether that

regions is more or less likely to be relevant in the near future. This entails the

comparison of FRPð Drainage Þ, FRPð Puddling Þ, and FRPð All Þ.
This comparison is shown in Fig. 4. We see the relevance of future cases (the

blue line - in the online - and solid line in the paper copy) compared to the relevance

of future cases in the drainage and puddling regions. Therein we see that indeed,

drainage regions (low bending) have roughly a greater than 10% chance more of

being relevant for future cases than do puddling regions (high bending). That is, the

drainage regions that are connecting up the space are more associated to future

relevance.

Fig. 3 Here the x-axis is Initial Relevance Probability relative to t0 ¼ 1990, t1 ¼ 1995, so the fraction of
cases before 1990 that are within a distance d of cases that come in after 1990 and before 1995. As
d increases so does IRP, so that the x-axis reflects a steady increase in d. Similarly, for the y-axis,
Momentum (expressed as a percent) with t0 ¼ 1990, t1 ¼ 1995, and t2 ¼ 2000, which is also a function of
d. So, the curve we see here is effectively a parametrized plot of Momemtum against IRP as d increases.
Recall that Momentum (with these parameters) is the difference between the proportion of early (pre-
1990) opinions that continue to be relevant in the 1995-2000 period, given that they were relevant in the
1990-1995 period, and the fraction of opinions that initially were relevant to opinions written between
1990 and 1995. Thus, we are subtracting out some baseline guess of how many of these early cases you
would expect to be relevant in this time based on earlier information. This measures how much larger
than random the future relevance is given recent relevance. This is all a function of d or equivalently, IRP.
We see that IRP ¼ 0:2 is roughly an optimal value
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To confirm that this relationship is not driven by random chance, let the null

hypothesis be that there is nothing but a random difference between the drainage

and puddling regions. So for a fixed measurement, under the null hypothesis there

would be a fifty-fifty chance that we confirm our suspicion (technically, bounded by

50% when allowing for ties). Furthermore, for events that differ by at least 5 years,

the Nt2nNt1 populations are distinct, so that the measurements are suitably

independent. Thus, we have 6 independent measurements with a perfect track

record which would be expected by chance with a likelihood of 1
26
. The null

hypothesis that there is nothing but a random difference between drainage and

puddling regions is thus highly unlikely.

3.2 Implementation

The ideas presented in this paper form the foundation of new web-based search tool

for exploring a space of legal opinions using the exploration geometry introduced in

the body of this paper. Specifically, we have built a prototype website and user

interface (UI) that will enable the exploration according to PageDist of an opinion

database, that ultimately will encompass all Federal Court and Supreme Court cases.

At present it is running on a small subset (SC cases 1950–2001). This prototype can

be found at www.bendingthelaw.org.

Currently, our UI introduces users to cases in the ‘‘vicinity’’ (in the sense of our

exploration geometry) of a pre-identified case specified by the user. The anticipation

is that these cases will be strong candidates for precedent-based reasoning. As per

Fig. 4 Here the x-axis is the year the case was decided, and the y-axis is a probability expressed as a
percent. The blue/solid curve is FRPð All Þ with t0 ¼ date, t1 ¼ date þ 5, and t2 ¼ date þ 10. In
black/dashed we see FRPð Drainage Þ and in red dot-dashed we see FRPð Puddling Þ with the same
timing parameter values. Notice that indeed, the bending is (negatively) correlated with long term
relevance as predicted, and that after around 1978 we see a fairly stable 10% difference. (Color
figure online)
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(1) the search returns the ‘‘neighborhood’’ of the case that depends on the database

of cases as well as the individual weights assigned to the three-component random

walk process encoding the exploration geometry—that is, a choice of weights

pcited; pcited�by; and psim. As a first step we allow a choice of weights from f0; 1; 2g
with at least one positive weight, so that W ¼ wcited þ wcited�by þ wsim,

pcited ¼ wcited=W , pcited�by ¼ wcited�by=W , and psim ¼ wsim=W .

Recall that the similarity piece of the random walk, Tsim requires that we

construct the ‘‘topic by opinion’’ matrix of a given size. We choose that to be

10� 10—i.e., that for any given topic we consider the 10 opinions that make the

most use of it and conversely, for any opinion, we consider the 10 topics that make

the strongest contribution to it.

Given an initial query, the UI provides two complementary representations: (1) a

ranked list of geometrically closest (in terms of PageDist) cases and (2) a map of the

space, centered on a case of origin (the original input). As a ‘‘map’’, this

representation shows not only the relation of cases to the initial query, but also the

relations of the closest cases to each other. The associated visual integrates a

network representation wherein cases are linked if the overall weight between them

exceeds a threshold. The map is generated by clicking on ‘‘View Case Network’’

(after executing the query). The opinion map produced from the query ‘‘329 US

187: Ballard v. United States’’ is shown in Fig. 5.

Fig. 5 Here is a snapshot from our alpha version UI for exploring the space of legal opinions. The
current UI is built on the database of Supreme Court opinions over the time period 1950–2001. What we
see here is the 2-d MDS visualization of the PageDist neighborhood of 30 cases closest to ‘‘329 US 187:
Ballard v. United States’’. Cases are linked if the overall weight between them exceeds some threshold.
The exploration weights have been set to 2 (‘‘cited’’), 1 (‘‘cited by’’), and 2 (‘‘topic similarity’’)

Bending the law: geometric tools for quantifying influence... 159

123



4 Closing thoughts

In this paper we introduce a new multinetwork framework integrating citation and

textual information for encoding relationships between a large set of Supreme Court

opinions. The citation component derives from the underlying citation network of

opinions. The textual piece derives from an LDA topic model computed from the

text corpus. A metric on the opinion space is the reification of a basic model of legal

search as would be executed by a prototypical legal researcher (‘‘homo legalus’’)

looking for cases relevant to some initial case through textual similarity and citation.

The model of search is articulated as a Markov chain on the network, built as a

linear combination of the individual chains on the citation and topic networks. The

Markov process produces a notion of distance between opinions which can also be

thought of as a proxy for relevance. Along with distance, the Markov chain gives

rise to a notion of curvature, and with this an implicit framing of the opinion corpus

as a ‘‘landscape’’ which we call ‘‘the legal landscape’’. We have implemented a first

generation website that will allow users to explore a smallish subset of Supreme

Court opinions using this search tool (www.bendingthelaw.org).

The text corpus evolves in the sense that cases enter the corpus regularly and in

so doing continually transform the associated text landscape, changing interpoint

distances and local curvatures. Of particular interest are those cases that remain

relevant over long periods of time. Some regions of the legal landscape have the

property that they serve as nexuses of connection for regions of the landscape. We

show that those regions which over time become significantly more negatively

curved are such connective areas. With the analogy of flow in mind, we call such

areas, regions of ‘‘drainage’’. Areas which experience a significant increase in

curvature we call ‘‘puddling regions’’. We show that drainage areas are more likely

to contain continually relevant cases than the puddling regions. We further show

that opinions that start off relevant, in the sense of entering the landscape highly

relevant to many cases over a short period of time tend to remain relevant, thereby

suggesting a property of (legal) momentum.

There are natural next steps to take with this idea. In one direction we will

expand the text corpus to include all Supreme Court and Appellate Court Opinions.

We also plan to validate and compare our model by asking users to compare the

results of our search algorithm (under a range of parameter choices) with their own

usual research approaches. Our newly introduced opinion distance function gives a

new variable to explore the relations of opinions to all kinds of social and economic

variables. It is also natural to export this model to other court systems that produce

English language opinions. In this regard it would be interesting to see the ways in

which the ‘‘bending’’ of the courts systems vary, and try to understand what might

account for such (possible) variation. Ultimately, it would also be of interest to

effect the integration of distinct corpora via this model. In a related, but different

direction, we will deploy this new navigation and search model on other corpora. To

this end, the Bending the Law website includes navigable access to the United States

Code (USC), Code of Federal Regulations (FCR), and Internal Revenue Code

(IRC). In these corpora, sections and subsections are linked and referenced, and the
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topic modeling takes place on the level of sections. Future work will describe our

findings in analyzing these newly multinetworked corpora, but for now, they exist as

domains for new explorations for the public.
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Appendix A: Scalar curvature, Riemannian geometry and the ease
of escape

In Sect. 2.3, we suggest that a definition of curvature at a node in a Markov Chain

should reflect the ease of escape from a point (specifically, as values range from

small to large it should become more difficult to escape). In this appendix we justify

this claim. The inspiration for our definition comes from differential geometry and

for completeness, we give here a summary of the relevant technical facts and

analogies. A standard reference for the various basic notions of differential

geometry is the classic textbook of Helgason (2001).

Let (M, g) denote a Riemannian manifold of dimension d (and inner product g),

and let sgðxÞ denote it’s scalar curvature at a point x 2 M. To describe the

relationship, we first define a notion of escape curvature that is clearly the ease of

escape from point on (M, g) and demonstrate its relationship to sgðxÞ. We then

examine resolvent curvature, which is the analog of our Markov chain definition of

the ease of escape j on (M, g), and prove it is related to sgðxÞ in the same way as the

escape curvature.

Escape curvature. Let let Xt be the Brownian motion process on (M, g). And

define the escape time of a path from a subset A � M as

TA ¼ infft[ 0 j Xt 62 Ag:

It is useful to think of the escape time of leaving a ball of radius
ffiffiffi
d

p
at x, and we

denote this ball as B ffiffi
d

p ðxÞ. In the analogy with a Markov chain, we are going to

think of d as the distance of a typical single (‘‘infinitesimal’’) step in the discrete

chain. We have the following theorem about the expected time for Xt to leave this

ball:

Theorem 1 (see Pinsky 1984) For small d,

E TB ffiffi
d

p ðxÞ

� �
¼ addþ bdsgðxÞd2 þ Oðd3Þ

where ad and bd are constants that depend only on M’s dimension d.
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We define the escape curvature as

Kðx; g; dÞ ¼ log E TB ffiffi
d

p ðxÞ

� �� �
;

and using the fact that logð1þ �Þ ¼ �þ Oð�2Þ and logðabÞ ¼ logðaÞ þ logðbÞ,
Theorem 1 implies:

Corollary 1 (Escape Bending) For small d,

Kðx; g1; dÞ � Kðx; g0; dÞ
d

¼ cdðsg1ðxÞ � sg0ðxÞÞ þ OðdÞ

where cd is a constant that depend only on M’s dimension d.

It is worth pointing out the significance of taking the difference. For a

Riemannian manifold we have a canonical flat space (Euclidean space) which we

can use use to set a baseline for what it means to be curved. For a Markov chain

there is no such obvious choice, but the bending, namely the difference in curvature,

makes good sense without such a baseline. Perhaps more importantly there is not

one Euclidean space but one for each dimension d, and dimension is a concept that

also resists a canonical definition on a Markov chain. In fact, this formula

encourages us to view a chain’s dimension as variable (but locally stable at under

reasonable changes in the metric); what we end up calling curvature is really a

mixture of curvature and a factor that depends on dimension that is rather subtle to

decouple.

Resolvent curvature. Our definition of a Markov chain’s curvature j defines an

ease of escape from a point for a discrete chain. In this section, we see that j has an

analog on a Riemannian manifold that satisfies the relationship to sectional

curvature described in Corollary 1. To do so, we acknowledge the dependence of

R(a, b) (see Equation (2)) with the notation and note that Rrða; bÞ satisfies

Rrða; bÞ ¼ Rða; bÞ ¼
X1

k¼0

rkTkða; bÞ ¼ I � rTð Þ�1: ð9Þ

Consider the last term, I � rTð Þ�1
. The operator I � T is well known as the analog

of the Laplacian or Laplace operator for a Markov chain (very generally, a

‘‘Laplacian’’ is the operator that takes the difference of function with the average

values of its neighbors). Let D ¼ ðI � TÞ. Plugging this into Eq. (9) we arrive at

Rrða; bÞ ¼ 1

r

r

1� r

� �
� D

� ��1

;

which now has both a Riemannian and Markov chain interpretation. In fact, it is a

rescaled version of a very well studied operator, the resolvent operator. We denote

its kernel in the Riemannian setting as Rr;gðx; yÞ (which is continuous in dimensions

2 and 3, see Polterovich 2000). Furthermore r is governing the small distance from a

point x, (i.e., a smoothed out ball) and in the Riemannian setting we express this as

r ¼ r0d. We have
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Theorem 2 (see Polterovich 2000) In dimensions d ¼ 2 and d ¼ 3 (and in a formal

sense for all dimensions) we have, for small d,

Rr0d;gðx; xÞ ¼ 1

r

r

1� r

� �1�d=2

Ad þ adr0sgðxÞdþ Oðd2Þ
� �

where Ad and ad are constants that depend only on M’s dimension d.

So we define the resolvent curvature as

jðx; g; r0; dÞ ¼ log Rr0d;gðx; xÞ � 1Þ
� �

on (M, g) as a direct analog of our j, and we have:

Corollary 2 (Resolvent Bending) In dimensions d ¼ 2 and d ¼ 3 (and in a formal

sense in all dimensions) we have:

jðx; g1; r0; dÞ � jðx; g0; r0; dÞ
d

¼ r0Cdðs1ðxÞ � s0ðxÞÞ þ OðdÞ

were Cd is a constant that depend only on M’s dimension d.

So it is indeed reasonable to call j the Markov chain’s curvature. As such, it is

important that in Corollaries 1 and 2 dimension does not show up in the re-scaling

of jðx; g1; dÞ � jðx; g0; dÞ to be a finite value. In this appendix we see that the log is

in fact required to do this. Notice, Corollary 2 is still true using any constants A[ 0

and B� � 1 for a definition of j ¼ logðARðx; xÞ þ BÞ. Our choice of A ¼ 1 and

B ¼ �1 is based on the notion that Rða; aÞ� 1 and when Rða; a; Þ ¼ 1 the walker

starting at x cannot return to x, and we could reasonably view x as having infinite

negative curvature. Using j ¼ logðRðx; x; Þ � 1Þ makes this true and is particularly

simple and easy to interpret.

Appendix B: Hunting for the relevant region with momentum

In this Appendix we justify why finding the argmax of the Momentum corresponds

to finding the best approximation of the Relevant Region as implemented in Sect.

3.1. To do so, it’s useful, as in Appendix A, to imagine there is a ‘‘true’’ (Platonic)

legal space at time t which for simplicity we view as a compact Riemannian

manifold (M, g) (where M is the underlying manifold and g is the metric). We view

our historic cases as a sample of this M with our PageDist metric computed at time

t as approximating the Riemannian metric at this time. We assume there is a

relevant region in M around time t and denote this region as R. We view R as an

open subset of M with smooth boundary. Furthermore, we view Nt1 � Nt0 an Nt2 �
Nt1 as independent random samples of R with respect to the measure determined by

the metric’s volume form. Implicitly, this assumes the timescale for creation of the

samples was small in comparison to the timescale in which the true, unknown,

relevant region is changing. We will denote these independent samples as S1 and S2

respectively in what follows. Lastly, we normalize the the metric so that the total
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volume of M is 1. As such, the volume of a region is its probability of being sampled

when uniformly sampling the space.

Recall, given a choice of d we found all the points within d of a sample and

denoted this region as Rel t2;t1;t0;d for S2 and Rel t1;t0;t0;d for S1. Then we used the

fact that d determines the size of the region (the IRP) and vice-versa, to view this

region as function of IRP. It is useful to express this implicit relationship explicitly

and let the neighborhood of a sample of size IRP be denoted as Rel(S, IRP), and

similarly for the momentum we let

pðIRPÞ ¼ PðRelðS2; IRPÞ j RelðS1; IRPÞÞ � IRP:

to denote the momentum as a function of IRP.

Now our goal is to find an IRP so that Rel(S, IRP) forms good approximations of

the true, unknown R. So we first need to decide on what constitutes a ‘‘good’’

approximation. We choose to maximize the well known Jaccard index

J(Rel(S, IRP), R) where

JðA;BÞ ¼ PðA \ BÞ
PðA [ BÞ :

We now justify the construction in Sect. 3.1 by observing:

Theorem 3 Given two independent dense samples Sk for k 2 f1; 2g,

argmaxIRPfJðRelðSk; IRPÞ;RÞg 	 argmaxIRPfpðIRPÞg:

Proof Our first order of business is to define what it means for a sample to be dense.

We say a sample S is �-dense for �[ 0 if for every point in R the ball of radius �
around it contains a point in S. For a fixed �, if we increase the size of the sample,

then the probability that a random sample is �-dense tends to one. So a sample being

�-dense is morally equivalent to being a large sample.

Viewing IRP as a function of d, we see by the triangle inequality that if S is �-
dense then R � RelðS; IRPð2�ÞÞ. Furthermore, we can estimate PðRelðS; IRPð2�ÞÞ n
RÞ by noticing that every point in RelðS; IRPð2�ÞÞ is within 2� of the of the closest

point in the normal direction away from the (assumed smooth) boundary of our

region, which we call the region’s collar. Letting the A denote the surface area of

the smooth boundary, we have PðcollarÞ ¼ 2�A þ Oð�2Þ, so

PðIRPð2�ÞÞ ¼ PðRÞ þ 2�A þ Oð�2Þ. In particular, PðIRPð2�ÞÞ is arbitrarily close to

P(R) for an �-dense set and small enough �.
Armed with this observation about estimating the collar we find:

Lemma 1 For a sufficiently dense sample,

argmaxIRPfJðRelðS; IRPÞ;RÞg 	 PðRÞ:

Proof For IRP\PðRÞ
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JðRelðS; IRPÞ;RÞ
 IRP

PðRÞ\1;

and for IRP[PðRÞ we have

JðRelðS; IRPÞ;RÞ
 PðRÞ
IRP

\1:

So when the IRP is sufficiently far away from P(R) we have JðRelðS; IRPÞ;RÞ\1,

and for a dense enough sample we have R � RelðS; IRPð�ÞÞ and so by our collar

estimate

JðRelðS;PðRÞÞ;RÞ ¼ PðRÞ
PðRÞ þ 2�S þ Oð�2Þ

assuring us that JðRelðS;PðRÞÞ;RÞ 	 1, as needed in order to identify P(R) as the

argmax of J(Rel(S, IRP)). h

From this Lemma 1 if we knew R, then we would set IRP ¼ PðRÞ. But we do not

know R. We do however have two independent samples and the following lemma:

Lemma 2 For a dense sample,

argmaxIRPfpðIRPÞg 	 PðRÞ:

Proof By the above observation regarding collars, if IRP\PðRÞ then Rel(S, IRP)

does not cover R and so d\2�. Hence PðRelðS; IRPÞ n RÞ\2�S þ Oð�2Þ and the

region outside R is small for small �. So Rel(S, IRP) can be viewed as a random

subset of R taking up 	 IRP
PðRÞ worth of R. This is true of any independently specified

subset of R, so for our independent samples S1 and S2 we have

PðRelðS2; IRPÞjRelðS1; IRPÞÞ 	 IRP

PðRÞ

and

pðIRPÞ 	 IRP
1

PðRÞ � 1

� �

:

Now for a dense sample S and IRP[PðRÞ if we let dk be such that IRP ¼ IRPðdkÞ
for Sk, then by the triangle inequality RelðS2; IRPðd1 � �ÞÞ � RelðS1; IRPðd1ÞÞ �
RelðS2; IRPðd1 þ �ÞÞ assuring us that ðd1 � 2�Þ\d2\ðd1 þ 2�Þ. So, as

P(Rel(S, IRP(d))) is continuous in d, we have PðRelðS2; IRPðd2ÞÞn
RelðS1; IRPðd1ÞÞ ¼ Oð�Þ; and, as both approximations contain R,

PðRelðS2; IRPÞjRelðS1; IRPÞÞ ¼ 1þ Oð�Þ

telling us that
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pðIRPÞ 	 1� IRP:

Together these two approximations tell us that, up to Oð�Þ, p(IRP) increases as IRP

increases from 0 to P(R), and p(IRP) decreases as IRP increases from P(R) to 1; so

argmaxIRPfpðIRPÞg 	 PðRÞ as required. h

Taken together Lemmas 1 and 2 imply Theorem 3. h
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