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Abstract Norms provide a valuable mechanism for establishing coherent coop-

erative behaviour in decentralised systems in which there is no central authority.

One of the most influential formulations of norm emergence was proposed by

Axelrod (Am Political Sci Rev 80(4):1095–1111, 1986). This paper provides an

empirical analysis of aspects of Axelrod’s approach, by exploring some of the key

assumptions made in previous evaluations of the model. We explore the dynamics

of norm emergence and the occurrence of norm collapse when applying the model

over extended durations. It is this phenomenon of norm collapse that can motivate

the emergence of a central authority to enforce laws and so preserve the norms,

rather than relying on individuals to punish defection. Our findings identify
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characteristics that significantly influence norm establishment using Axelrod’s

formulation, but are likely to be of importance for norm establishment more gen-

erally. Moreover, Axelrod’s model suffers from significant limitations in assuming

that private strategies of individuals are available to others, and that agents are

omniscient in being aware of all norm violations and punishments. Because this is

an unreasonable expectation, the approach does not lend itself to modelling real-

world systems such as online networks or electronic markets. In response, the paper

proposes alternatives to Axelrod’s model, by replacing the evolutionary approach,

enabling agents to learn, and by restricting the metapunishment of agents to cases

where the original defection is observed, in order to be able to apply the model to

real-world domains. This work can also help explain the formation of a ‘‘social

contract’’ to legitimate enforcement by a central authority.

Keywords Norms � Metanorms � Norm emergence

1 Introduction

Modern state-based societies are reliant on a complex system of abstract legal norms

that govern the behaviour of individuals and a central authority that enforces these

norms. In his seminal work on the sociology of law, MaxWeber has argued that these

are prerequisites for such societies to exist (Rheinstein 1954). Indeed, legal norms

enforced by a central authority enable individuals to specialise their roles in society,

which, in turn, enables the division of labour that industrialisation and technological

advancement of our societies require (Durkheim 1893). The field of AI and Law is

largely concerned with intelligent systems that reason with or about such norms and

support the work of agents of the central authority that enforces them.

Aside from centrally enforced abstract legal norms, Ehrlich has identified a

system of so-called ‘‘living law’’, an assortment of customs and moral norms

enforced through social relationships between individuals (Ehrlich 1913). Although

living law does not involve the complex enforcement infrastructure of legal norms,

it too governs the behaviour of individuals in society. Such living law may be the

precursor to legal norms. Occasionally, living law has been a precursor to centrally

enforced legal norms. Druzin, for example, argues that much of commercial law has

evolved from the customs of merchants and was codified into a formal legal system

by states at a later stage (Druzin 2010). Interestingly, Druzin suggests that frequent

interactions, as is the case in commerce, is conducive to the emergence of norms

that are incorporated in legislation eventually, and his work examines the effect of

engagement on norm emergence.

In distributed computation systems in general, and internet systems in particular,

there exist an increasing number of communities consisting of interacting individual

human and/or machine agents, typically with relatively little control from a central

authority. Often, the volume, frequency and nature of interactions inhibit effective

functioning of a central authority (or, as in pioneer societies, the central authority is

too remote for it to be feasible for it to enforce the norms) and, sometimes, a central

authority is not deemed desirable for the community. Nonetheless, these communities
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too stand to benefit from a system of norms that governs interactions between

individuals, though the norms need to emerge spontaneously from the community.

This paper presents an empirical study of the conditions that are conducive for such a

‘‘legal order’’ to emerge in such distributed computational systems.

In many application domains, engineers of distributed systems may choose, or be

required, to adopt an architecture in which there is no central authority, and the

overall system consists solely of self-interested autonomous agents. The rationale

for doing so can range from efficiency reasons to privacy requirements. In order for

such systems to achieve their objectives, it may nevertheless be necessary for the

behaviour of the constituent agents to be cooperative. In peer-to-peer file sharing

networks, for example, it is required that (at least a proportion of) peers provide files

in response to the requests of others, while in wireless sensor networks nodes must

share information with others for the system to determine global properties of the

environment. However, there is typically a temptation in such settings for

individuals to deviate from the desired behaviour, which is known as the free

rider problem (Guerraoui et al. 2009; Krishnan et al. 2004; Yang et al. 2005). For

example, to save bandwidth, peers may choose not to provide files, and to conserve

energy, the nodes in a sensor network may choose not to share information.

Therefore, some form of mechanism is needed to outweigh such temptations and to

encourage cooperation among self interested agents.

As has been suggested by many [e.g., (Boella et al. 2006; Boman 1997;

Castelfranchi and Conte 1999; Dignum 1999; Gibbs 1965; López et al. 2003;

Neumann 2012)], norms provide a valuable mechanism for regulating or constraining

human societies. Perhaps the most obvious and clear manifestation of norms is when

they arise through the explicit introduction of laws that are established by legislatures,

for example, or through rules or bye-laws of smaller groups such as member clubs.

However, norms are also valuable when there is no central authority, and they emerge

as a result of individual behaviour, in order to establish some coherence or stability in a

group. It is this latter aspect that has been the focus of several researchers, such as

(Helmhout et al. 2008; Kulakowski and Gawronski 2009; Nakamaru and Dieckmann

2009; Sen and Airiau 2007; Ullman-Margalit 1977).

In studying emergence, for example, Epstein (2001) proposes a model in which

agents decide which side of a road to drive on in a particular area by imitating the

decision made by the majority of other agents in the area, while Borenstein and

Ruppin (2003) study the use of learning by imitation to enhance the evolutionary

process through lifetime adaptation. Similarly, Savarimuthu et al. (2007) use

imitation in considering the ultimatum game in the context of providing advice to

agents on whether to change their norms in order to enhance performance. In other

work, Shoham and Tennenholtz (1994) propose the use of the highest cumulative

reward (HCR) learning algorithm, by which agents learn to choose the action that

brings the highest reward. Kittock (1995) studies the iterated cooperation game

(ICG; Kandori et al. 1993) and the iterated prisoner’s dilemma (IPD; Axelrod

1984), both of which are iterative games in which two agents choose one of two

actions, with their reward depending on the combination of their choices. Urbano

et al. (2008) use a classical convention emergence game to study the influence of

interaction topologies (random, regular, small world and scale-free topologies).
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More recently, Franks et al. (2012) have shown that inserting a small amount of

influencer agents—those with specific conventions and strategies—is enough to

manipulate the convention adopted by large societies.

The models used in these previous efforts are relatively unsophisticated, with

only two agents involved in a single interaction, making them difficult to use in

regulating agent behaviours in domains of our interest, such as peer-to-peer file

sharing and wireless sensor networks, in which there are many interacting agents.

However, Axelrod’s seminal paper in 1986 offered a model of norms and

metanorms (Axelrod 1986) [that has since been investigated further (Galan and

Izquierdo 2005; Prietula and Conway 2009)], in which multiple agents interact in a

way that suggests potential application to such domains. Axelrod’s model is a game

in which different agents decide whether to defect or cooperate (comply). Agents

may also observe others and have the ability to punish those who defect. Here, an

agent’s behaviour is assessed by means of a careful scoring system that simulates

the potential rewards and penalties associated with norm violation and enforcement.

Key to Axelrod’s model is the notion of metanorms, secondary norms that help to

enforce compliance with primary norms by punishing agents that fail to punish a

defector. By using metanorms, Axelrod was able to establish norms in his

experiments. Note that by introducing metanorms, the situation is one in which

punishment of defection becomes a duty, rather than one in which it is simply

permitted. By accepting metanorms, the agents can see themselves as part of a wider

society, with obligations to that society as a whole, which paves the way for central

enforcement to be accepted, and even welcomed.

Axelrod’s model may be a solution to our problem but, as was more recently

shown by Galan and Izquierdo (2005), his results are dependent on both certain

assumptions and some very specific and arbitrary conditions. In this paper, we

elaborate on the work of Galan and Izquierdo by analysing the results of Axelrod’s

model, showing that Galan and Izquierdo’s results also rely on some particular

assumptions and conditions. We also provide a further analysis of Axelrod’s

model, drawing out some important considerations for the establishment of norms

more generally. In addition, various improvements are needed in order to

generalise the metanorm approach, and make it applicable over distributed

computational systems. The model assumes a central authority and full access to

agents’ private strategies, which is difficult to justify in real world distributed

computational systems. In response, this paper investigates alternatives that allow

us to make use of the mechanisms resulting from Axelrod’s investigations, in more

realistic settings.

The remainder of this paper is organised as follows. Section 2 introduces related

work. Section 3 provides a description of Axelrod’s model followed, in Sect. 4, by a

more detailed analysis of the results than provided elsewhere, leading to a new

consideration of the circumstances for norm collapse (when norms are not

established). Section 5 introduces limitations of Axelrod’s model that are revealed

from the analysis of the results. In Sect. 5.1, we present a new strategy copying

technique, and show how it performs in the original context and in situations in

which observation of defection is not guaranteed. In Sect. 5.2, we describe a

370 S. Mahmoud et al.

123



reinforcement learning algorithm designed to avoid the need for access to the

private strategies of others. Finally, we present our conclusions in Sect. 6.

2 Related work

The existence of norms does not mean that agents will always comply with them.

Within the literature, norm compliance can be established using two different

approaches, top-down and bottom-up. In the top-down approach, a norm is imposed

by some kind of authority, which is responsible for monitoring compliance with the

norm. The impact of such centrally imposed sanctions, promulgated by an authority,

in a norm regulated multi-agent setting has been discussed in some detail in Bench-

Capon (2014). In the bottom-up approach, in contrast, agents become aware of the

existence of a norm through their interactions with each other, and it is the

responsibility of every agent to monitor compliance with this norm. The top-down

approach is sometimes referred to as normative reasoning, while the bottom-up

approach is often referred to as norm emergence and is the focus of the work

presented in this paper. While there has been a considerable amount of work in the

area of norm emergence (Helmhout et al. 2008; Kulakowski and Gawronski 2009;

Nakamaru and Dieckmann 2009; Sen and Airiau 2007; Ullman-Margalit 1977), to

focus the paper appropriately, we introduce only the most closely related research

on using imitation or learning to study emergence with the presence and absence of

sanctions. For a more general overview, the work of Savarimuthu and Cranefield

(2011) provides an excellent reference.

Normative games have been widely used as environments in which various

mechanisms that support norm emergence can be evaluated [for example, (Ullman-

Margalit 1977)]. Conventions and norms are related concepts, and the terms are

sometimes (especially in a multi-agent systems context) used interchangeably. Of

course, it is possible to draw distinctions, and there is a considerable literature on

the distinction in the humanities and social sciences [for example, (Bicchieri

2005)].

Often, norms involve the possibility for some kind of sanction or punishment for

violation, or reward for adherence, while conventions are seen as behaviours or

strategies that are adopted without these additional mechanisms, but this is by no

means a clear cut difference, since some norms do not have sanctions attached (for

example, some moral norms), whereas some conventions are reinforced with

sanctions, such as mockery or social ostracism. For our specific purposes in this

paper, the distinctions are not crucial. What we require is that the agents have a code

of behaviour (which could comprise norms, conventions or even laws), which they

may conform to (cooperation in game theory terms) or deviate from (defection in

game theory terms). Deviation has a positive payoff for the agent deviating and a

negative payoff for other agents. Deviation makes an agent liable to punishment,

which has a cost both for that agent and the agent punishing. When we introduce

metanorms, failure to punish becomes a deviation itself liable to punishment. We

give more precision to these notions in the next section when we discuss Axelrod’s

normative game (Axelrod 1986). In this paper, we will mostly use the term norms
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for the constituents of this code of behaviour, since that is the term most often used

in agent systems, which is where our research background lies. No particular weight

should be placed on the term, however, and when we discuss work that has used a

different term, we use their term. Most of the systems we discuss come from the

field of artificial intelligence (AI) and multi-agent systems, although there has been

some related work specifically in AI and law [for example (Riveret et al. 2013,

2012)].

Some researchers (Shoham and Tennenholtz 1997; Song et al. 2007; Villatoro

et al. 2011) have focussed on convention emergence, a process that starts with a

population of agents with no initial preferences for any of the existing conventions.

These agents must agree on a common convention (which is, by definition, only

useful when all agents share the same one); once all agents have agreed on the same

convention, the system has converged, and we can say that the convention has

emerged. A classic example of convention emergence games is the ICG (Kandori

et al. 1993). Salazar et al. (2010) propose a variation of the coordination game (as in

convention emergence), implementing a language coordination game similar to

Lakkaraju and Gasser (2008). In this game, agents must match words with concepts,

creating a huge convention space.

The ultimatum game (Slembeck 1999) is a game in which two agents interact

with each other in order to share money. The first agent proposes to the second how

to share the money, and the second is free to accept or reject the proposal. If

accepted, each agent takes its share, otherwise neither gets anything. Here, each

agent has a personal norm that defines its proposal strategy. Villatoro et al. (2011)

study the emergence of cooperation, where there is a conflict between the individual

and the collective interests, making this the main difference with respect to

conventions. Here, actions are not chosen randomly, because the targets’ interests

lie in the direction of action opposing compliance with the norm, and the

beneficiaries’ interests lie in the direction of action favouring compliance with the

norm. The IPD (Axelrod 1984) can be seen as a classic example of this. In this

context, Lloyd-Kelly et al. (2014) investigate the effect of simulated emotions on

the emergence of cooperation among a population of agents playing IPD. Their

model incorporates various emotional attributes, such as anger and gratitude, which

influence agent decisions to cooperate or to defect and they also consider the

possibility for social interventions to prevent agents from continuous defections.

Simulation results suggest the best intervention strategy to use for each such

emotional attribute.

Within the context of the previous normative games, various forms of learning

have been an effective means for facilitating norm establishment among groups of

self-interested agents. Learning by imitation has been used by various researchers

(Hayes and Demiris 1994; Dautenhahn and Nehaniv 2002) in AI, and by Epstein

(2001) in the context of norm emergence. In Epstein’s model, agents must decide

which side of a road to drive on, where the decision of each agent is determined by

observation of which side of the road already has more agents driving on it, within a

particular area. In this respect, agents imitate what the majority of their neighbours

are doing. Borenstein and Ruppin (2003) study the use of learning by imitation to
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enhance the evolutionary process through lifetime adaptation and show that

imitation successfully achieves such a goal.

Similarly, Savarimuthu et al. (2007) use imitation in considering the ultimatum

game in the context of providing advice to agents on whether to change their norms

in order to enhance performance. Here, each agent has a personal norm that defines

its proposal strategy. In addition, agents are able to request advice regarding their

proposal strategy from only one agent, the leader, which is believed to have the best

performance in the requesting agent’s neighbourhood. Moreover, agents are capable

of accepting or refusing the advice according to their autonomy level.

Walker and Wooldridge (1995) use a simple strategic update function in their

model, based on the work of Conte and Castelfranchi (1995). In their model, agents

wander around searching for food in order to gain energy. However, since this

movement causes them to lose energy, they need to find as much food as they can,

and expend the least energy in doing so. For this reason, agents follow different

strategies, and change from one strategy to another according to a majority rule,

which instructs an agent to switch to another strategy if it finds that the other

strategy is used by more agents than its current strategy. Shoham and Tennenholtz

(1994) propose the use of the HCR learning algorithm, by which agents learn to

choose the action that brings the highest reward. HCR has also been used by

Delgado et al. (2003) in the context of a simple framework in which an agent makes

a choice between two different actions and receives a positive payoff if they both

choose the same action, or a negative payoff if their actions are different. Agents

record the outcome of taking each of the two actions and pick the action with the

better outcome for the next interaction.

A more complex form of learning has been used by Mukherjee et al. (2007) and

Sen and Airiau (2007), who adopt Q-learning and some of its variants (WOLF-PHC

and fictitious play) to show the effect of learning on norm emergence. They

experimented with two different scenarios, first with homogeneous learning agents

(where all agents have the same learning algorithm), and second with heterogeneous

learning agents (where agents can have different learning algorithms). Their results

suggest that norm emergence is achieved in both situations, but is slower in

heterogeneous environments.

Urbano et al. (2008) use a classical convention emergence game to study the

influence of interaction topologies (random, regular, small world and scale-free

topologies) on the External Majority strategy update rule (EM) originally proposed

by Shoham and Tennenholtz (1992). In particular, they investigate the effect of

different memory sizes on the rate of convergence. Their empirical results show that

a small memory that a records a small number of recent interactions is the best

option for all types of topologies. More recently, Franks et al. (2012) have shown

that inserting a small amount of influencer agents—those with specific conventions

and strategies—is enough to manipulate the convention adopted by large societies.

In a particular effort, Delgado (2002) and Delgado et al. (2003) study the emergence

of coordination in scale-free networks. Their study involves an interaction model of

a multi-agent system, by which they analyse how fast coordination can spread

among agents. Coordination here is represented through agents being in the same

state, which is viewed as being achieved when 90 % of the agents are in the same
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state. The results of the work demonstrate that coordination can indeed be achieved

over scale-free networks, but in a rather restricted setting. Similarly, Sen and Sen

(2010) analyse the effect of increasing the number of actions available to agents, as

well as the effect on the speed of norm emergence, of increasing the number of

agents. Their results suggest that both increasing the number of actions and

increasing the number of agents causes a delay to norm emergence in the

population.

Villatoro et al. (2009) adopt the same concept of two-agent interactions, but

introduce the notion of the reward of an action being determined through the use of

the memory of agents, thus adding some dynamism to the model. Here, the reward

of a certain action is determined by whether the action represents the majority action

in both agents’ memories, and the reward is proportional to the number of

occurrences of this majority action in their memories. However, it is not clear from

where these rewards derive nor who applies them, as agents only have access to

their memory.

3 Axelrod’s model

In Axelrod’s model, a population of agents play a game in which each agent has to

decide between cooperation and defection (Axelrod 1986). The agent population

evolves through a number of iterations, with a mechanism whereby successful

behaviour (as measured by the scoring system) tends to be replicated and

unsuccessful behaviour tends to be discarded. In each iteration, each replicated

behaviour is subjected to a small chance of mutation, reflecting the feature that an

agent may occasionally change its strategy, irrespective of past habits. The strategy

of each agent in determining whether to defect and whether to punish others is based

on two different attributes, boldness (encouraging agents to defect) and vengefulness

(encouraging them to punish others), which are distinct for each agent. The idea is

that a system eventually resulting in all agents having high vengefulness and low

boldness corresponds to norm emergence, since they will punish defection but they

will not themselves defect. Axelrod’s model is introduced in two stages, detailed

next.

3.1 The norms game

Axelrod’s norms game adopts an evolutionary approach in which successful

strategies are multiplied over generations, potentially leading to convergence of

norms. Each individual, or agent, can choose to defect by violating a norm, and such

behaviour has a particular known chance of being observed or seen (S). An agent i

has two decisions, or strategy dimensions, as follows. First, it must decide whether

to defect, determined by its boldness (Bi). Second, if it sees another agent defect

(determined by S), it must decide whether to punish this defecting agent, determined

by its vengefulness (Vi), which is the probability of doing so. (A full list of the terms

374 S. Mahmoud et al.

123



used in the norms game is provided in Table 1). If S\Bi, then agent i defects,

receiving a temptation payoff, T ¼ 3, while hurting all the others with payoff

H ¼ �1. If a defector is punished (P), the payoff to the defector is P ¼ �9, while

the punishing agent pays an enforcement cost E ¼ �2. The initial values of Bi and

Vi are chosen at random from a uniform distribution of a range of eight values

between 0
7
and 7

7
.

Axelrod’s simulation has a population of 20 agents, with each agent having four

opportunities to defect, and the chance of being seen for each drawn from a uniform

distribution between 0 and 1. After playing a full round (all four opportunities),

scores for each agent are calculated in order to produce a new generation, as

follows. Agents that score better or equal to the average population score plus one

standard deviation are reproduced twice in the new generation. Agents that score

one standard deviation under the average population score are not reproduced at all,

and all others are reproduced once. Although this may produce a new generation

with a different number of agents, Axelrod maintains the number of agents at 20

over subsequent generations, but does not specify how. Finally, a mutation operator

is used to enable new strategies to arise. Since Bi and Vi (which determine agent

behaviour) take eight possible values, they need three bits to be represented.

Mutation is thus applied by flipping one of these bits whenever an agent is

reproduced, with a 1 % chance and a uniform selection of which bit to flip.

In terms of experimental results of the norm game, Axelrod’s original experiment

(Axelrod 1986) has five runs, each with 100 generations. The final results of these

runs are as follows: two runs achieved high average boldness and almost zero

average vengefulness, indicating no norm emergence at all; two other runs achieved

low average boldness and vengefulness; and only the final run achieved a high level

of average vengefulness and very low average boldness, indicating the partial

establishment of a norm against defection. These results are not satisfactory, since

they indicate that norm establishment is not guaranteed. In response, Axelrod

introduces a metanorm model, which incorporates an additional mechanism to

better support norm establishment.

Table 1 The norms game terms (from Axelrod (1986))

Term Description Value

i, j Individuals A numerical index to identify individual agents

S Probability of a defection being

seen by any given individual

Uniform distribution from 0 to 1

Bi Boldness of i Uniform distribution from 0
7
to 7

7

Vi Vengefulness of i Uniform distribution from 0
7
to 7

7

T Player’s temptation to defect þ3

H Hurt suffered by others as a result

of an agent’s defection

�1

P Cost of being punished �9

E Enforcement cost, i.e. cost of

applying punishment

�2
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Of course, there is no reason why a society in which norms do emerge should be

seen as ‘‘better’’ than one in which they do not. Many people argue that deregulation

(of, for example, financial markets) is needed if enterprise and innovation is to

thrive. It is the existence of metanorms that suggests that norms are indeed

desirable. In Sect. 4 we consider why norms might not emerge without the

metanorm.

3.2 The metanorms game

The key idea underlying Axelrod’s metanorm mechanism is that some further

encouragement for enforcing a norm is needed. This is accomplished by introducing

a metanorm for punishment of those who observe a defection but do not punish the

defectors. In this new metanorms game, if an agent sees a defection but does not

punish it, this is considered as a different type of defection, and others in turn may

observe this defection (with probability S) and apply a punishment to the non-

enforcing agent. However, if agents decide not to apply this second level

punishment, there is no risk of another level of punishment being applied to them.

As before, the decision to punish is based on vengefulness, and brings the defector a

punishment cost of P0 ¼ �9 and the punisher an enforcement cost of E0 ¼ �2 (see

Table 2 for list of terms used in the metanorm game). Applying this new metanorm

game to the same simulation as before gives runs with high vengefulness and low

boldness, which is exactly the kind of behaviour needed to support establishment of

a norm against defection.

Introducing metanorms expresses a preference for norms over no norms, imposes

an obligation to punish on agents, rather than relying on individual temperaments,

Table 2 Metanorms game terms (from Axelrod (1986))

Term Description Value

i, j Individuals A numerical index to identify individual agents

S Probability of a defection being seen

by any given individual

Uniform distribution from 0 to 1

Bi Boldness of i Uniform distribution from 0
7
to 7

7

Vi Vengefulness of i Uniform distribution from 0
7
to 7

7

T Player’s temptation to defect þ3

H Hurt suffered by others as a result of

an agent’s defection

�1

P Cost of being punished �9

E Enforcement cost, i.e. cost of

applying punishment

�2

P 0 Cost of being punished for not

punishing a defection

�9

E 0 Cost of punishing someone for not

punishing a defection

�2
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and their acceptance of such a metanorm suggests acceptance of membership of the

society, with accompanying social obligations, on the part of the agents.

4 Analysis of Axelrod’s model

It can be concluded from last section that norm establishment is always guaranteed

using the metanorms game. However, the experiments undertaken by Axelrod are

limited in terms of scale and duration. Binmore (1998) has also identified similar

concerns in relation to the limits of the simulations undertaken. While he criticises

the lack of theory in Axelrod’s work as part of a broader analysis, he also recognises

that it offers some new conjectures that are worth exploring. Clearly, a more

comprehensive analysis is needed, but first we need to replicate Axelrod’s original

experiments in order to clarify certain assumptions that are not obvious.

4.1 Replicating Axelrod’s results

In seeking to replicate Axelrod’s results, some assumptions need to be made, about

which Axelrod says nothing. Firstly, the model does not specify how the constant

population level is maintained after reproduction, when there are three possible

scenarios.

1. The new population is smaller than the original. In our re-implementation,

additional agents are randomly selected from the resulting population and

replicated. Here, if eliminating poorly performing agents, and replicating agents

that perform well, as specified above, results in too few agents in the population,

we select further agents at random to replicate, up to the number needed to

maintain a constant level.

2. The new population is equal in size to the original, in which case no action is

needed.

3. The new population is larger than the original. In this case, our position is to

select the required number of agents at random from the relevant set for

reproduction. Here, if eliminating poorly performing agents and replicating

agents that perform well, as specified above, results in too many agents in the

population, we select further agents at random to eliminate, to arrive at the

number needed to maintain a constant level.

Secondly, we assume the score of each agent is set to 0 at the beginning of each

generation.

Based on the above, and the description in Sect. 3 of Axelrod’s model, we are

able to provide an algorithmic representation of the model in Algorithm 1. This

algorithm covers both Axelrod’s norms game and his metanorms game, where lines

11–16 are relevant only in the context of the addition of the notion of metanorm for

the metanorms game. Note that in the algorithm, TSi refers to the total score of agent

i and similarly TSj refers to that for agent j.
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Algorithm 1: The Simulation Control Loop: simulation(T, H, P, E)
1. for each agent i do
2. for each opportunity to defect o do
3. if Bi > So then
4. TSi = TSi + T
5. for each agent j : j �= i do
6. TSj = TSj + H
7. if see(j,i,So) then
8. if punish (j, i, Vj) then
9. TSi = TSi + P
10. TSj = TSj + E
11. else
12. for each agent k : k �= i ∧ k �= j do
13. if see(k,j,So) then
14. if punish (k, j, Vk) then
15. TSk = TSk + E
16. TSj = TSj + P
17. AvgS = calcAverageScore()
18. StdD = calcStandardDeviation()
19. for each agent i do
20. if TSi > AvgS+ StdD then
21. replicate()
22. else
23. if TSi < AvgS − StdD then
24. eliminate()
25. maintainPopSize()

Using the algorithm above, Axelrod’s experiments were repeated, running the

norms game 10 times. The results are shown in Fig. 1, where the diamonds

represent the value of the mean average boldness and vengefulness of the final
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generation’s population. As can be concluded from the figure, the results obtained

are similar to those of Axelrod, with one run having high vengefulness and low

boldness, two runs with exactly the opposite (high boldness and low vengefulness),

and all other runs with low values for both boldness and vengefulness.

In order to establish how these results arise, changes to boldness and

vengefulness for each individual were monitored. Figure 2 shows the results for

three sample individuals, illustrating how the average boldness and vengefulness

vary over generations (and hence time). In particular, Fig. 2a shows one run ending

in the most common result, low boldness and low vengefulness. The run starts with

average boldness and vengefulness of about 0.5 (as initial values for Bi and Vi are

taken from a uniform distribution over f0
7
; . . .; 7

7
g). In the early stages, boldness

decreases slightly, indicating that individuals with higher boldness are eliminated.

This is because high boldness causes an agent to defect, yet defecting in the

presence of others with average vengefulness can be costly, as the agent is likely to

be punished, leading to a low score. Subsequently, boldness stabilises at a low level.

With a low average boldness in the population, being vengeful becomes costly,

causing agents with low vengefulness to be favoured over those with high

vengefulness, with the latter getting eliminated when forming the new generation.

Finally, the values stabilise at particular low values for both boldness and

vengefulness until the end of the run.

In the cases that result in high boldness and low vengefulness (an example run is

shown in Fig. 2b), the run starts as before, with both values reducing. However,

around the 60th generation, the value of boldness increases sharply until it reaches

1, where it remains. This can be explained by a dramatic change to one individual’s

boldness, due to mutation, in an agent population with particularly low values of

vengefulness. In turn, this facilitates the individual’s survival, dominating the others

and allowing it to propagate its high boldness across the population. Here, a high

score is attained by defecting without punishment (due to low vengefulness), which

also hurts others and lowers their scores. In the final case, as shown in Fig. 2c, the

run ends with high vengefulness and very low boldness: while eliminating all those

with high boldness, only individuals with high vengefulness remain, so there are no

individuals with low boldness and low vengefulness, and those with high

vengefulness and low boldness survive and dominate.

By introducing metanorms, Axelrod aimed to address the problems identified

above. Our replication of the metanorms game also provides similar results to

Axelrod (see Fig. 3). Again, a deeper analysis of the results is helpful. As shown in

Fig. 4, in the metanorms game, the population starts eliminating high boldness

individuals as before, but now also eliminates low vengefulness individuals. The

latter trend is due to the introduction of the metanorm according to which failure to

penalise a defector may also be penalised. This results in a population with high

vengefulness and low boldness, which survives until the end of the run.

In essence, these simulations characterise a situation reminiscent of the Wild

West in which individual citizens are relied upon to enforce the law, explaining the

importance of vengefulness in the emergence of norms. A‘‘live and let live’’ attitude

is not conducive to maintaining a law, but the burden of punishment here is
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(a)

(b)

(c)

Fig. 2 Norms game: analysis of sample runs. a Norms game: low boldness and low vengefulness.
b Norms game: high boldness and low vengefulness. c Norms game: low boldness and high vengefulness
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unevenly spread. However, as these results show, emergence of a norm in such

situations is by no means certain. It is this that leads to a requirement for metanorms

if norms are to emerge with any certainty.

Such metanorms reflect a shift in attitude on the part of society towards the

norms: whereas without metanorms, punishment is seen as a (visceral) response to

defection, depending on the vengeful emotions of the victims, the metanorms make

it the duty of members of society to punish, so that failure to perform this duty is

itself liable to punishment. This move from enforcement by vigilantes (those taking
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the law into their own hands) to seeing law enforcement as the social duty of

responsible citizens is an important milestone in the development of a society that

respects its laws. Without this shift, respect for law is hardly even a social virtue,

let alone a (social) duty. It is little more than a matter a taste: some agents have a

taste for vengeance and some do not. If it is no more than a preference, a matter of

taste, then that laws do not always emerge, or if they do, collapse over time,

becomes unsurprising. Obedience to laws may or not be to the taste of the society.

4.2 Game duration

The settings under which Axelrod’s experiments are performed are limited,

particularly with relation to the duration of these experiments. To provide a stronger

analysis of Axelrod’s model, the experiments were repeated over a long duration,

1,000,000 generations (and 10 runs), as opposed to 100 generations (in Axelrod’s

experiments and our experiments of Sect. 4). In our norms game simulation, the

game starts with boldness decreasing, and then vengefulness decreasing until they

both settle at a low level, which is consistent with Axelrod’s results. However, an

agent with high boldness can be introduced to such a population through mutation,

and would dominate others since it is not punished due to low levels of

vengefulness. Clearly, running the experiment for a longer period increases the

possibilities for this to occur and, as shown in Fig. 5, this always leads to norm

collapse.

In undertaking their own analysis of Axelrod’s metanorms game, Galan and

Izquierdo (2005) increased the number of generations in a run and found different

results. By including 1,000,000 generations, in 1000 runs, nearly 70 % ended in
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norm collapse, as opposed to Axelrod’s finding of norm establishment. According to

Galan and Izquierdo, this is because vengefulness is costly in a population in which

violation is rare. Thus, agents with low vengefulness are favoured over agents with

high vengefulness, leading to a significant decrease in vengefulness, encouraging

defection, and in turn causing boldness to increase. The results of Galan and

Izquierdo suggest that metanorms are not as useful as it might initially seem from

Axelrod’s results.

By analysing these cases to determine the reasons for these results, it is clear that

the runs begin in the same way as previously observed, by eliminating individuals

with high boldness and low vengefulness, stabilising on those with high

vengefulness and low boldness. Then, however, mutation causes vengefulness to

reduce. If an agent x with high vengefulness and low boldness changes through

mutation to give lower vengefulness, while boldness for all remains low, there is no

defection and the mutated agent survives. In addition, if boldness then mutates to

become just a little higher for a different agent y, with average vengefulness

remaining high, x will still rarely defect because of relatively low boldness. If it

does defect, and is seen by others, it receives a low score, unless it is not punished,

in which case the non-punishing agents may themselves be punished because of the

high vengefulness in the general population. Here, agent x may not punish y either

because of the low probability of being seen (which must be below the low boldness

level to have caused a defection) or because it has mutated to have lower

vengefulness. In the former case, x will not be punished for non-punishment since it

has not observed y’s defection, but in the latter case, x might be punished if it is seen

by others. However, we know that the probability of being seen is low because agent

y has defected (and S\B for defection to take place). In this case, y is eliminated,

while x remains, because the likelihood of y’s defection being seen by just one agent

is relatively high, but the likelihood of agent x’s non-punishment being seen

requires first y’s defection being seen by x, and then x’s non-punishment being seen

by others, the combination of these being extremely unlikely.

If the values of vengefulness continue to decrease in this way, the population can

arrive at a situation with very low average boldness and vengefulness. At this point,

a single mutation to boldness could then cause the mutant to dominate the others

due to the general lack of vengefulness in the population. The key question here is

why, in cases of high boldness and low vengefulness, mutation of vengefulness from

a very low value to a significantly higher value does not cause boldness to decrease.

Here, such a mutant should punish all others for defecting and for not punishing

defectors. However, these punishments also incur significant enforcement costs, all

of which are borne by the punishing agent, potentially exceeding the penalty meted

out to the defectors and those agents who fail to punish others. For such a mutant to

survive, it needs to co-exist with other vengeful agents, with which it shares the

substantial enforcement load. In other words, there need to be sufficient vengeful

agents in the population to overcome this.

This analysis suggests that both mutation and sanctioning costs play a major role

in collapsing norms. However, there is an additional factor that gives rise to these

results, a particular characteristic of the underlying reproduction policy in the model
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which, in certain circumstances, and with a very subtle change, can give a very

different outcome. We consider this next, in Sect. 4.3.

We note that there have been similar criticisms of Axelrod’s work. In particular,

Binmore et al. (1995) considered a simplified version of the ultimatum game that is

also a simplified version of the norms game, concluding that the convergence

process is not robust and can easily be disrupted by quite small perturbations, giving

little confidence in conclusions obtained from just a few runs of a computer

simulation. Indeed, as we have done, Binmore (1998) suggests that one needs to

conduct very large numbers of tests before beginning to take any results seriously.

4.3 Reproduction and norm collapse

As specified earlier, a run of the metanorm game settles at very low boldness and

very high vengefulness at a certain point. For this to change to the opposite situation

of low vengefulness and high boldness, a sequence of modifications that lower

vengefulness must occur, and another sequence of modifications that increase

boldness must also occur.

Another factor that could contribute to norm collapse, which is not considered

above, is the reproduction policy over generations, especially where the boldness of

the entire agent population is very low. Specifically, when all individuals have

boldness around 0, defection rarely happens, and their scores (which change only

when agents enforce, are hurt, or are punished) are 0. As a result, the average score

and standard deviation are also 0, so that all agents have a score equal to the average

score plus one standard deviation. According to Axelrod’s rules, agents in this

situation should be replicated twice when forming the new generation, giving them a

better chance of surviving the next round. However, duplicating the individuals in

this case does not seem sensible since all of the agents in the population have

performed equally, so there is no need to replicate every individual twice. Hence, to

study the effect of the reproduction policy, we undertook simulations in which

agents are only replicated once in the above special case (as opposed to Galan and

Izquierdo where all agents in such a case are duplicated). The results obtained by

running the metanorm game with many more generations are similar to those of

Galan and Izquierdo, but with a different proportion giving rise to defection. As

shown in Fig. 6, 128 out of 1000 runs (or 13 %) of 1,000,000 generations ended in

norm collapse, as opposed to 70 % reported by Galan and Izquierdo.

The reason behind the different results is that replicating an entire population of

non-defecting agents increases the likelihood of significant fluctuations in venge-

fulness over subsequent generations. For example, in one phase of a run using the

approach of Galan and Izquierdo in which all agents have 0.0 boldness, 5 agents

have vengefulness of 0.0, 11 with 1.0 and 4 with 0.8, the next generation includes 8

agents with vengefulness of 0.0, 7 agents with 1.0, and 5 agents with 0.8, simply due

to the replication policy. This means that average vengefulness drops from 0.71 to

0.55 and, as boldness continues at 0.0, replication again makes this worse. However,

note that replication could cause the opposite, increasing the number of agents with

high vengefulness over those with low vengefulness.
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As new generations of agents with low boldness are evolved for more iterations,

it becomes more likely to observe the following combination of events. First, the

levels of vengefulness decrease repeatedly through a sequence of downward

fluctuations until they reach very low levels. Then, until vengefulness levels

fluctuate back upwards, this creates a temporarily fertile environment for defectors.

Next, the boldness of one or a few agents increases to a high level due to mutation.

This causes the bold agents to defect and be replicated in subsequent iterations of

the game. The end result of the phenomenon is an agent population where high

boldness and defection are so prevalent that being vengeful leads to extinction.

Thus, the game reaches a stable situation where norm collapse is ingrained in the

population (i.e. low vengefulness and high boldness).

This end state is reached in a proportion of experimental runs of both Galan and

Izquierdo’s experiments and our own experiments because it is more likely to reach

the required preconditions when repeating the experiment for 1,000,000 generations

(i.e. over a long duration). However, a much larger proportion of Galan and

Izquierdo’s runs end in stable norm collapse because their replication policy allows

for much more significant fluctuations of vengefulness.

4.4 Mutation

As discussed above, mutation is significant in determining when norm collapse

occurs. Galan and Izquierdo (2005) argue that decreasing the mutation rate from

0.01 to 0.001 allows norm collapse to arise much earlier. They present an example

in which a mutation rate of 0.001 allows the population to converge towards norm

collapse in about 25,000 generations as opposed to 300,000 with a rate of 0.01.
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However, they do not explain the reasons, and do not explore the more general

effect of mutation rate on norm collapse or establishment.

In seeking to consider this further, we undertook an experiment consisting of

1000 runs of 1,000,000 generations, using the mutation rate of 0.001 suggested by

Galan and Izquierdo, with results shown in Fig. 7a. Clearly, these results support

Galan and Izquierdo’s argument: 40 % of the runs ended in norm collapse.

However, decreasing the mutation rate further does not have the same effect. In
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Fig. 7 Metanorms game with different mutation rates. a 1,000,000 generations and 0.001. mutation rate.
b 1,000,000 generations and 0.0001 mutation rate
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particular, a mutation rate of 0.0001 resulted in all 1000 runs ending in norm

establishment, shown in Fig. 7b.

The relation between mutation rate and norm collapse is thus unclear. To

understand this better, we performed a further series of experiments. Figure 8

illustrates the result of different experiments that consists of 10 runs each, with a range

of mutation rates between 0.0001 and 0.01. As can be observed from Fig. 8, the

mutation rate seems to play an important role in causing norms to collapse.

Decreasing the mutation rate below 0.01 has a major effect on the proportion of runs

ending in norm collapse, with a peak around mutation rate values of 0.005 giving

norm collapse in 80 % of runs. However, decreasing the mutation rate further causes

the proportion of runs ending in norm collapse to drop back (with fluctuations) until it

reaches 0 with a mutation rate of 0.0001. While these results suggest a potentially

interesting relationship, further work is needed to establish the exact correlation.

Since the focus of this paper is to examine the possibility of applying metanorms to

computational systems, and it is difficult to justify the use of mutation in these

systems, this is outside scope but remains an important area for future work.

Nevertheless, we can say that given these results, removing mutation should

avoid norm collapse. In the norms game, after the population stabilises at a low

level of both vengefulness and boldness, mutation of an agent’s boldness from low

to high allows it to dominate, and as a result eliminate others, which leads to norm

collapse (as previously shown in Fig. 5). Figure 9 illustrates the result of a no-

mutation norms game that consists of 1000 runs, with 1,000,000 generations each.

As expected, removing mutation avoids norm collapse and leaves the population

with the other two situations.

In the metanorms game, as we have seen, mutation seems to have a great effect

on moving away from norm establishment. By removing mutation, we might expect

to guarantee norm establishment. To corroborate this, we performed two

Fig. 8 Metanorms game: 1,000,000 generations; 0.0001–0.01 mutation rate
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experiments for two different durations, with results shown in Fig. 10a for 100

generations and 1000 runs and Fig. 10b for 1,000,000 generations and 1000 runs.

Surprisingly, the results were not as expected. A high level of vengefulness is

maintained in almost all the runs, but a high level of boldness is also observed in

some, and hence a high level of defection in the population, despite the associated

punishment. This is because the final result of each run primarily depends on the

initial distribution of vengefulness and boldness: if all individuals with high

vengefulness happen to have high boldness, and if those with mid or low

vengefulness have low boldness, then individuals with high vengefulness and high

boldness at the start are favoured over those with average vengefulness and low

boldness. As a result, they survive and dominate the others. More importantly, the

final result is determined within the very first generation so that running the

experiment for a longer period has no impact and there is no change to the

population once the levels of vengefulness and boldness stabilise.

4.5 Characterising the vengefulness–boldness space

It is clear that Axelrod’s model exhibits many interesting aspects, and relies on

characteristics that provide different results with different assumptions or instan-

tiations. We have explored several of these in relation to our experiments, found

some distinct features and, as a result, we can also provide a characterisation of the

nature of norm establishment or collapse more generally.

Given the analysis so far, it should be clear that norm establishment lies in the

region where vengefulness is high and boldness is low; similarly, norm collapse lies

in the region where vengefulness is low and boldness is high. This is as used by

Axelrod in his model, and underlies the aim of the initial experiments. It is
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illustrated graphically in Fig. 11. However, we can also characterise the region

where vengefulness is low and boldness is low as tending to norm collapse: this is a

region of benign behaviour since boldness is low and defection is unlikely, but it is

unstable since a mutation to boldness may take it higher, leaving vengefulness low,

and causing norm collapse. Conversely, the region where both vengefulness and

boldness are high is tending to norm establishment: it is undesirable since boldness
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Fig. 10 No-mutation metanorms game. a 100 generations without mutation b 1,000,000 generations
without mutation
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is high and there are many defections, but these defections are likely to be punished.

If vengefulness does cause punishment, then it is likely that boldness will drop,

leading to norm establishment. Given this view, we can reinterpret the previous

experiments. For example, it is clear that the run shown in Fig. 2a ends in a state

tending to norm collapse, the run in Fig. 2b ends in norm collapse, and the run in

Fig. 2c ends in norm establishment, as does the run in Fig. 3.

From the results we have seen, it is clear that a lack of vengefulness can lead to

norm collapse when a bold mutant arrives. In the real world, this is often the point at

which we sometimes see the emergence of a central authority: in recognising the

threat to order presented by the arrival of bold deviant individuals, and being

themselves reluctant to punish because of the cost involved, the citizens tend to find

a different mechanism for punishing, and hence suppressing, the bold individuals.

Here, what they do is pay a levy to a central authority, which punishes the defectors.

If there are relatively few law breakers (and where there is in general low boldness),

a relatively small levy will cover the costs of punishment (and possibly allow the

lawman a profit). Returning to the Wild West analogy considered earlier, as

communities developed, the citizens would club together to hire a gunfighter to keep

the peace. Alternatives include seeing this as insurance, or possibly establishing a

central fund out of which agents who punish are rewarded (which we might see as

analogous to bounty hunters). Of course, if there are too many defectors the levy

will become too high, but given a low boldness and low vengeance society, the levy

should be advantageous over enforcement costs. (This explains why the central

authority will not emerge until the level of boldness has fallen to a relatively low

level). The essential point is that norm establishment requires the punishment of

bold individuals who defect, and if the citizens are not themselves vengeful enough,

they need to pay someone to do it for them. Note also that it is expected and desired

that defectors be punished, since the agents have already incurred the cost of

punishment. While the process can be seen as the formation of a Hobbesian social

contract, there remain problems with this centralised perspective, not least among
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them how to detect violations and violators. Indeed in this paper, our focus is on the

emergence of norms rather than a centralised mechanism for enforcement, so while

we note the alternatives, we omit further discussion of such possibilities and leave

them for further consideration outside the context of this work.

5 Omniscience in Axelrod’s metanorm model

From the above analysis, it is clear that various improvements are needed in order to

generalise the metanorms approach and make it applicable over computational

systems. First, the model assumes full control over the entire agent population,

which permits access to all agent utility scores and allows central manipulation of

the entire population by adding or eliminating agents. However, this is rarely

possible in computational systems in which populations can be vast, and no single

party can have control over every agent. Furthermore, agent scores are typically

understood as private information that agents might choose not to share with others,

posing a further problem for the application of Axelrod’s approach.

Instead, we need a mechanism through which individuals can learn to improve

their strategies over time. If we enable individuals to compare themselves to others,

and adopt more successful strategies, then we can take a learning interpretation of the

evolutionary mechanism (Riolo et al. 2001), without needing to remove and replicate

individuals. However, this learning interpretation requires that the private strategies

of individuals are available for observation by other agents, which is again an

unreasonable assumption. As we have shown in the previous sections, Axelrod’s

model is not capable of sustaining cooperation over a large number of generations.

Furthermore, Axelrod’s approach relies on agents being able to punish both those that

defect and those that fail to punish defection, yet this is unrealistic since it assumes

omniscience through agents being aware of all norm violations and punishments.

In response, the remainder of this paper investigates alternatives that allow us to

make use of the mechanisms resulting fromAxelrod’s investigations, inmore realistic

settings, as originally described in (Mahmoud et al. 2011, 2012). Specifically, we first

take a learning interpretation of evolution and describe an alternative technique,

strategy copying, which prevents norm collapse in the long term. Second, we remove

the assumption of omniscience and constrain the ability of agents to punish according

to the defections they have observed. Finally, to obviate the need for knowledge of the

private strategies of others, we propose a learning algorithm through which

individuals improve their strategies based on their experience.

5.1 Strategy copying

In Axelrod’s model, the evolutionary approach causes some problems in extended

runs, leading to norm collapse. In addition, for use in domains such as peer-to-peer

or wireless sensor networks, the agents themselves cannot be deleted or replicated,

but instead must modify their own behaviour. In this section, therefore, we examine

a simple alternative to Axelrod’s model in which an agent that performs poorly in

comparison to others in the population can learn new strategies (in terms of
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vengefulness and boldness attributes) by adopting the strategy of other, better

performing agents, replacing the existing strategy with a new one. Agents can

achieve this in different ways: they can copy the strategy of the agent with the

highest score or they can copy the strategy of one in a group of agents performing

best in the population. It is important to note that the parameter set-up used in all

experiments introduced in this section is the same as that specified in Table 2.

5.1.1 Strategy copying from a single agent

Intuitively, copying the strategy of the agent with the highest score appears to be a

promising approach. However, it leads to poor results in the long term because it

draws on the strategy of a single agent rather than a population of agents. This

makes the approach vulnerable to strategies that are only successful in a small

number of possible settings. Moreover, by failing to draw on strategies from a

variety of agents, the strategies tend to converge prematurely.

To illustrate this, consider a group of students taking an examination, with one of

the students having cheated. If the cheating student has not been seen, they may

achieve the best exam performance. However, if all other students copy this

behaviour and cheat in the next exam, there is a high possibility that they will be

caught, and will thus suffer from much worse results than if they had not cheated.

This is supported by the results shown in Figs. 12 and 13, illustrating experiments

with runs of 100 and 1,000,000 timesteps (where a timestep represents one round of

agents having opportunities to defect and learning from the results, and is equivalent

to a generation in the evolutionary approach). Each point on the graph represents

the average boldness and vengefulness of the population at the end of a single

simulation run.
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In the short term, as can be seen from Fig. 12, copying from the best agent leads

to norm establishment. However, in the long term the norm collapses, as shown in

Fig. 13. This can be explained by the fact that an agent with low vengefulness that

does not punish a defector (and thus does not pay an enforcement cost) but is also

not metapunished, scores better than any other agent with high vengefulness that

does punish (and thus pays the enforcement cost). As a result, other agents copy the

low vengefulness of this agent so that low vengefulness becomes prevalent in the

population. In the same way, when low vengefulness prevails in the population, an

agent with high boldness defects, gaining a temptation payoff, and hurting others

without receiving punishment. As a result, other agents copy the high boldness of

this agent so that low vengefulness and high boldness is propagated through the

population, leading to norm collapse. The essence of the free-rider problem is that

deviation is highly profitable to the free-riders as long as sufficient numbers

continue to conform, but that if everyone tries to free-ride, all benefits are lost (c.f.

the Nash Equilibrium strategy of mutual defection in the Prisoners’ Dilemma).

5.1.2 Strategy copying from a group of agents

Alternatively, as we have suggested, we might seek to copy the strategy of one in a

group of high-performing agents. In this view, agents choose one agent, at random,

from the group of agents with scores above the average, and copy its strategy. As

previously, experiments of different durations (between 100 and 1,000,000

timesteps) were carried out. The results in Fig. 14, for 1,000,000 timesteps, show

that all runs ended with norm establishment in the long term, indicating that this

approach is effective in eliminating the problematic effect of the replication method.
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Fig. 13 Strategy copying from the best agent, 1,000,000 timesteps
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This approach avoids norm collapse since it does not limit itself to the best

performing agent, and thus does not run the risk of only adopting a strategy that

performs well in a small number of settings.

5.1.3 Observation of defection

In Axelrod’s model (see Sect. 3), an agent z is able to punish another agent y that

does not punish a defector x, even though agent z does not see the defection of agent

x. However, such metapunishment is not possible if the original defection is not

observed: guaranteed observation of the original defection is an unreasonable

expectation in real-world settings. In consequence, our model needs adjustment so

that metapunishment is only permitted if an agent observes the original defection.

However, because this observation constraint limits the circumstances in which

metapunishment is possible, its introduction corresponds to removing the

metapunishment component from part of the game. In Axelrod’s original

experiments, metapunishment was introduced as a means to stabilise an established

norm, since norms tend to collapse shortly after they are established without

metapunishment. In fact, this remains the case in our model and our results confirm

this.

More precisely, the observation constraint causes all runs to end in norm collapse

when simulations are run for 1,000,000 timesteps, as shown in Fig. 15. This is due

to the fact that, as in the original model, runs initially stabilise on high vengefulness

and low boldness, and then mutation causes vengefulness to reduce. If an agent

y with high vengefulness and low boldness changes through mutation to give lower

vengefulness, while boldness for all remains low, there is no defection and the
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mutated agent survives. If boldness then mutates to become just a little higher for a

different agent x, with average vengefulness remaining high, x will still rarely defect

because of relatively low boldness.

If it does defect, however, and is seen by others, it receives a low score, unless it

is not punished, in which case the non-punishing agents may themselves be

punished because of the high vengefulness in the general population. Here, agent

y may not punish x because of the low probability of being seen (which must be

below the low boldness level to have caused a defection) or because it has mutated

to have lower vengefulness. In the former case, y will not be metapunished for non-

punishment , but in the latter case, y might be metapunished if it is seen by others.

The likelihood of agent y’s non-punishment being seen requires first x’s defection

being seen by y, and then y’s non-punishment being seen by others. Importantly, in

this new model, agents that metapunish y must themselves see x’s defection. Since

this combination of requirements is rare, such mutants like y survive for a longer

duration, enabling their strategy to propagate through the population, and causing

vengefulness to decrease. In addition, if another such event occurs, it will cause the

average vengefulness of the population to drop further until it reaches a very low

level. When the model runs over an extended period, such a sequence of events is

much more likely, and low vengefulness allows a mutant of higher boldness to

survive and spread among the whole population, which is the cause of the norm

collapse.

Indeed, where agents have subscribed to a central enforcement agency, it will be

in their interests to report any defections they observe, since they have already

expressed support for the norms, and have already incurred the cost of punishment.
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While our focus is on these aspects of Axelrod’s original model, we note that an

alternative approach could be taken, in which the metapunisher’s knowledge of

agents’ capability of observing is the key driver. This would allow metapunishers to

punish independently of whether other agents have in fact observed violations (and

this does sometimes happen in the law, where a metapunisher considers if it is

reasonable to assume that another agent should presume that some wrongdoing was

committed). Indeed, this would be a valuable aspect to explore, but would take the

paper in a different direction, away from our desired relative fidelity to Axelrod, and

is beyond the scope of our work.

5.2 Strategy improvement

Once the observation constraint is introduced, strategy copying becomes inadequate

and leads to norm collapse. Furthermore, it requires that agents have access to the

strategies and decision outcomes of others in order to enable the copying

mechanism. As we have already argued, in real-world settings such observations

tend to be unrealistic. Reinforcement learning offers an alternative to Axelrod’s

evolutionary approach to improving performance of the society while keeping agent

strategies and decision outcomes private. There are many reinforcement techniques

in the literature, such as Q-learning (Watkins and Dayan 1992), policy hill climbing

(PHC; Bowling and Veloso 2001) and WOLF-PHC (Bowling and Veloso 2001),

which we use as inspiration in developing a learning algorithm for strategy

improvement in the metanorms game.

5.2.1 Q-learning

Q-learning is a reinforcement learning technique that allows the learner to use the

(positive or negative) reward, gained from taking a certain action in a certain state,

in deciding which action to take in the future in the same state. Here, the learner

keeps track of a table of Q-values that records an action’s quality in a particular

state, and updates the corresponding Q-value for that state after each action. The

new value is a function of the old Q-value, the reward received, and a learning rate,

d, and the action with the highest updated Q-value for the current state is chosen.

However, for us, Q-learning suffers from two drawbacks. First, it considers an

agent’s past decisions and corresponding rewards, which are not relevant here;

doing so would inhibit an agent’s ability to adapt to new circumstances. Second,

actions are precisely determined by the Q-value; there is no probability of action,

unlike Axelrod’s model.

Bowling and Veloso (2001) proposed PHC, an extension of Q-learning that

addresses this latter limitation. In PHC, each action has a probability of execution in

a certain state, determining whether to take the action. Here, the probability of the

action with the highest Q-value is increased according to a learning rate d, while the
probabilities of all other actions are decreased in a way that maintains the

probability distribution, with each probability update occurring immediately after
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the action. In enhancing the algorithm, a variable learning rate is introduced, which

changes according to whether the learner is winning or losing, inspired by the

WOLF technique (win or learn fast). This suggests two possible values for d: a low
one to be used while an agent is performing well and a high one to be used while the

agent is performing poorly.

However, in one round of Axelrod’s game, an agent can perform multiple

punishments (potentially one per defection and non-punishment observed), while

only having a small number of opportunities to defect (four in Axelrod’s

configuration). Therefore, punishment and metapunishment actions would be

considered much more frequently than defection, leading to disproportionate update

of probabilities of actions, with some converging more quickly than others. To

address this imbalance, we can restrict learning updates to occur only at the end of

each round, rather than after each individual action, so that boldness and vengefulness

are reconsidered once in each round and evolve at the same speed. The aim here is to

change the probability of action significantly when losing, while changing it much

less when winning, providing more opportunities to adapt to good performance.

In summary, while basic Q-learning is not appropriate because of the lack of

action probabilities, WOLF-PHC suffers from a disproportionate update of such

probabilities in this setting. Nevertheless, the use of the variable learning rate

approach in WOLF-PHC is valuable in providing a means of updating the boldness

and vengefulness values in determining which action to take. However, since agents

that perform well need not change strategy, we can consider only one learning rate.

The next section details our algorithm, inspired by this approach.

5.2.2 BV learning

To address the concerns raised above, in this section, we introduce our BV

(Boldness-Vengefulness) learning algorithm. This requires an understanding of the

relevant agent actions and their effect on the agent’s score, as summarised in

Table 3, which outlines the different actions available to an agent and the

consequence of each on the agent’s score.

Table 3 Effects of actions on

agent score
Decision Effects

Defect Gain temptation payoff

Hurt all other agents

Potentially suffer punishment cost

Cooperate –

Punish Pay enforcement cost

Not punish Potentially suffer metapunishment cost

Metapunish Pay enforcement cost

Not metapunish –
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Now, since boldness is responsible for defection, an agent that obtains a good

score as a result of defecting should increase its boldness, and an agent that finds

defection detrimental to its performance should decrease its boldness. Learning

suitable values for vengefulness is more complicated, since while it is responsible

for both punishment and metapunishment, these also cause enforcement costs that

decrease an agent’s score. Low vengefulness allows an agent to avoid paying an

enforcement cost, but can result in receiving metapunishment. Vengefulness thus

requires a consideration of all these aspects.

First, in order to determine the unique effect of each individual action on agent

performance, we decompose the single combined total score (TS) of the original

model into distinct components, each reflecting the effect of different classes of

actions. Therefore, each agent keeps track of four different utility values: the

defection score (DS) of an agent who defects, which is composed of the positive

temptation value and the negative punishment incurred, the punishment score (PS)

incurred by an agent who punishes or metapunishes another (as a result of an

enforcement cost), and the punishment omission score (POS) incurred by an agent

who does not punish another when it should, and is consequently metapunished.

These are combined into a total score (TS).

In this context, we can consider the algorithms used in our simulation, in two

phases, as represented in Algorithms 3 and 4, which are called by Algorithm 2.

(Note that we use subscripts to indicate the relevant agent only when needed). More

precisely, in Algorithm 3, each agent has various defection opportunities (o), and

defects if its boldness is greater than the probability of its defection being seen (So).

If an agent defects (Line 3), its DS increases by a temptation payoff, T (Line 4), but

it hurts all others in the population, whose scores decrease by H (line 6), where H is

a negative number that represents the hurt suffered. If an agent cooperates, no scores

change. DS thus determines whether an agent should increase or decrease boldness

in relation to its utility.

Algorithm 2: The Simulation Control Loop: simulation(T, H, P, E, γ, δ)
1. for each round do
2. interact(T , H, P , E)
3. learn(γ, δ)

Each hurt agent can in turn observe the defection and react to it with

punishment probabilistically according to its vengefulness. Punishment and

metapunishment both have two-sided consequences: if an agent j sees agent i

defect in one of its opportunities (o) to do so, with probability So (Line 7), and

decides to punish it, which it does with probability Vj (Line 8), i incurs a

punishment cost, P, to its DS (Line 9), while the punishing agent incurs an

enforcement cost, E, to its PS (Line 10). If j does not punish i, and another agent

k sees this in the same way as previously (Line 13), and decides to metapunish

(Line 14), then k incurs an enforcement cost, E, to its PS, and j incurs a

punishment cost P to its POS. Note that both P and E are negative values, so they

are added to the total to reflect their effect.
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In Axelrod’s original model, those agents that are one standard deviation or more

below the mean are eliminated and replaced in the subsequent population generation

with new agents following the strategy captured by the boldness and vengefulness

values of those agents that are one standard deviation or more above the mean.

Thus, poorly performing agents are replaced by those that perform much better. In

contrast, in our model, in Algorithm 3, we simply distinguish between good and

poor performance, with only agents that score below the mean reconsidering their

strategy. Thus, for each agent, we combine the various component scores into a

total, TS and, if the agent is performing poorly (in relation to the average score,

AvgS in Line 7), we reconsider its boldness and vengefulness. Note that this average

score is established through lines 1–5 in the algorithm.

Reinforcement learning algorithms typically involve an exploration parameter

that balances exploration and exploitation of behaviours, ensuring that agents try

every possible strategy that is available to them. To allow a degree of exploration in

our algorithm (similar to mutation in the original model’s evolutionary approach, to

provide comparability) and to enable an agent to step out of the learning trend

(captured by a learning parameter, or step, discussed below, d), we adopt an

exploration rate, c, which regulates adoption of random strategies from the

available strategies universe (Line 8). If an agent does not explore then, if defection

is the cause of a low score (Line 12), the agent decreases its boldness, and increases

it otherwise. Similarly, agents decrease their vengefulness if they find that the effect

of punishing is worse than the effect of not punishing (Line 22), and increase

vengefulness if the situation is reversed. As both PS and POS represent the result of

two mutually exclusive actions, their difference for a particular agent determines the

change to be applied to vengefulness. For example, if PS[POS, then punishment

has some value, and vengefulness should be increased.

Finally, given a decision on whether to modify an agent’s strategy, the degree of

the change, or learning step (d), must also be considered. Since vengefulness and

boldness have eight possible values from 0
7
to 7

7
, we adopt the conservative approach

of increasing or decreasing by one level at each point, corresponding to a learning

Algorithm 3: interact(T , H, P , E)
1. for each agent i do
2. for each opportunity to defect o do
3. if Bi > So then
4. DSi = DSi + T
5. for each agent j : j �= i do
6. TSj = TSj + H
7. if see(j,i,So) then
8. if punish (j, i, Vj) then
9. DSi = DSi + P
10. PSj = PSj + E
11. else
12. for each agent k : k �= i ∧ k �= j do
13. if see(k,j,So) then
14. if punish (k, j, Vk) then
15. PSk = PSk + E
16. POSj = POSj + P
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rate of d ¼ 1
7
. Thus, an agent with boldness of 5

7
and vengefulness of 3

7
that decides to

defect less and punish more will decrease its boldness to 4
7
and increase its

vengefulness to 4
7
.

Algorithm 4: learn(γ, δ)
1. Temp = 0
2. for each agent i do
3. TSi = TSi +DSi + PSi + POSi

4. Temp = Temp+ TSi

5. AvgS = Temp/no agents
6. for each agent i do
7. if TSi < AvgS then
8. if explore(γ) then
9. Bi = random()
10. Vi = random()
11. else
12. if DSi < 0 then
13. if Bi − δ < 0 then
14. Bi = 0
15. else
16. Bi = Bi − δ
17. else
18. if Bi + δ > 1 then
19. Bi = 1
20. else
21. Bi = Bi + δ
22. if PSi < POSi then
23. if Vi − δ < 0 then
24. Vi = 0
25. else
26. Vi = Vi − δ
27. else
28. if Vi + δ > 1 then
29. Vi = 1
30. else
31. Vi = Vi + δ

5.3 Evaluation

The algorithm is designed to mimic the behaviour of Axelrod’s evolutionary

approach as much as possible, while relaxing Axelrod’s unrealistic assumptions.

This allows us to replicate Axelrod’s results and investigate his approach in more

realistic problem domains, as shown in Fig. 16. The parameter set-up used in all

experiments carried out in this section is shown in Table 4, with the addition of

parameters related to the BV Learning algorithm.

The analysis of a sample run reveals that agents with low vengefulness and

agents with high boldness start changing their strategies. Here, agents with high

boldness defect frequently, and are punished as a result, leading to a very low DS, in

turn causing these agents to decrease their boldness. Agents with low vengefulness

do not punish and are consequently frequently metapunished. As a result, their PS is

much better (lower in magnitude) than their POS, causing them to increase their
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vengefulness. The population eventually converges to comprise only agents with

high vengefulness and low boldness. While noise is still introduced via the

exploration rate causing random strategy adoption, the learning capability enables

agents with such random strategies to adapt quickly to the trend of the population.
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Fig. 16 Strategy improvement (with c ¼ 0:01), 1,000,000 timesteps

Table 4 Parameter initialisation

Term Description Value

i, j Individuals A numerical index to identify individual agents

S Probability of a defection being

seen by any given individual

Uniform distribution from 0 to 1

Bi Boldness of i Uniform distribution from 0
7
to 7

7

Vi Vengefulness of i Uniform distribution from 0
7
to 7

7

T Player’s temptation to defect þ3

H Hurt suffered by others as a result

of an agent’s defection

�1

P Cost of being punished �9

E Enforcement cost, i.e. cost of

applying punishment

�2

P 0 Cost of being punished for not

punishing a defection

�9

E 0 Cost of punishing someone for not

punishing a defection

�2

d learning step 1
7

c exploration rate 0.01
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As before, we also consider the problem of ensuring that an original defection is

observed in order to provide a metapunishment. Introducing this constraint into our

new algorithm, we ran experiments over different periods, with results indicating

that norm establishment is robust in all runs. An example run for 1,000,000

timesteps is shown in Fig. 17. This is because agents that use this new learning

algorithm only change their strategy incrementally without wholesale change at any

single point. The effect of a mutant with low vengefulness is not significant since,

while the mutant might survive for a short period and cause some agents to change

their vengefulness, any such change will be slight. It thus does not prevent such

agents from detecting the mutant subsequently, in turn causing the mutant to

increase its vengefulness.

Some work has already explored the use of learning in the context of distributed

(non-centralised) punishment where agents are bold and vengeful at the same time

(Riveret et al. 2012). This is interesting because it shows that punishment does not

entail norm emergence (in the sense of stable collective behaviour coherent with

punishments) even when it is strongly applied. In addition, together with later work

that also considers vicarious reinforcement (Riveret et al. 2013), by which agents

observe the behaviour of others in response to rewards, for example, we can see a

different perspective on some of the same techniques. This vicarious learning of

new strategies by which agents adopt the strategy of better performing agents has

been studied (for the legal domain) where, if combined with reinforcement learning,

it tends to increase the speed of convergence so that agents quickly adopt the most

useful behaviours. Moreover it is not clear that this necessarily supports norm

establishment, but this is a combination of techniques that we have not explored

since, in our model it has not proven necessary to combine them. Nevertheless, this
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Fig. 17 Strategy improvement with defection observation constraint (with c ¼ 0:01), 1,000,000
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could provide a useful avenue for future investigation. More generally, while

interesting and relevant to the larger questions surrounding learning in the context of

norm emergence, the underlying model and assumptions in these works are rather

different to our own, in which we have sought to retain some degree of faithfulness

to Axelrod’s original intent, with incremental deviations to better ensure

comparability.

6 Conclusion

Axelrod’s original work suggested that without metanorms, whether or not laws

emerge depends on the particular social composition of the initial group of agents in

terms of their boldness and vengefulness. His introduction of metanormswas aimed at

addressing this, enabling societies to guard against normative collapse and seeing

norms emerge from the interactions of the individuals within those societies. In the

context of his model, in which these individuals are characterised by vengefulness and

boldness, this brings about a situation tending to low boldness and high vengefulness,

but with scenarios in which there is susceptibility to the arrival of a few bold

individuals that can bring about norm collapse. While real societies with metanorms

of this sort are rare, compliance (and playing a role in ensuring compliance) is often

seen as a duty. In a low vengefulness society citizens prefer to discharge this duty by

paying someone else to enforce the laws: this is cheaper and easier and more

congenial, and it spreads the risk of incurring costs of punishing. In real societies, we

thus see the emergence of a social contract with a central enforcement paid for from a

collective levy (initially subscription for this specific purpose, but as the functions of

the state increase, taxation). This leads to the development of a central authority and

the rule of law, but this is difficult to bring about in computational societies.

Thus, in computational systems of self-interested autonomous agents we often

need to establish cooperative norms to ensure the desired functionality without this

centralisation. Axelrod’s work on norm emergence gives valuable insight into the

mechanisms and conditions in which such norms may be established. However,

there are two major limitations. First, as we have shown, and explained in detail,

norms collapse even in the metanorms game for extended runs. Second, the model

suffers from limitations relating to assumptions of omniscience. In response, this

paper has: (1) provided an in-depth analysis of Axelrod’s results, revealing the

effects of mutation and reproduction; (2) investigated those aspects of Axelrod’s

model that are unreasonable in real-world domains; and (3) proposed BV learning as

an alternative mechanism for norm establishment that avoids these limitations.

More specifically, we replaced the evolutionary approach with a learning

interpretation in which, rather than remove and replicate agents, we allow them to

learn from others. Two techniques were considered: copying from a single agent

and copying from a group. The former suffers the same problems of long term norm

collapse associated with Axelrod’s approach but, by avoiding strategies that only

perform well in restricted settings, the latter addresses the problems and brings

about norm establishment. In addition, we addressed Axelrod’s assumption of

omniscience, in which agents considering metapunishment are not explicitly
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required to see the original defection. By doing so, however, the metapunishment

activity in the population, for stabilising an established norm, decreases and leads to

norm collapse.

Since learning strategies from others (either individuals or groups) is unable to

establish norms for cooperation (and is, in addition, unrealistic since it assumes that

agent strategies are not private), we have developed an alternative, BV learning, in

which agents learn from their own experiences.

Through this approach we have shown that not only it is possible to avoid the

unrealistic assumption of knowledge of others’ strategies, but also that by enabling

individuals to incrementally change their strategies we can avoid norm collapse,

even with observation constraints on metapunishment.

Of course, this model remains a simple one that is still constrained to limited

underlying structures. Our aim is to focus on applying the model to interaction

networks in order to analyse how different network structures can impact on the

achievement of norm emergence. In particular, our current model is limited in that the

algorithm relies on agents comparing their own score to the average score of all other

agents to determine if learning is warranted. This constrains our ability to move

towards making Axelrod’s model more suitable for real-world distributed systems

and, in consequence, future work aims to enable agents to estimate their learning

needs based on their own, individual, experience by monitoring their past

performance. Moreover, we also seek to investigate the possibility of integrating

dynamic punishments, rather than the current static ones (that are fixed regardless of

what has happened), by which agents can modify the punishments they impose on

others according to available information about the severity of violation, or according

to whether the violating agent is a repeat offender, and if so, how many times.

There is also another interesting characteristic of this work. The scenarios

discussed in the paper consider some actions that can be seen as stochastically

dependent. In this respect, defecting is largely dependent on the probability of being

seen, and the lower this probability, the greater the possibility that an agent will

defect if it has sufficient boldness. Similarly, the actions of punishment and

metapunishment are stochastically dependent on the probability of being seen,

whereby an agent A can only punish or metapunish another agent B if it observes the

defection of B, and it is sufficiently vengeful. An interesting avenue to explore,

therefore, could be to provide a more detailed and considered analysis of the

correlations here, but this is outside the scope of the current work in this paper.
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