
RuleRS: a rule-based architecture for decision support
systems

Mohammad Badiul Islam1
• Guido Governatori1

Published online: 23 February 2018

� Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract Decision-makers in governments, enterprises, businesses and agencies or

individuals, typically, make decisions according to various regulations, guidelines

and policies based on existing records stored in various databases, in particular,

relational databases. To assist decision-makers, an expert system, encompasses

interactive computer-based systems or subsystems to support the decision-making

process. Typically, most expert systems are built on top of transaction systems,

databases, and data models and restricted in decision-making to the analysis, pro-

cessing and presenting data and information, and they do not provide support for the

normative layer. This paper will provide a solution to one specific problem that

arises from this situation, namely the lack of tool/mechanism to demonstrate how an

expert system is well-suited for supporting decision-making activities drawn from

existing records and relevant legal requirements aligned existing records stored in

various databases.We present a Rule-based (pre and post) reporting systems

(RuleRS) architecture, which is intended to integrate databases, in particular,

relational databases, with a logic-based reasoner and rule engine to assist in deci-

sion-making or create reports according to legal norms. We argue that the resulting

RuleRS provides an efficient and flexible solution to the problem at hand using

defeasible inference. To this end, we have also conducted empirical evaluations of

RuleRS performance.

Keywords Rule engine � Defeasible logic � Deontic Logic � Decision
support system � SPINdle � Legal norms

& Mohammad Badiul Islam

Badiul.Islam@data61.csiro.au

Guido Governatori

Guido.Governatori@data61.csiro.au

1 Data61, CSIRO, Brisbane, Australia

123

Artif Intell Law (2018) 26:315–344

https://doi.org/10.1007/s10506-018-9218-0

http://orcid.org/0000-0002-9110-2365
http://orcid.org/0000-0002-9878-2762
http://crossmark.crossref.org/dialog/?doi=10.1007/s10506-018-9218-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10506-018-9218-0&domain=pdf
https://doi.org/10.1007/s10506-018-9218-0

1 Introduction

Decision makers in governments and enterprises often have to take decisions and

create reports based on regulations (and other normative and legislative documents)

and organisation specific data, where the organisation data is generally stored in

enterprise (relational) databases. For example, Australian financial institutions are

subject to Financial Sector (Collection of Data) Act 2001 for what (financial)

information to report to the relevant regulators (e.g., Australian Prudential

Regulator Authority), and government departments and agencies are required to

comply with the Public Governance Performance and Accountability Act 2013 and

Public Governance Performance and Accountability Rule 2014 for their annual

financial reporting. The requirements about what, when and in what forms to report

(and related exceptions) are given in the (relevant) regulations while the (financial

and related) data is stored in the databases of the institutions that have to generate

reports about the data.

Accordingly, in these scenarios, one has to perform some legal reasoning (for

example to understand what are the actual requirements that apply in a given case)

based on the information from their enterprise databases. Legal reasoning has two

distinctive features: the first is that norms, generally, set base guidelines, but then

they are open to exceptions, where the exceptions are expressed themselves as

norms. Also, norms prescribe behaviours using concepts such as obligations,

prohibitions, and permissions. Obligations and prohibitions can be violated, and

legal frameworks provide conditions to compensate for violations. Relational

databases are essentially first-order logic theories, where the tables are grounded

instances of predicates and queries are first-order logic expressions about the

predicates stored by the tables; as such they are not suitable to reason with deontic

concepts and violations (Herrestad 1991), also, Governatori (2015b) argues that

most existing Deontic Logics are not able correctly handle compensatory norms,

and norms where deontic concepts imply other deontic concepts. Consequently, we

need a logic that can handle exceptions and complex deontic notions. Defeasible

Deontic Logic (Governatori et al. 2013) is a rule-based computationally oriented

logic that proved suitable to handle legal reasoning and that does not suffer from the

problem affecting other Deontic Logics (Governatori 2015a).

In this paper we investigate (and discuss the implementation and empirical

evaluation of) a methodology to combine Defeasible Deontic Logic to handle the

reasoning about the legal requirements, and relational databases to retrieve

information from enterprise databases. The key intuition is that the norms

governing the scenario are encoded as rules in the logic, while the facts are

encoded as database queries. Accordingly, the focus of the paper is not to study

whether the chosen logic is able to properly represent norms and legal reasoning,

but whether the proposed framework is scalable enough to handle massive

(enterprise) databases, to provide responses in a ‘‘reasonable’’ time.1 In our opinion,

1 We fully recognise that the notion of ‘‘reasonable’’ time is a very open texture one. It depends on the

applications: while a response in seconds could ot be suitable for a real time critical systems, an overnight

computation is suitable for a task, e.g., auditing the whole set of transaction of a bank when such auditing

would take months based on a limited sample data.

316 M. B. Islam, G. Governatori

123

the work addresses a shortcoming in the field of Artificial Intelligence and Law.

Most approaches to legal reasoning have been tested on a very small scale scenarios

and data. To be best of our knowledge, this is the first work testing legal reasoning

on large scale databases, and thus can provide benchmarks for future developments.

For the evaluation of the framework we are going to examine two case studies:

the first is based on New South Wales Mandatory Reporting Guidelines (NSW

Government 2016), mandating child care centres (and other professionals) to report

to appropriate authorities potential child abuse or neglect cases, where the

determination where a case is to a decision support system for the US Food and

Drug Administration (FDA) Adverse Event Reporting System (FAERS, formerly

AERS) (US Food and Drug Administration 2016). For the first case study, do the

sensitive nature of the application combined to privacy and legal issues, it was not

possible to use real data. Thus, instead of artificially creating a synthetic database,

we decided to use an existing database (from a different domain) and test the set of

rules and the database against different types of queries just to measure the

performance. Therefore, the database queries were created for their structure not for

their content. The second case study was evaluated for content and performance.

Specifically, we use a sample database that contains information on adverse event

and medication error reports submitted to the FDA generated from the publicly

available FDA datasets. The datasets consist of (US Food and Drug Administration

2015) postmarket drug and biologic safety evaluations based on records and reports

concerning adverse drug experiences on marketed prescription drugs for human use

without approved new drug applications and the relevant regulation (US Govern-

ment 2014). We illustrate the system for decision-making towards compliant or non-

compliant information, in particular, on adverse event and medication error reports

submitted to FDA using RuleRS system architecture and its internal components.

The paper is organised in seven sections. Section 2 briefly outlines defeasible

logic. Section 3 introduces the RuleRS architecture. We include the case studies in

Sect. 4 and the evaluation using case study data in Sect. 5. The following one

describes some review of related works. Finally, we conclude with a discussion of

implications for future research.

2 Defeasible logic

RuleRS is developed in the setting of Defeasible Logic (DL). Why DL? Indeed, DL

is a formalism that has been successfully used for legal reasoning [and it has been

proved that other formalisms successful in legal reasoning correspond to variants of

DL (Governatori 2011)]. Defeasible Deontic Logic has been successfully used for

applications in legal reasoning (Antoniou et al. 2001; Governatori 2005; Governa-

tori and Shek 2013; Governatori 2015a) and it is has been shown that it does not

suffer from problems affecting other logics used for reasoning about norms and

compliance (Governatori and Hashmi 2015; Governatori 2015a). Thus Defeasible

Deontic Logic is a conceptually sound approach for the representation of regulations

and at the same time, it offers a computationally feasible environment to reason

about them [Governatori and Rotolo (2008) proved that the logic is computationally

RuleRS: a rule-based architecture for decision... 317

123

feasible since since we can compute the extension of a theory in linear time]. In this

paper, we are going to evaluate whether the proposed combination offers a practical

solution for decision systems in the legal domain combining databases and norms

(represented as rules). To this end, we examine two practical systems’ response time

to identify a child at risk (NSW Government 2016) involving in a sample Child Care

Management Systems database, and an adverse report is compliant with the relevant

regulation system using two large sample databases generated from FDA datasets

(US Food and Drug Administration 2015).

Defeasible Logic is ‘‘skeptical’’ nonmonotonic logic (meaning that it does not

support contradictory conclusion), was originally proposed by Nute (1994). Since

then it has been significantly used in the legal domain or closely related areas, such

as modelling regulations (Antoniou et al. 1999), e-contracting (Governatori 2005;

Grosof 2004), business processes compliance (Sadiq and Governatori 2015;

Governatori and Rotolo 2010) and automatic negotiation system (Skylogiannis

et al. 2007). The modelling of regulations in DL also offers support for ‘‘Decision

support’’, ‘‘Explanation’’, ‘‘Anomaly detection’’, ‘‘Hypothetical reasoning’’ and

‘‘Debugging’’ tasks. Decision support is used to infer a correct answer from given

rules and regulations. DL is one of the possible solutions since regulations may

contradict one another using the defeasible rules do not necessarily in force; instead

they may be blocked by other rules with contrary conclusions (Antoniou et al.

1999).

A defeasible theory D [a knowledge base in defeasible logic, or a defeasible logic

program (Maher 2001)], consists of five different kinds of knowledge: facts, strict

rules, defeasible rules, defeaters, and a superiority relation. D is a triple ðF;R;�Þ
where F and R are finite sets of facts and rules respectively, and � is a superiority

relation on R.

The language of DL consists of a finite set of literals, where a literal is either an

atomic proposition or its negation. Given a literal l; �l denotes its complement.

That is, if l ¼ p then �l ¼ :p, and if l ¼ :p then �l ¼ p.

Facts are logical statements describing indisputable facts, represented either in

the form of states of affairs [literal or modal literal (refer to Sect. 2.1)] or actions

that have been performed, and are considered to be always true. For example, ‘‘John

is a human’’ is represented by: human(John).

A rule r, on the other hand, describes the relations between a set of literals [the

antecedent A(r), which can be empty] and a literal [the consequence C(r)]. We can

specify the strength of the rule relation using the three kinds of rules supported by

DL, namely: strict, defeasible, and defeater.

Strict rules are rules in the classical sense: whenever the premises are

indisputable (e.g. a fact) then so is the conclusion. For example,

humanðXÞ ! mammalðXÞ

which means ‘‘Every human is a mammal’’.

It is worth mentioning that strict rules with empty antecedents can be interpreted

the same way as facts. However, in practice, facts are more likely to be used to

318 M. B. Islam, G. Governatori

123

describe contextual information; while rules, on the other hand, are more likely to

be used to represent the reasoning underlying the context.

Defeasible rules are rules that can be defeated by contrary evidence. For

example, typically mammal cannot fly, written formally:

mammalðXÞ) :fliesðXÞ

The idea is that if we know that X is a mammal, then we may conclude that it cannot

fly unless there is other, not defeated, evidence suggesting that it may fly (for

example that the mammal is a bat). A defeasible rule with an empty antecedent can

be considered as a presumption.

Defeaters are rules that cannot be used, on their own, to draw any conclusions.

Their only use is to prevent some conclusions, i.e., to defeat some defeasible rules

by producing evidence to the contrary. For example the rule:

heavyðXÞ,:fliesðXÞ

states that an animal is heavy is not sufficient enough to conclude that it does not fly.

It is only evidence against the conclusion that a heavy animal flies. In other words,

we do not wish to conclude that :flies if heavy, we simply want to prevent a

conclusion flies.

A full definition of the proof theory can be found in Antoniou et al. (2001) and

Billington et al. (2010). Roughly, the rules with conclusion p form a team that

competes with the team consisting of the rules with conclusion :p. If the former

team wins p is defeasibly provable, whereas if the opposing team wins, p is non-

provable.To conclude, let us consider D as a theory in DL (as described above). A

conclusion of D is a tagged literal and can have one of the following four forms:

þDq meaning that q is definitely provable in D (i.e., using only facts and strict

rules); �Dq meaning that we have proved that q is not definitely provable in D; þoq

meaning that q is defeasible provable in D; and �oq meaning that we have proved

that q is not defeasible provable in D.

Strict derivations are obtained by forward chaining of strict rules while a

defeasible conclusion p can be derived if there is a rule whose conclusion is p,

whose prerequisites (antecedent) have either already been proved or given in the

case at hand (i.e., facts), and any stronger rule whose conclusion is :p has

prerequisites that fail to be derived. In other words, a conclusion p is (defeasibly)

derivable when: p is a fact, or there is an applicable strict or defeasible rules for p,

and either all the rules for :p are discarded (i.e., not suitable) or every rule for :p is

weaker than an applicable rule for p.

2.1 Defeasible Deontic Logic

It has been argued that legal reasoning requires two types of rules: constitutive and

prescriptive rules. Constitutive rules are used to model definition of terms and

parameters specific to legal documents, for example, the definitions of terms in an

act, whereas prescriptive rules are applied for encoding the obligations, prohibitions,

permissions, ..., and the conditions under which they enter into force according to a

RuleRS: a rule-based architecture for decision... 319

123

specific legal document. To correctly model the provision corresponding to

prescriptive norms, we have to supplement the language with deontic operators. In

this respect we follow the classification proposed by Governatori (2013) and

Hashmi et al. (2015). In addition, the logic has mechanisms to terminate and

remove obligations [see Governatori and Rotolo (2010) for full details]. For

obligations and permission we use the following notation:

• ½P�p: p is permitted;

• ½OM�p: there is a maintenance obligation for p2;

• ½OAPP�p: there is an achievement preemptive and perdurant obligation for p;

• ½OAPNP�p: there is an achievement preemptive and non-perdurant obligation for

p;

• ½OANPP�p: there is an achievement non preemptive and perdurant obligation for

p;

• ½OANPNP�p: there is an achievement non preemptive and non-perdurant

obligation for p.

Compensations are implemented based on the notion of ‘reparation chain’

(Governatori and Rotolo 2006). A reparation chair is an expression

½O1�c1 � ½O2�c2 � � � � � ½On�cn;

where each ½Oi� is an obligation, and each ci is the content of the obligation

(modelled by a literal). The meaning of a reparation chain is that we have that c1 is

obligatory, but if the obligation of c1 is violated, i.e., we have :c1, then the violation
is compensated by c2 (which is then obligatory). But if even ½O2�c2 is violated, then
this violation is compensated by c3 which, after the violation of c2, becomes obli-

gatory, and so on.

Defeasible Deontic Logic allows deontic expressions (but not reparation chains)

to appear in the body of rules. Thus we can have rules like:

restaurant; ½P�sellAlcohol) ½OM�showLicense� ½OAPNP�payFine

The rule above means that if a restaurant has a license to sell alcohol (i.e, it is

permitted to sell it, ½P�sellAlcohol), then it has a maintenance obligation to expose

the license ð½OM�showLicenseÞ, if it does not then it has to pay a fine

ð½OAPNP�payFineÞ. The obligation to pay the fine is non-pre-emptive (meaning that

it cannot be paid before the violation). The logic is equipped with a binary relation

over rules, called superiority relation, that allows us to handle rules with conflicting

conclusions: for example a rule r setting a general prohibition and a second rule s

that derogates the prohibition permitting the conclusions. This type of situation is

common in legal reasoning and can be modelled by saying that s is ‘‘stronger’’ than

r, in symbols s[r. If both rules apply, we will say that s defeats r. For full a

description of the logic and its features, see Governatori (2005), Governatori and

Rotolo (2010) and Governatori et al. (2013).

2 Prohibitions can be expressed as maintenance obligations with a negated content, i.e., ½OM�:p.

320 M. B. Islam, G. Governatori

123

The reasoning to determine what obligations, prohibitions, and permissions are

derivable from a set of facts and a setof rules is as follows.

An obligation ½O�p (where ½O�, ½Ox� and ½Dy�, in the description below, are

placeholders for the obligations described above) is derivable if:

1. ½O�p is given as one of the facts, or

2. there is a rule

r : a1; . . .an) ½O1�p1 � ½Om�pm � ½O�p. . .

such that

(a) for all 1� i� n, ai is provable, and

(b) for all 1� j�m, ½Oj�pj and :pj are provable, and

(c) for all rules

s : b1; . . .; bk) ½D1�q1 � ½Dl�ql � ½D�p0

such that p0 is the negation of p, either

(i) exists 1� i� k such that bi is not provable, or

(ii) exists 1� j� l such that either ½Dj�qj or :qj is not provable, or
(iii) r defeats s.

The idea is that there must be a rule that fires: so all the elements in the antecedents

are provable (a), and in case the conclusion is an obligation for a reparation, all the

obligations before it have to be violated. Thus, the violated obligations were in force

(thus the obligations were provable) and we have evidence that it was violated (thus

the negation of the content of each violated obligation is provable) (b).Also, we

have to ensure that there are no rules for the opposite that fire (c), and if they do,

these rules are weaker than the rule for the obligation we want to conclude.

For permission, we have the same conditions, but where we use ½P�p instead of

½O�p; also, we conclude ½P�p if we can conclude ½O�p. Due to space reasons, readers

interested in understanding the semantics, deontic operator conversions, conflict

detections, conflict resolutions, and algorithm implementing this rule-based system

are referred to Governatori and Rotolo (2004), Governatori and Rotolo (2008),

Governatori and Rotolo (2010) and Governatori et al. (2013) for details.

3 RuleRS architecture

In this section, we will introduce the RuleRS design architecture and technical

details (refer to Fig. 1). Overall, RuleRS consists of four main system components.

In particular, the key system components of RuleRS are: (1) I/O Interface, (2)

Predicates, (3) Formal Rules , and (4) SPINdle Reasoner. In the rest of this section,

we give a short outline of the RuleRS internal components and their functions (refer

to Fig. 1).

RuleRS: a rule-based architecture for decision... 321

123

3.1 I/O interface

The I/O interface is implemented in Java to bridge RuleRS components and

interacting with each other. The I/O interface is used to compile predicates (SQL or

JSON files) and to generate facts and contexts in formal notation in DFL syntax, and

SPINdle reasoner receives this as a parameter. The I/O interface also displays the

final remarks or comments for each of the incidents and predicates. Figure 2

includes a sample RuleRS interface.

3.2 Predicates

The values encoding a regulation and the databases (schemas) used in conjunction

with the rules are in general developed independently are likely have a different

vocabulary in general. There is no direct correspondence between the literals used

by the rules and the table/attributes of the database schema. Accordingly, we have to

establish a mapping among them to enable the integration of rules and instances in

the database. The fundamental idea behind predicates is that data stored in the

database corresponds to facts in a defeasible theory and these facts can be retrieved

from the database using queries. Thus each fact corresponds to a (SQL) query and a

predicate is a statement that can be true or false depending on the value of its

arguments/variables. A predicate with n arguments is just an n-ary relation.

A predicate in RuleRS corresponds to a database view, i.e., a named query, where

the name is literal to be used by the defeasible rules. The details are the query to be

run to determine if the predicate is true or false for a given set of parameters. In case

Fig. 1 Rule-based reporting system (RuleRS)

322 M. B. Islam, G. Governatori

123

the output of the query is not empty, the predicate is true and is passed to the

defeasible theory as fact.

In RuleRS, predicate consists of two components: (1) predicate name and (2)

predicate details. Predicate name represents the action(s), condition(s) or

indisputable statement(s), and passed on to the rule engine, SPINdle as a defeasible

fact (literal and modal literal) (Governatori and Rotolo 2004, 2008, 2010) or actions

that have been performed. For example, the fact ‘‘There is a risk for an incident’’ is

represented by ‘‘riskForIncident’’ and passed as ‘‘[[riskForIncident’’ to

SPINdle if it is returned as true from the relational database. ‘‘Predicate details’’

includes the ‘‘incident details’’ and is stored either as an SQL Statement or (after

conversion) in lightweight data-interchange JSON (JavaScript Object Notation)

syntax3 (easy for humans to read and write, easy to generate, and easy to parse for

machines) to create a bridge between the data stored in the database and the terms

passed as predicates (input case) to the rule engine. The SQL or JSON statements

can be created in the initialisation of RuleRS with all of the incidents along with all

of the predicates for each of the incidents or dynamically add it later.

Incident ID and relevant details of the incidents are also included for each of the

predicates and named the predicates with relevant incident information such as

3 http://json.org accessed on 19 January 2017.

Fig. 2 Generate SQL/JSON for predicate

RuleRS: a rule-based architecture for decision... 323

123

http://json.org

‘‘riskForIncident.sql’’ (for SQL statement) or ‘‘riskForIncident.json’’ (for JSON

Statement). The following snippet illustrates the syntax adopted by RuleRS:

‘‘riskForIncident’’ predicate using SQL Statement:

In this example, IncidentDetails , IncidentDetails1 , IncidentDetails2 are

substituted for the place-holders in the ‘‘riskForIncident’’ predicate from relational

databases for the incidentID 0XXXXXX .

‘‘riskForIncident’’ predicate using JSON Statement:

(Yu et al. 1992; International Business Machines Corporation 1993, 2001), We could

further classify predicates according to the query types4 and SQL statement5 composition

to each kind of constructs such as WHERE, GROUP BY, HAVING and ORDER BY.

In the next step, the records and incidents for which there is a match in the

relational database are transformed into predicates to be used by the SPINdle rule

engine (Lam and Governatori 2009), and forwarded to SPINdle for further

processing using the I/O interface to make the process dynamic.

3.3 Formal rules

One of the features of RuleRS is its ability to perform reasoning based on (legal)

requirements. As we alluded to in the introduction such regulatory requirements are

represented as formal rules in Defeasible Deontic Logic (Antoniou et al. 2001; Nute

1994); to enable their use with the rule engine used by RuleRS (SPINdle, see the

next section) the rules are stored in the DFL format (Lam and Governatori 2009). At

this stage the rules are created manually by legal knowledge engineers and stored in

a knowledge-base.

4 The are various query types as basic (compares two values), quantified (compares a value or values

with a collection of values), BETWEEN (compares a value with a range of values), NULL (tests for null

values), LIKE (searches for strings that have a certain pattern), EXISTS (tests for the existence of specific

information), IN [another approach to compare a value with a collection of values (Yu et al. 1992;

International Business Machines Corporation 1993, 2001)] and different aggregate functions [AVG,

MAX, MIN, SUM, COUNT(*), or COUNT(DISTINCT)].
5 When ‘‘SELECT’’ statement is used in a predicate, is called a ‘‘subquery’’ (International Business

Machines Corporation 1993, 2001).

324 M. B. Islam, G. Governatori

123

3.4 SPINdle reasoner

SPINdle Reasoner6 (Lam and Governatori 2009) is a Java-based implementation of DL

(Antoniou et al. 2001; Nute 1994) that computes the extension of a defeasible theory.

SPINdle supports Modal DL, all types of DL rule, such as facts, strict rules, defeasible

rules, defeaters, and superiority. A full description of SPINdle is out of scope for the

current paper, we refer the interested readers to Lam andGovernatori (2009) for details.

In summary, SPINdle is a toolwhich accepts rules, facts,monotonic and non-monotonic

(modal) rules for reasoning with inconsistent and incomplete information. In RuleRS,

SPINdle Reasoner receives the formal facts, contexts as predicates from predicate file

generated for data stored in the associated relational databases and computes definite or

defeasible inferences which are then displayed by the I/O interface.

4 Case studies

The fitness of Defeasible Deontic Logic for modelling norms has been demonstrated

elsewhere (Antoniou et al. 2001; Governatori 2005; Governatori and Shek 2013;

Governatori 2015a; Islam and Governatori 2015) (refer to Sect. 2). Accordingly, the

aims of this section is to evaluate whether RuleRS offers a practical solution to the

issue of providing a viable combination of norms and databases. Specifically, the

focus is to determine whether the response time is appropriate for practical

applications. In general, the response time consists of two components: the time

required to execute a SQL query and the time needed to compute the extension of a

theory using SPINdle.

In this section, we illustrate RuleRS with the help of two case studies to

demonstrate possible applications of the RuleRS architecture.

4.1 Case study: sample online system

In this section, we introduce Case Study 1 a ChildSafe Care Online Management

Systems (ChildSafeOMS) and its relational database. ChildSafeOMS maintains a

relational database to record child enrolment, attendance, abuse and/or neglect data

and relevant system information.

The integration of RuleRS and the underlying relational database extend the

ChilSafeOMS’s functionality. In particular, ChildSafeOMS introduces new func-

tionalities including the automation of early identification of children at risk of

abuse and neglect.

More specifically, the system contains three sources of information: (1) a child

care database ChildSafeOMS with the data described above; (2) a set of defeasible

rules encoding the decision trees, definitions and (normative) guidelines of New

South Wales Mandatory Reporter Guidelines (NSW Government 2016). We have

6 SPINDle Reasoner is available to download freely from http://spindle.data61.csiro.au/spindle/tools.

html accessed on 31 January 2018 under LGPL license agreement. https://opensource.org/licenses/lgpl-

license accessed on 31 January 2018.

RuleRS: a rule-based architecture for decision... 325

123

http://spindle.data61.csiro.au/spindle/tools.html
http://spindle.data61.csiro.au/spindle/tools.html
https://opensource.org/licenses/lgpl-license
https://opensource.org/licenses/lgpl-license

translated the rules manually from the source document; and (3) a set of bridging

statements relating the terms of the regulations and the fields (and data) in the

ChildSafeDB. These statements are obtained from cross-analysis of the terms and

fields in the two related components.

One of the aims of the system is the early identification of children at risk, in

particular, a risk of abuse and neglect. In the rest of the section, we describe the

component outlined above.

4.1.1 Sample database

We start by describing the relational database we used in this experiment. Sample

RuleRS is a large dataset with more than 11 million records in total, and takes up 2017

MB. Tomake sure that the readers are not overwhelmed by the size of the data, we have

provided brief introductions to RuleRS dataset given the high sensitivity and the nature

of thedata andapplication (and legal implicationsof analysis suchdata), it is not possible

to use real-life databases. However, the aim of this paper is not to build such an

application but to validate the methodology of integrating defeasible (legal) reasoning

with database technology. As we have already discussed, a vital component of the

method is the definition of the predicates/literals to be passed to the reasoners as the facts

of a Defeasible theory obtained as an SQLquery. In other words, SQLqueries define the

meaning of literals used in a defeasible theory regarding data and the schema of a

database. As we have explained our focus is the response time; thus we can ignore the

actual content of the undergoing database. The time taken to answer an SQL query

depends on the structure and the size of the database and the structure of the SQL query

itself (Osman and Knottenbelt 2012).

For this case study, we have created sample RuleRS database based on dataset

available from stat-computing.7 Most of the data comes initially from RITA.8 These

data have derivable variables removed, are packaged in yearly chunks and have

been more heavily compressed than the originals. We have downloaded data from

1998 to April 2008. Along with other columns in the tables, each of the

tables contain various fields such as ‘‘Year’’, ‘‘Quarter’’ (1-4), ‘‘Month’’,

‘‘DayofMonth’’ (Day of Month), ‘‘DayOfWeek’’ (Day of Week Analysis). There

are more than 1 million records in each of the tables, and we stored the data in a

separate table for each of the years. The data consists of flight arrival and departure

details for all commercial flights within the USA. We have inserted to a new column

‘‘child_crn’’ (Child’s Child Reference Number) in each of the year’s data to map

data with ‘‘children’’ table. The idea of column insertion using a ‘‘sample scenario’’

is that the child visited an airport during that year. For this experiment, we skipped

other details of the year’s columns such as if the children stuck in an airport because

their flight was delayed or canceled.

Sample RuleRS database also contains many tables with information about

children in a child care centre, types of abuses and their descriptions, and records for

possible instances of abuses. The typical work-flow to populate the information is

7 http://stat-computing.org/dataexpo/2009/the-data.html accessed on 19 January 2017.
8 http://www.transtats.bts.gov/Fields.asp?Table_ID=236 accessed on 19 January 2017.

326 M. B. Islam, G. Governatori

123

http://stat-computing.org/dataexpo/2009/the-data.html
http://www.transtats.bts.gov/Fields.asp?Table_ID=236

that educators of child care insert data about a child in the database to report day-to-

day activities. In case they have concerns for some forms of abuse or neglect, the

system offers an interactive questionnaire where the educator answers a set of

‘Health and Welfare’ emotional and physical questions of the type ‘‘In your

knowledge, do any of the following environments apply to the child?’’. Here the

questions pertain to any of the abuse types and ask if they were aware of any child

was abused or if they have any concern about a particular child. The systems

populate the database according to answers provided by the educators/carers.

Additionally, the educator/child carer also fills up five additional information along

with the abuses types: (i) Child Abuse ID (auto-incremental); (ii) Child crn (Child

Reference Number); (iii) Abuse ID; (iv) Abuse type id (Type of child abuse); and

Abuse date.

4.1.2 From database records to predicates

As we discussed above to aim of RuleRS is to draw inferences from a database

supplemented by a rule systems encoding legal knowledge. In this setting, the

information stored in the database is queried to provide the facts for the SPINdle

reasoner in the form of predicates. After the facts are queried from the

ChildSafeDB, the SPINdle reasoner draws a set of conclusions using the facts

and the defeasible rules encoding the decision trees of the NSW mandatory reporter

guidelines and a set of additional rules, eventually provided by domain experts,

giving further indicators for risks of neglect or abuse.

For the extraction of facts, RuleRS is equipped with SQL/JSON files containing

the definitions of the predicates used by the SPINdle component regarding either

simple attribute names and values or by SQL queries. For example, according to the

guideline, a person is considered a child if her/his age is less than fifteen years.

Several steps in the decision trees depend on whether a person at risk of abuse is a

child or not. RuleRS In RuleRS, this is represented by the predicate beingChild and

contains the following (JSON) definition:

where $id is a parameter given as input by the end-user, and ${today - 15y}
is a computation using the system variable $today.

The I/O interface takes the user input, examines the definitions, transforms the

descriptions into appropriate SQL queries, and executes the queries to return facts

and context as output. For example, for the predicate beingChild and

$id=123456789A ChildsafeOMS produces the following JSON snippet, encod-

ing the predicate and the context that it holds.

RuleRS: a rule-based architecture for decision... 327

123

The predicate is then used in the successive reasoning phase, while the context is

used in case of reasoning phase determines that a report has to be submitted to a

relevant authority; the RuleRS is used to populate the required reports.

4.1.3 Sample rules

This section includes sample some rules in SPINdle format. Some of the formal

rules are converted from the NSW mandatory reporter guidelines (NSW Govern-

ment 2016). The guidelines are formulated as decision trees, and they specify

(i) when an educator of child carer has to report an abuse or potential abuse (ii)

under what conditions one has to inform. Also it contains definitions of types of

violation or possible abuses and indicators of these.

Consider for example the provision (as part of a decision tree) prescribing to

report immediately to CS if there is a situation where you are aware that a child has

been sexually abused even though he/she hasn’t told you or the child made a clear,

unambiguous statement of sexual abuse (NSW Government 2016). We can

represent the rule as If ‘‘ChildAbusedSexually’’ has occurred, then there is an

obligation (non-persistent, pre-emptive, achievement) to do ‘‘reportToCSImmedi-

ately’’ [refer to Governatori and Rotolo (2010), Governatori (2013) and Hashmi

et al. (2015)) for other types of obligations]. Its formal representation in SPINdle is

as follows:

ChildAbusedSexually) [OANP] reportToCSImmediately

Furthermore, the rule set contains more rules obtained from the definitions of what

counts as a child being sexually abused and possible indicators for different types of

abuse, where such definitions are given as decision trees themselves.

The next example concerns the situation where a child or young person exhibits a

(persistent) problematic sexual behaviour versus other. In this case, an educator has

different options to whom report. In case the parent of carers are aware of the

problem and they have responded appropriately, the educator has to report to the

Child Well fare Unit (consultWithCWU). However, if the initiating child/young

person has continuing or imminent contact with the victim and there where some

coercion or the victim is in a situation of inferiority, then the situation has to be

reported immediately to Community Services (CS). Otherwise, the normal

procedure is to file a formal report to CS (NSW Government 2016, p. 19). In

case of a problematic behaviour without further conditions, the educator has to

328 M. B. Islam, G. Governatori

123

continue to monitor the situation.The following rules can represent this part of the

decision tree:

r1 : PersistentSexualBehaviourVsOther;

ParentRespondedAppropriately;: [OANP] reportCS;

: [OANP] reportCSImmediately) [OANP] consultWithCWU:

The rule above describes the decision when the parents or carers are aware of the

situation and responded appropriately. However, to ensure a single outcome (be-

haviour) we have to derive the failure of other obligations, namely report to CS or

report to CS immediately.

r2 : SexualBehaviourVsOther;CoercionOrInferior;

ContactWithVictim) [OANP]reportToCSImmediately

Above is the most specific and its antecedent subsumes all other antecedents thus

there is no need to include the failure of the other obligations.

r3 : SexualBehaviourVsOther;CoercionOrInferior;

: [OANP] reportToCSImmediately) [OANP] reportToCS

Above is the second most specific rule; thus its antecedent has to include the failure

of the rule that is more specific that it, that is the obligation of the conclusion of r2.

Finally, the following rule, whose conclusion is a maintenance obligation, is

triggered when the other obligations do not apply.

r4 : SexualBehaviourVsOther;: [OANP] reportCSImmediately;

: [OANP] consultCWU;: [OANP] reportCS) [OM]monitor

The SPINdle rules are derived directly from the decision trees provided in the NSW

Mandatory Reporter Guidelines (NSW Government 2013). A decision tree can be

represented as a set of classical nested if-then-else rules, where for every node

(binary decision, question) there is a predicate/proposition corresponding to it. For

the representation of a decision tree in Defeasible Deontic Logic we needed a rule

for each ‘‘positive’’ outcome (in our case a decision to report a case to a relevant

authority or to the determination that a particular type of situation occurred). The

conclusion of the rule is the proposition labelling the leaf node, and in the ante-

cedent or body of the rule we have the proposition labelling the nodes from the root

of the tree to the particular leaf node, negated or not depending on the conditions on

the path. Arguably, the advantage of using Defeasible Deontic Logic as formal

representation and implementation of a decision tree is the reduced complexity (no

need to create nested if-then-else structures), and reduced number of rules [since,

conditions leading to no outcome, i.e., no report in our case, are not needed, and are

such situations are handled directly by the defeasibility of the rules, see Governatori

et al. (2009)]. Furthermore, the adoption of Defeasible Deontic Logic allows us to

use negated deontic literals in the body of rules. This corresponds to use a form of

negation of failure, which requires either the duplication of the conditions leading to

RuleRS: a rule-based architecture for decision... 329

123

the failure of other reporting conditions, or the explicit representation of all else

conditions in the if-then-else.

Notice that is it possible to formally show that the rules we created are

equivalent9 to the decision trees provided in the NSW Mandatory Reporter

Guidelines (NSW Government 2013). However, since this is to investigate the

combination of rules and database, we refrain from proving the equivalence.

4.1.4 Sample predicates

As we have already alluded to the database used in this case study has been chosen

for it being available and it size. The subject matter of the database is irrelevant to

the content of the rules and the intended application of the rules. The queries are not

relevant for content, but just to test the performance of RuleRS with different types

of SQL queries (Yu et al. 1992; The PostgreSQL Global Development Group 1996–

2015; International Business Machines Corporation 1993, 2001). Alternatively, we

could use JSON format too. Each of the queries represents a single predicate, which

passes as an input parameter to Spindle (see Sect. 3.4). The following snippet

illustrates sample test predicates in SQL format used for this case10:

Predicate 1 beingChild

Predicate 2 riskForIncident6

9 By equivalent, we mean that given an input the decision trees and our rules produce same outcome.
10 The snippets reported here have been selected for the type of SQL query they employ to evaluate the

corresponding response time, not for the meaning of the data associated with the query.

330 M. B. Islam, G. Governatori

123

Predicate 3 riskForIncident8

Predicate 4 riskForIncident13

Predicate 5 riskForIncident16

4.2 Case study: FAERS

In this section, we illustrate RuleRS as decision support system with the help of a

case study to demonstrate possible applications of the RuleRS architecture.

RuleRS: a rule-based architecture for decision... 331

123

Accordingly, we introduce the sample database based on FAERS (US Food and

Drug Administration 2016) records.

4.2.1 Sample database

The sample database based on the FAERS records that we have downloaded and

converted from into PostgreSQL database format. For the experiment reported in

this paper, we use the records for the first quarter 2014. The selected sample FAERS

is a large dataset with more than three million forty thousand records in total and

makes up 342 MB. To make sure that the readers are not overwhelmed by the size of

the data, we have provided brief introductions to the dataset based on FAERS

records.

The structure and format of the seven tables of FAERS from the first quarter of

2014 are explained in Table 1. This table also includes the sample examples,

FAERS tables organisation, and content details.

4.2.2 From database records to predicates

As we discussed above the aim of RuleRS is to draw inferences from a database

supplemented by a rule systems encoding legal knowledge. In this setting, the

information stored in the database is queried to provide the facts for the SPINdle

reasoner. After the facts are queried from the FAERS database, the SPINdle

reasoner draws a set of conclusions using the facts and the defeasible rules encoding

the regulations specify the records and reports concerning adverse drug experiences

on marketed prescription drugs for human use without approved new drug

applications (US Government 2014).

For the extraction of facts, RuleRS is equipped with SQL/JSON files containing

the definitions of the predicates used by the SPINdle component regarding either

simple attribute names and values or by SQL queries.

4.2.3 Sample predicates

We have used several predicates and queries for testing scenarios which are written

in SQL. Alternatively, we could use JSON format too. Each of the queries

represents a single predicate, which passes as an input parameter to SPINdle (see

Sect. 3.4). The following snippet illustrates sample test predicates:

ICSRs contain Patient age in SQL format:

Predicate 6 report_Patient_age_to_FDA

332 M. B. Islam, G. Governatori

123

Table 1 FAERS tables

No. Table name Table description Examples, organisation and content

detail

1. DEMO14q1 Patient demographic and administrative

information, a single record for each

event report

The case (PRIMARYID-100108481,

CASEID 10010848 CASEVERSION-

1), received by the FDA on 2014/03/

10. Like any Case, it appears only

once in the Demographic table,

‘‘DEMO14q1’’

2. DRUG14q1 Drug/biologic information for as many

medications as was reported for the

event, 1 or more per event

Two drugs were reported for the Case

(PRIMARYID-100108481):

ALBENDAZOLE as Primary Suspect

and MECTIZAN (IVERMECTIN) as

Secondary Suspect. PRIMARYID

appears two times in the Drug file,

DRUG14q1, with a different

DRUG SEQ for each drug

3. THER14q1 Drug therapy start dates and end dates

for the reported drugs, 0 or more per

drug per event

Dates of therapy for ALBENDAZOLE

and MECTIZAN (IVERMECTIN)

were reported as ‘‘2013/07/10

(ongoing)’’ with same PRIMARYID

and the same DRUG SEQ as in the

drug table using DSG DRUG SEQ

4. INDI14q1 Contains all ‘‘Medical Dictionary for

Regulatory Activities’’ (MedDRA)a

terms coded for the indications for use

(diagnoses) for the reported drugs, 0 or

more per drug per event

DRUG SEQ from drug table, the fields

labeled INDI DRUG SEQ in

indication table, REAC14q1. Three

cases were reported FILARIASIS,

FILARIASIS LYMPHATIC and

ONCHOCERCIASIS with different

INDI DRUG SEQ using the same

PRIMARYID-100108481

5. REAC14q1 Contains all MedDRA terms coded for

the adverse event, 1 or more per event

Four reactions were reported using the

PRIMARYID-100108481 as

Abdominal pain, Gait disturbance,

Headache and Vomiting in reaction

table, REAC14q1

6. OUTC14q1 Patient outcomes for the event, 0 or

more

HO (Hospitalization—Initial or

Prolonged) was reported for the

PRIMARYID 100108481

7. RPSR14q1 Report sources for the event, 0 or more HP (Health Professional) and FGN

(Foreign) was reported in report source

table, RPSR14q1 using the

PRIMARYID-100108481

ahttp://www.meddra.org

RuleRS: a rule-based architecture for decision... 333

123

http://www.meddra.org

Predicate 7 report_Suspect_medical_product_name_to_FDA

The predicates are then used in the successive reasoning phase (we may process

several predicates by joining them in a single run), while the context is used in case

of reasoning phase determines that a report has to be submitted to a relevant

authority; the context is used to populate the required decision and reports.

4.2.4 Sample rules

This section includes sample rules which are manually converted from U.S.

ELECTRONIC CODE OF FEDERAL REGULATIONS–Title 21: Food and Drugs–

PART 310–NEW DRUGS–Subpart D–Records and Reports US Government (2014)

in SPINdle format. The regulations specify the records and reports concerning

adverse drug experiences on marketed prescription drugs for human use without

approved new drug applications. In particular, the regulations list the reporting

requirements for Manufacturers, Packers, and Distributors (MPD) and information

reported on various life-threatening serious and unexpected adverse drug experience

for Individual Case Safety report (ICSR). Additionally, the regulations contain def-

initions of various adverse drug experiences.

Various examples can be made as the rule set (US Government 2014) contains

more rules obtained from information reported on ICSRs. Consider for an example

the provision (as part of informed on ICSRs) prescribing to report electronically to

FDA as ICSRs include ‘‘Patient age’’ while report to FDA. We can represent the

rule as While an obligation (persistent, non-pre-emptive, achievement) report on

ICSRs to FDA, there is an obligation (persistent, non-pre-emptive, achievement) to

include ‘‘Patient age’’ . Its formal representation in SPINdle is given in rule r1:

r1 : [OAPN] report on ICSRs to FDA) [OAPN] report Patient age to FDA

Similarly, ICSRs include ‘‘Suspect medical product name’’ while report to FDA.

We can represent the rule as While an obligation (persistent, non-pre-emptive,

achievement) to report on ICSRs to FDA, there is an obligation (persistent, non-pre-

emptive, achievement) to include ‘‘Suspect medical product name’’. Its formal

representation in SPINdle is as r2:

334 M. B. Islam, G. Governatori

123

r2 : [OAPN] report on ICSRs to FDA

) [OAPN] report Suspect medical product name to FDA

The rules r1 and r2 describe the decision when voluntary (aka direct) and mandatory

report to FDA by companies are compliant or non-compliant. However, to ensure a

single outcome (behaviour) we have to derive the failure of other obligations too.

The rules r1 and r2, thus their antecedent (i.e., Patient age and Suspect medical

product name) has to include the failure of the rules that is more specific, that is the

obligation of the conclusion of r1 and r2 respectively for ICSRs. Finally, whose

conclusion is an achievement preemptive obligation non-persistent (OAPN) obli-

gations, is triggered when the other obligations do not apply. Figure 4 includes

sample RuleRS output, where the predicates with ‘‘-’’ sign were non-compliant and

have not been included in the ICSRs while reported to FDA.

Fig. 3 Case Study1: predicate response time

Fig. 4 Sample RuleRS output

RuleRS: a rule-based architecture for decision... 335

123

5 The evaluation of RuleRS

As we have already pointed out, we are interested in evaluating whether the

methodology underlying provides a sound solution but we want to identify if the

solution offered by RuleRS is a viable solution for practical applications. To this

end, we provide an empirical evaluation of the response time. As we remarked in

Sect. 4.1.1 the database for ChildSafeOMS is used only to evaluate the response

time, and it does not provide any insight about the domain application.

The database used for the second case study presents data specific to the

application. Accordingly, we evaluated the application for correctness, this means to

evaluate whether the rules we have encoded properly translate the existing FDA

regulation. To this end, we randomly selected twenty events from the database, and

we manually check them for compliance with the regulation. In the second phase,

the same twenty events were automatically analysed using RuleRS. We have a

perfect match between the manual analysis and the automated analysis. The

principal evaluation, however, concerned the response time.

5.1 Evaluation methodology

See Algorithm 1 that is used for the evaluation process. In this algorithm, the

evaluation process measures the predicate response time which is measured based

on the process used in a database. We use a list of predicates and inputs and receive

Defeasible Conclusion (a set of literals) as output. Since there is a caching time

involved, each query is executed for 10 times consecutively and the average time is

computed. We limit the query for top 20 events from FAERS database for each test

case. In this process, predicates are executed under six groupings (randomly

selected): 1 predicate, 2 predicates, 5 predicates, 10 predicates, 15 predicates and 20

predicates. The operating systems provide various system calls that return the

current time (Currim et al. 2013). We use Java method currentTimeMillis(),11

which returns the operating system current time in milliseconds (ms). We measure

the time required to execute each of the predicates (i.e., SQL query). We record

query response time into several steps using currentTimeMillis() method,

examining (a) Predicate response time (b) Total response time in millisecond for

10 executions and generate inferences using RuleRS. that is used for the evaluation

process.

11 http://bit.ly/1Lyg6Z4 accessed on 19 January 2017.

336 M. B. Islam, G. Governatori

123

http://bit.ly/1Lyg6Z4

RuleRS: a rule-based architecture for decision... 337

123

5.2 Experimental set-up

After deciding to experiment, RuleRS, our next task was to set-up the experiment

using sample database. We have performed the test on a Mac computer. The

environment is as follows:

Model Name: MacBook Pro

Model Identifier: MacBookPro11,2

Processor Name: Intel Core i7

Processor Speed: 2.2 GHz

Number of Processors: 1

Total Number of Cores: 4

L2 Cache (per Core): 256 KB

L3 Cache: 6 MB

Memory: 16 GB

5.3 The evaluation results

We now present some of the information obtained after applying RuleRS to study

the system evaluation mentioned above. In the particular environment we studied,

the following observation can be made for the execution behaviour of predicates.

In the evaluation process using Case Study 1 (Sect. 4.1), 30 predicates were

executed and Fig. 3 sketches response times for each of the predicates. The average

response time per predicate is 171.19 ms, while that ‘‘riskForIncident13’’12 has

highest average response time 1696.1 ms and ‘‘beingChildAged11To12’’ (return 0

response with BETWEEN predicate) has lowest average response time 0.4 ms. On

average (per run), total response time for 20 predicates is 5142 ms, while that

Spindle response time is 42.2 ms and total response Time 5184.2 ms. Figure 5

sketches the response time for each of the predicates used for the evaluation.

Furthermore, 60% of the predicates response within a small amount of time

(between 0.4 and 7.6 ms). There are 12 predicates; each takes a significant amount

of time to the response which is listed in Table 2. These predicates used large

transactions, and there is a presence of cross joins with other large tables.

We now present some of the information obtained for the second case study.

In this evaluation process, SQL response time (mean) was calculated under six

groupings (randomly selected): 1 predicate, 2 predicates, 5 predicates, 10 predicates,

15 predicates and 20 predicates which can be found in Fig. 5. For example, using

‘‘10 predicates’’, the average total SQL response time was 302.695 ms and SQL

response time per predicate is 30.2695 ms and for ‘‘15 predicates’’, the total

response time is 311.89 ms and per predicate is 20.791 ms. Figure 5 also reveals

that there has been a gradual increase in the total SQL response time while steady

decrease in per predicate response time. From the experiment data we have

12 with 2-way joins (1-INNER JOIN and 1-LEFT JOIN), ‘‘GROUP BY’’, ‘‘HAVING’’, ‘‘COUNT’’ and

‘‘ORDER BY’’ predicate.

338 M. B. Islam, G. Governatori

123

extrapolated that the query for each predicate would take approximately 5ms.

Furthermore, the FDA regulation for FAERS requires approximately 200 rules, we

estimate that the time need to compute a report for each single incident would take

about 1.5 s. Thus we believe that the proposed approach offers a viable solution for

an online system to check whether a new record complies with the data collection

requirements mandated by the underlying FDA regulation. Furthermore, it would

take approximately 8 h on a laptop to audit the whole data that makes up 342 MB

with more than three million forty thousand records in total for a quarter.

6 Related work

We began the RuleRS architecture development by describing our analysis of the

fact that various businesses and agencies may have to generate decisions and reports

(along with other obligation) based on regulations and policies align with their

existing database records. Whereas traditional database management systems

(DBMSs) are passive in the sense that their general focus has been to execute

commands (e.g., query, update, delete) as and when requested by the user or

application program (Paton and Dı́az 1999), rule engines cooperate with the rule

repository and the underlying database.

Why we need rule engine? Prior studies have established various advantages of

improving systems using rule engines.13 The key aspects of using rule-based system

can be listed as follows: natural knowledge representation, uniform structure,

separation of knowledge from its processing and dealing with incomplete and

uncertain knowledge.14

Prior approaches for rule engines can be classified into one of five types as

Prolog-based, deductive databases, production and reactive rules, triple engines, and

knowledge bases (Liang et al. 2009). The prolog-based system is defined as a top-

down inference engine. While various applications have been used prolog-based

system (e.g., XSB15; Yap16), their common focus has been to provide a complete

environment for building applications (Liang et al. 2009). Deductive databases,

which are the extension of the database management system, typically structure

query language and design storage around a logical model of data (Kozák 2011).

These approaches can be seen in various systems: DLV17; IRIS18; and Ontobro-

ker.19 Production and reactive rules-based systems are the bottom-up engines where

rules have actions in the consequent (Liang et al. 2009). All of these systems (e.g.,

13 http://java.sys-con.com/node/45082 accessed on 19 January 2017.
14 http://intelligence.worldofcomputing.net/expert-systems-articles/rule-based-expert-systems.html

accessed on 20 January 2017.
15 http://xsb.sourceforge.net accessed on 20 January 2017.
16 http://www.dcc.fc.up.pt/*vsc/Yap/ accessed on 20 January 2017.
17 http://www.dlvsystem.com/ accessed on 20 January 2017.
18 http://sourceforge.net/projects/iris-reasoner/ accessed on 20 January 2017.
19 http://www.semafora-systems.com/en/products/ontobroker/ accessed on 20 January 2017.

RuleRS: a rule-based architecture for decision... 339

123

http://java.sys-con.com/node/45082
http://intelligence.worldofcomputing.net/expert-systems-articles/rule-based-expert-systems.html
http://xsb.sourceforge.net
http://www.dcc.fc.up.pt/%7evsc/Yap/
http://www.dlvsystem.com/
http://sourceforge.net/projects/iris-reasoner/
http://www.semafora-systems.com/en/products/ontobroker/

0

50

100

150

200

250

300

350

M
ill

is
ec

on
d

Total SQL response time (mean)

SQL response time (mean per predicate)

Fig. 5 Predicate response time

Table 2 Sample Predicate Response Time and analysis

Predicate Response

time (ms)

Analysis on predicate

RiskForIncident13 1696.1 With 1-INNER JOIN and 1-LEFT JOIN, ‘‘GROUP BY’’,

‘‘HAVING’’, ‘‘COUNT’’ and ‘‘ORDER BY’’ predicate

RiskForAirportRiskFactor1 415.6 With 2-LEFT JOIN

RiskForIncident16 395.11 With 2-LEFT JOIN and INTERSECT

RiskForIncident15 391.5 With 3-INNER JOIN and 1-LEFT JOIN UNION with

3-INNER JOIN and 1-LEFT JOIN

RiskForAirportRiskFactor6 388.6 With IN predicate apply to a large table

RiskForAirportRiskFactor5 387 Using EXISTS predicate on other large table

RiskForIncident14 386.9 With 2-LEFT JOIN with 2 large table

ExposeToGroomingBehaviour 259.5 With 3-INNER JOIN and 1-LEFT JOIN large table using

WHERE condition

RiskForIncident1 202 Query a large table based on other table’s column data

RiskForIncident18 195.2 With 3-INNER JOIN and 1-LEFT JOIN large table using

WHERE condition

RiskForAirportRiskFactor2 190.8 Using NULL predicate and WHERE condition

RiskForAirportRiskFactor4 186.8 Using EXISTS predicate on other tables

340 M. B. Islam, G. Governatori

123

Drools20; Jess21 Prova22) are based on (a version of) the Rete algorithm (Liang et al.

2009). Triple engines have been used two rule engines: a bottom-up engine and a

top-down one for Semantic Web applications (Liang et al. 2009). A few prior

systems that used rule engines based on triples are Jena,23 SwiftOWLIM24 and

BigOWLIM.25 Knowledgebase engine such as CYC26 is an integration of domain

knowledge for solving classical and common sense reasoning based complex

problems. According to Liang et al. (Liang et al. 2009), although Ontobroker was

not the best system in all of these rule-based system, Ontobreaker (and partly DLV)

was assigned to be the best performing systems.

The architecture of RuleRS is inspired by the PLIS? application which is a rule-

based Personalised Location Information System (Viktoratos et al. 2012). Similar to

PLIS?, RuleRS collects and evaluates rules on-the-fly and delivers specialised and

contextualised information/inferences according to rule-based policies.

Indeed, another critical issue of the RuleRS architecture is to search and extract

relevant information from a relational database and represent it as defeasible facts.

RuleRS employs SQL/JSON syntax for describing facts and contextualised

information as an intermediate step to bridge relational database information with

a rule engine/reasoner.

To summarise, there is a need for a more fine-grained architecture to integrate

relational databases, with a logic-based reasoner and rule engine for assisting to take

decisions or create reports according to guidelines, policies or regulations that, in

addition to being developed using appropriate research methods, should be readily

evaluated. A researcher should be able to ensure designed artifacts are reliable and

valid by checking for evaluation with other evidence. The evidence is not limited

but we can include as experimental models for validating technology could be

comprehensively classified as project monitoring, assertion, field study, literature

search, legacy, lessons learned, static analysis, replicated, synthetic analysis,

dynamic analysis, and simulation (Zelkowitz and Wallace 1998). Experiments could

also be classified as ‘‘in vivo’’ (when it is run at a development location) and

‘‘in vitro’’ (when it is run in an isolated, controlled setting) (Basili 1996). Also,

experiments could be classified as nine types which could further divide into three

general categories: a quantitative experiment (identify measurable benefits of using

a method or tool), a qualitative experiment (assess the features provided by a

method or tool, and a benchmarking experiment to determine performance

(Kitchenham 1996).

20 http://www.drools.org accessed on 20 January 2017.
21 http://www.jessrules.com/jess/index.shtml accessed on 20 January 2017.
22 https://prova.ws accessed on 20 January 2017.
23 http://jena.apache.org accessed on 20 January 2017.
24 https://confluence.ontotext.com/display/OWLIMv35/SwiftOWLIM?Introduction last accessed on 20

January 2016.
25 https://confluence.ontotext.com/display/OWLIMv35/BigOWLIM?Introduction accessed on 20 Jan-

uary 2017.
26 http://www.cyc.com accessed on 20 January 2017.

RuleRS: a rule-based architecture for decision... 341

123

http://www.drools.org
http://www.jessrules.com/jess/index.shtml
https://prova.ws
http://jena.apache.org
https://confluence.ontotext.com/display/OWLIMv35/SwiftOWLIM%2bIntroduction
https://confluence.ontotext.com/display/OWLIMv35/BigOWLIM%2bIntroduction
http://www.cyc.com

In this paper, we also argued that DL is suitable for making decisions based on

regulations, policies and relational database information. Recent research has shown

that DL is suitable for modelling and inferring from evidence and reasoning in real-

world applications where the conflicting situation may appear simultaneously. In the

introduction section, we included some of these claims.

None of the prior studies found met all of these requirements, as their focus had

largely been on establishing the rule engine by restricting only human behaviour,

without direct connection with any software system (Hu et al. 2009) or database

systems. In the remainder of the paper, we examine the premise that combining

databases with logic reasoner and rule engine into fine-grained report according to

regulations and policies.

7 Conclusion

Our preliminary step was to describe an ongoing work on the integration of existing

Online Management system with compliance and regulations, which also combines

Defeasible Logic and SPINdle rule reasoner. In particular, we extend the SPINdle

rule reasoner to generate reports for a possible consequence of the risk involving

business processes. Classically, compliance and regulations perform a significant

role in society, and business processes have to comply with such policies to avoid

future risks. It turned out that this type of motivations is defeasibly captured by a

rule-based approach to static decision trees for Online Mandatory Reporter Guide

(NSW Government 2016).

As a next step, a rule-based architecture, RuleRS has been introduced. It collects

information from the relational database of an online management system and

represents the data into an intermediate file format using SQL/JSON syntax which is

further processed by SPINdle rule reasoner.

Thirdly, we demonstrated that external systems such as as reporting to meet legal

requirement could integrate rule reasoner, SPINdle. Typically, these reporting

systems contain compliance and regulatory requirements which were converted into

a rule knowledge-base. We used a pre-defined DL format which can also be

represented using predefined plain text or XML file format. We argued that using

this technique external stakeholders are can also be connected with the RuleRS.

On the next, we demonstrated a case study based on an Online Child Care

Management, ChildSafeOMS to automate the early identification of children at risk,

in particular of abuse and neglect. Preliminary results appear to be very promising,

showing a close correspondence between compliance, regulations and online

management system. RuleRS.

Finally, on account of motivations of the RuleRS as expert system, we

demonstrated a case study based on an Adverse Event Reporting System, FAERS to

automate the decision-making for compliant and non-complaint information, in

particular on adverse event and medication error reports submitted to FDA.

Preliminary results appear to be very promising, showing a close correspondence

between compliance, regulations and online management system. Last but not least,

RuleRS allows users or agents to produce conclusions and consequences

342 M. B. Islam, G. Governatori

123

automatically, based on a given compliance and regulatory knowledge base or

generated on the fly by other applications and existing relational database

information of an online management system.

Acknowledgements Preliminary version of the material included in this paper appeared at ICAIL 2015

(Islam and Governatori 2015).

References

Antoniou G, Billington D, Governatori G, Maher MJ (1999) On the modeling and analysis of regulations.

In: Australian conference on information systems

Antoniou G, Billington D, Governatori G, Maher MJ (2001) Representation results for defeasible logic.

ACM Trans Comput Logic 2(2):255–287

Basili VR (1996) The role of experimentation in software engineering: past, current, and future. In:

Proceedings of the 18th ICSE, IEEE Computer Society, pp 442–449

Billington D, Antoniou G, Governatori G, Maher MJ (2010) An inclusion theorem for Defeasible Logics.

ACM Trans Comput Logic 12(1):1–27

Currim S, Snodgrass RT, Suh YK, Zhang R, Johnson MW, Yi C (2013) DBMS metrology: measuring

query time. In: Proceedings of the 2013 ACM SIGMOD, ACM, pp 421–432

Governatori G (2005) Representing business contracts in RuleML. Int J Coop Inf Syst 14(2–3):181–216

Governatori G (2011) On the relationship between Carneades and Defeasible Logic. In: Proceedings of

the ICAIL 2011, ACM, pp 31–40

Governatori G (2013) Business process compliance: an abstract normative framework. Inf Technol

55(6):231–238

Governatori G (2015a) The Regorous approach to process compliance. In: 2015 IEEE 19th international

enterprise distributed object computing workshop, IEEE Press, pp 33–40

Governatori G (2015) Thou shalt is not you will. In: Atkinson K (ed) Proceedings of the fifteenth

international conference on artificial intelligence and law. ACM, New York, pp 63–68

Governatori G, Hashmi M (2015) No time for compliance. In: Enterprise distributed object computing

conference (EDOC), 2015 IEEE 19th international, IEEE, pp 9–18

Governatori G, Rotolo A (2004) Defeasible logic: agency, intention and obligation. In: Proceedings of the

DEON 2004, Springer, vol 3065 in LNCS, pp 114–128

Governatori G, Rotolo A (2006) Logic of violations: a Gentzen system for reasoning with contrary-to-

duty obligations. Australas J Logic 4:193–215

Governatori G, Rotolo A (2008) BIO logical agents: norms, beliefs, intentions in defeasible logic. Auton

Agent Multi-Agent Syst 17(1):36–69

Governatori G, Rotolo A (2010) A conceptually rich model of business process compliance. In:

Proceedings of the APCCM 2010, ACS, vol 110 in CRPIT, pp 3–12

Governatori G, Shek S (2013) Regorous: a business process compliance checker. In: Proceedings of the

fourteenth international conference on artificial intelligence and law, pp 245–246

Governatori G, Padmanabhan V, Rotolo A, Sattar A (2009) A defeasible logic for modelling policy-based

intentions and motivational attitudes. Logic J IGPL 17(3):227–265

Governatori G, Olivieri F, Rotolo A, Scannapieco S (2013) Computing strong and weak permission in

Defeasible Logic. J Philos Logic 42(6):799–829

Grosof BN (2004) Representing e-commerce rules via situated courteous logic programs in RuleML.

Electron Commer Res Appl 3(1):2–20

Hashmi M, Governatori G, Wynn MT (2015) Normative requirements for regulatory compliance: an

abstract formal framework. Inf Syst Front 18:429

Herrestad H (1991) Norms and formalization. In: Proceedings of the 3rd international conference on

artificial intellilgence and law, ACM, pp 175–184

Hu YJ, Yeh CL, Laun W (2009) Challenges for rule systems on the web. In: Governatori G, Hall J,

Paschke A (eds) Rule interchange and applications. Springer Berlin Heidelberg, Berlin, Heidelberg,

pp 4–16

International Business Machines Corporation (1993, 2001) Ibm db2 universal database sql reference

version 8. http://bit.ly/IBMdb2s1e80, http://bit.ly/IBMdb2s2e80. Accessed 4 Apr 2016

RuleRS: a rule-based architecture for decision... 343

123

http://bit.ly/IBMdb2s1e80
http://bit.ly/IBMdb2s2e80

Islam MB, Governatori G (2015) Ruleoms: a rule-based online management system. In: Proceedings of

the ICAIL 2015, ACM, New York, NY, USA, pp 187–191

Kitchenham BA (1996) Evaluating software engineering methods and tool part 1: the evaluation context

and evaluation methods. ACM SIGSOFT Notes 21(1):11–14

Kozák J (2011) Rules in database systems. In: Proceedings of contributed papers WDS’11, pp 131–136

Lam HP, Governatori G (2009) The making of spindle. In: Governatori G, Hall J, Paschke A (eds) Rule

interchange and applications. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 315–322

Liang S, Fodor P, Wan H, Kifer M (2009) Openrulebench: an analysis of the performance of rule engines.

In: Proceedings of the 18th international conference on World wide web, ACM, pp 601–610

Maher MJ (2001) Propositional defeasible logic has linear complexity. Theory Pract Logic Program

1(06):691–711

NSW Government (2013) Online mandatory reporter guide. http://sdm.community.nsw.gov.au/mrg/

screen/DoCS/en-GB/summary?user=guest. Accessed 30 Sept 2014

NSW Government (2016) The nsw mandatory reporter guide. http://www.keepthemsafe.nsw.gov.au/

reporting_concerns/mandatory_reporter_guide. Accessed 15 June 2016

Nute D (1994) Defeasible logic. In: Gabbay DM, Hogger CH, Robinson J (eds) Handbook of logic in

artificial intelligence and logic programming, vol 3. Oxford University Press, Oxford, pp 353–395

Osman R, Knottenbelt W (2012) Database system performance evaluation models: a survey. Perform

Eval 69:471–493

Paton NW, Dı́az O (1999) Active database systems. ACM Comput Surv CSUR 31(1):63–103

Sadiq S, Governatori G (2015) Managing regulatory compliance in business processes. In: vom Brocke J,

Rosemann M (eds) Handbook of business process management, vol 2, 2nd edn. Springer, Berlin,

pp 265–288

Skylogiannis T, Antoniou G, Bassiliades N, Governatori G, Bikakis A (2007) Dr-negotiate—a system for

automated agent negotiation with defeasible logic-based strategies. Data Knowl Eng 63:362–380

The PostgreSQL Global Development Group (1996–2015) Postgresql 9.4.4 documentation. http://www.

postgresql.org/files/documentation/pdf/9.4/postgresql-9.4-A4.pdf. Accessed 15 Nov 2015

US Food and Drug Administration (2015) FDA adverse event reporting system (FAERS): latest quarterly

data files. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/

AdverseDrugEffects/ucm082193.htm. Accessed 15 Mar 2016

US Food and Drug Administration (2016) FDA adverse event reporting system (FAERS). https://www.

fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/.

Accessed 16 Feb 2018

US Government (2014) Records and reports concerning adverse drug experiences on marketed

prescription drugs for human use without approved new drug applications. http://bit.ly/eCFR310_

305. Accessed 7 Mar 2016

Viktoratos I, Tsadiras A, Bassiliades N (2012) Plis?: a rule-based personalized location information

system. In: Proceedings of the RuleML2012@ECAI challenge, vol 874 in CEUR workshop

proceedings

Yu P, Chen M, Heiss H (1992) On workload characterization of relational database environments. IEEE

Trans Softw Eng 18:347–355

Zelkowitz MV, Wallace DR (1998) Experimental models for validating technology. Computer

31(5):23–31

344 M. B. Islam, G. Governatori

123

http://sdm.community.nsw.gov.au/mrg/screen/DoCS/en-GB/summary?user=guest
http://sdm.community.nsw.gov.au/mrg/screen/DoCS/en-GB/summary?user=guest
http://www.keepthemsafe.nsw.gov.au/reporting_concerns/mandatory_reporter_guide
http://www.keepthemsafe.nsw.gov.au/reporting_concerns/mandatory_reporter_guide
http://www.postgresql.org/files/documentation/pdf/9.4/postgresql-9.4-A4.pdf
http://www.postgresql.org/files/documentation/pdf/9.4/postgresql-9.4-A4.pdf
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm082193.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm082193.htm
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/
http://bit.ly/eCFR310_305
http://bit.ly/eCFR310_305

	RuleRS: a rule-based architecture for decision support systems
	Abstract
	Introduction
	Defeasible logic
	Defeasible Deontic Logic

	RuleRS architecture
	I/O interface
	Predicates
	Formal rules
	SPINdle reasoner

	Case studies
	Case study: sample online system
	Sample database
	From database records to predicates
	Sample rules
	Sample predicates

	Case study: FAERS
	Sample database
	From database records to predicates
	Sample predicates
	Sample rules

	The evaluation of RuleRS
	Evaluation methodology
	Experimental set-up

	Related work
	Conclusion
	Acknowledgements
	References

