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Abstract This paper generalises classical revision theory of the AGM brand to

sets of norms. This is achieved substituting input/output logic for classical logic and

tracking the changes. Operations of derogation and amendment—analogues of

contraction and revision—are defined and characterised, and the precise relationship

between contraction and derogation, on the one hand, and derogation and amend-

ment on the other, is established. It is argued that the notion of derogation, in

particular, is a very important analytical tool, and that even core deontic concepts

such as that of permission resists a satisfactory analysis without it. By way of

illustration the last section of the paper analyses the much debated concept of

positive permission, of which there turns out to be more than one kind.
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1 Introduction

Formal deontics—the study of norms and normative modalities using mathematical

tools—has reasserted itself as a serious academic discipline largely due to its

potential for application in computer science. Multi-agent systems, in particular,

have been put forth as a principal case, but more generally a deontic level of

representation is arguably an essential component of any system that recognises the

possibility of failure, non-conformity or deviation from a stipulated optimum

(Carmo and Jones 2002). Examples of such systems include on-line marketplaces,

disaster response system, virtual supply chains, and e-government services.

There is widespread agreement that a static model of codes of norms runs counter

to the dynamic nature of normative systems (see e.g. (Boella et al. 2006, 2009;
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Carmo and Jones 2002; Governatori and Rotolo 2008; Segerberg 2009)). It is an

essential premise at least for open multi-agent system that the behaviour and the

interaction of agents in the system cannot be accurately predicted. The system may

therefore need to adapt to changing circumstances, new norms may need to be

created and old ones removed. The system may also need to utilise different subsets

of norms under different circumstances, as for instance when an agent violates a

primary obligation, thereby bringing a reparational norm into play, or it may need to

choose which one of two conflicting norms that should prevail for a given case in

which there is a conflict of norms (see e.g. (Hansen 2004)).

Indeed, it can be argued that several core deontic concepts are themselves

inherently dynamic, and that an account of a code’s modes of transformation is one

of the tools needed to characterise those concepts. Consider for instance permission.

It is commonly agreed that permitted actions fall under one of two broad kinds;

those that are negatively permitted and those that are positively permitted or

permitted in decree. Negative permission is simple, and can be regarded as the dual

of obligation just as possibility is the dual of necessity in alethic modal logic.

Positive permission, on the other hand, is more elusive. A permissive legal norm—

regulating, say, the collection and dissemination of personal information—is often

formulated along the following lines: ‘‘Personal information may only be processed

by the consent of the registered person, or if processing is statutorily warranted, or if

such processing is required in order to honour an agreement with the registered

person (…)’’. The word ‘only’ in the opening sentence indicates that processing of

personal information is by default prohibited. The text then goes on to list a set of

explicitly recognised cases that are excepted from the ban and which therefore

constitute permitted actions. Permission is implemented, one might say, by

restricting the set of norms that are deemed applicable under specified circum-

stances: There is a general norm that is deemed to be valid or applicable by default
and always, save for the cases that are subsumed by the explicitly stated

permissions. When one of the latter cases is satisfied, the set of applicable norms

contracts to exclude the general prohibition, leaving a smaller code in force. This, I

shall argue, is at least a fruitful way to look at it.

I shall refer to the above mentioned contraction operation as derogation. In law

the term ‘derogation’ denotes the partial repeal or abrogation of a law by a later act

that limits its scope or impairs its utility and force. For example, statutes in

derogation of common law are those statutes which effect a change in the principles

of precedent developed in earlier case law. Abstracting away the temporal

relationship between the derogans and the derogandum as well as the sources of law

(the issuing authorities), derogating from a norm n means limiting the scope of n by

registering exceptions to it. It is this more general notion that is the principal target

of analysis in the present paper. I take it to be sufficiently close to the legal sense of

‘derogation’ to warrant a reuse of the term. The reader should bear in mind, though,

that the legal concept is really a special case of the notion analysed here.

Derogation, so understood, will be analysed in terms of contractions on a set of

norms, which is a generalisation of the corresponding notion in the so-called AGM-

framework of theory revision (Alchourron and Makinson 1982; Alchourron et al.

1985). Since its inception in the 1980s, revision theory has grown into a well-
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studied research programme that branches off into numerous other disciplines, such

as epistemology, artificial intelligence and multi-agent systems. Two of the main

strengths of the idiom is its generality and its wide applicability (Williams and Rott

2001). Change, considered in abstracto, is reduced to consistency-preserving

addition and subtraction of items to and from a set of formulae modulo some notion

of implicature. This ‘beating heart’ perspective on change is simple and compelling,

and has turned out to be a robust and sustainable mathematical idiom.

The reader may be more used to thinking of exceptions in terms of non-

monotonic inference rather than in terms of contraction. From a philosophical point

of view it is of little consequence which idiom we choose, however, for it is well

known that theory revision and non-monotonic inference are two sides of the same

coin: Every operator of (AGM) contraction determines a revision operator via the

Levi identity, and every revision operator may be considered a non-monotonic

consequence operator when projected onto its right argument (the two-place

operation of revising K with a, written K*a, becomes the unary operation of

revision-with-a modulo K, written *K (a)). Conversely, any non-monotonic

consequence operation can be seen as a revision function, which in turn determines

a contraction function via the Harper identity (see. Makinson 2003, chapter 6;

Makinson and Gärdenfors 1991). Therefore, in the principal case of revision where

K is contracted so as to exclude :a prior to the addition of a, one may if one likes

equally well speak of a as an exception to the default assumption :a implicit in K.

Now, in order to move towards a general theory of norm-system dynamics,

similar in general principle to the AGM paradigm, what we need first of all is a well-

defined notion of a code or system of norms, construed in analogy to the notion of

the Tarski-closure of a set of sentences. A closure operator that fits the bill, or so I

shall argue, is supplied by input/output logic as set out in a series of papers by

Makinson and van der Torre (2000, 2001, 2003a, b). Indeed AGM revision and

input/output logic turn out to combine beautifully to give us exactly what we need in

order to move towards a general theory of norm system dynamics. I shall attempt to

illustrate the utility of the resulting theory—for purposes of conceptual analysis—

towards the end of the paper, by analysing the concept of positive as outlined above.

The layout of this paper is as follows: Sect. 2 gives an informal introduction to

the input/output idiom, with a special emphasis on its relation to the philosophy of

norms. Sect. 3 records some logical properties of the theory of simple-minded

output, so-called, that will be used as lemmas in subsequent sections. It focuses on

three notions in particular; equivalence, complementation and maximal consistent

subsets—all modulo input/output implicature. Section 4 gives a complete AGM-

style characterisation of the derogation operation, whilst Sect. 4.1 provides a

mapping into classical AGM contraction that can be used to migrate results from

classical contraction theory over into the theory of derogation and vice versa. Norm-

system revision, or amendment as I shall call it, is defined and characterised in Sect.

5. The paper ends with a case study in Sect. 6 of the concept of positive permission,

designed to illustrate the utility of the derogation operator for purposes of

conceptual analysis.

The reader should note that there is some literature on the topic of norm-system

dynamics already. Independently of the present work Boella et al. (2009) proposed

Norm-system revision 249

123



that a theory of norm-system dynamics be built precisely on AGM revision and

input/output logic. Boella et al. fix attention on a set of axioms (or ‘postulates’) that

are considered plausible candidates for an operator of norm-system contraction.

However, it is a weakness of their account that no construction is offered against

which the adequacy of these postulates can be measured. That is, Boella et al. do not

map their postulates to a semantics (broadly understood) that gives the meaning of

the postulates in terms of operations on the code of norms. As a consequence,

certain subtleties of input/output logic escape notice in the formulation of the

postulates. I shall comment on some of these points along the way. Other recent

sources that discuss norm-system dynamics include Governatori et al. (2005, 2007,

2008). Here the focus is on the notions of legal abrogation and annulment, and the

formalism is a temporal and modal extension of defeasible logic. It is thus different

from the present paper with respect to the underlying logic. Moreover the central

concern seems to be to capture a notion of retroactive legal change, rather than, as in

the present paper, to develop an abstract and general model of norm-system

evolution.

2 Input/output logic as a logic of norms

A few notational preliminaries first: We use lower case letters a, b, c … to range

over formulae of classical propositional logic, denoted L. The distinguished letters

t and f will stand for arbitrary tautologies and contradictions respectively. Sets of

formulae are denoted by upper case letters from A to D. Upper case letters from F to

I denote sets of norms, that is, binary relations over subsets of L. When G � L� L
we denote its pre-image under L as G1 and its image under L as G2. Image-formation

will be denoted by ordinary parentheses, for instance ðG [ HÞðaÞ denotes the image

of the relation G [ H under a. Classical consequence is written with a turnstile ‘
when considered as a relation over 2L 9 L, and as Cn when viewed as an operation

on 2L onto itself. To make the notation less verbose, we follow the convention of

writing A [ a instead of A [ fag, and similarly for norms.

Just as the theoretical paradigm of a theory is a logically closed set of sentences

(i.e. a set of sentences closed under entailment), the theoretical paradigm of a

normative system may be taken to be a set of prima facie mandatory norms that

contains all norms it entails. In input/output logic a (prima facie) norm is simply a

pair (a, b) correlating an applicability condition, trigger or input a with a duty,

optimality condition or output b—these will sometimes be denoted neutrally as the

antecedent and consequent of a norm respectively. The correlation between the

antecedent and consequent is logically arbitrary in the sense that a pair is not a

formula, so there is nothing to the norm (a, b) over and above the fact that some

authority requires that b be done given a. One could see this as an expression of a

kind of anti-naturalism, or conventionalism, w.r.t. to norms. The validity of a norm

(a, b) need not have any ontological or epistemological status beyond that of being

decreed to hold. A code of norms in input/output logic is simply a set G of such

pairs, from which it follows that the explicitly declared requirements, in any

situation a (or alternatively, on any input a) according to G, can be obtained by
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taking the image of G under a. The fundamental notion of normative implicature in

turn allows implicit norms to be derived from the explicit ones—i.e. from the ones

contained in G—e. g. by recognising that which implies (logically) the trigger of a

norm as itself a trigger of a norm, and that which follows (logically) from an

explicitly declared requirement as itself mandated by a norm. To be more precise,

the simplest model of a normative system is an operation out of type 2L�L � L 7! 2L

defined as follows:

Definition 1 out(G, a) = Cn(G(Cn(a))).

I shall allow myself to represent this out-operator sometimes by projecting it onto

its left argument, writing out(G). These two modes of expression will be assumed

equivalent by putting (a, b) [ out(G) iff b [ out(G, a).

Input/output logic, of which definition 1 gives the simplest example, addresses a

fundamental problem in the logic of norms independently observed by Dubislav

(1937), and Jørgensen (1937): On the one hand, truth-functional operators like

‘and’, ‘or’ and ‘not’ are routinely applied to items construed as norms, forming

complex norms out of primitive ones. On the other hand, norms are not in general

true or false, i.e. they do not in general have truth-values, so it is not clear what

could be meant by such compounding (Makinson 1999). To be sure, norms are

clearly content-full in some sense and perhaps some norms have truth values, for

instance moral norms, as the moral realist claims. He may well be correct that it

simply is wrong to take pleasure in another’s pain, to taunt and threaten the

vulnerable, to prosecute those known to be innocent, to torture babies for fun, and

to sell another’s secrets solely for personal gain (Shafer-Landau 2003, p. 248).

Perhaps one need not infer such principles from other beliefs in order to be justified

in holding them true, perhaps we should just accept them as self-evident and ask

for no further argument. After all, there are other kinds of statements we would be

willing to accept without argument, for instance that an object cannot be both red

and white all over, or, that if you are suffering then you know that you are

suffering. In such cases, our belief is direct and immediate, and if asked for reasons

we tend to reply ‘don’t you just see it?’, without being able to give any deeper or

more fundamental reason than that. Perhaps specifically moral norms are true in

this sense. If that is the case, then a valid moral argument is one that preserves

truth, just as logically valid arguments do. Ethical controversy, then, is primarily

about truth, and the authority of moral norms is proportional to the legitimacy of

their truth-claim [ibid.,30].

Yet, it should be obvious that this property, if it exists, does not generalise.

Consider for instance the regulation from Norwegian law that requires all shops to

be closed on Sundays except those that deal mainly in groceries and have a total

sales area of less then a hundred square meters. It would certainly require an

ingenious argument to convince people that this norm is true as such, that is, true as

a stance-independent feature of reality. It is much more natural to view it as a

logically arbitrary stipulation laid down by the Norwegian authorities for political

reasons.

Of course one could say that it is true of Norwegian law that the regulation is part

of it. This route has often been chosen by norm-theorists of a formal bent, who
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continue to rely on truth to supply a notion of inference. The idea in general outline,

familiar I am sure to many, is that the Jörgensen/Dubislav problem may be solved

by making a distinction between two uses of norm-sentences; norm sentences can be

used for prescriptive purposes to influence and direct the behaviour of agents, or it

can be used descriptively to state that something is obligatory, permitted or

prohibited according to a given system of norms. Consider the following example

from (Hilpinen 2001):

Motor vehicles ought to use the right-hand side of the road. ð1Þ

Such a statement can be used or uttered performatively to direct the behaviour of the

citizens of a given country, say Norway, but it can also be used to state something

about Norwegian law, which is true of it, but false of other legal systems such as

e.g. that of the UK. It is true of Norwegian law, but false with respect to British law,

that such a norm belongs to it. I take it that the distinction between descriptive and

prescriptive uses of a norm needs no lengthy elaboration. For the sake of precision,

we may put the point in terms of assent. If I assent, sincerely, to a sentence

attributing a norm to a code or normative system, then I form a corresponding belief

about that system. If, on the other hand, I assent to a norm used prescriptively—say

one that requires me to drive on the right hand side of the road—then I cannot be

assenting sincerely if I do not form an intention to act accordingly.

In the philosophical literature descriptive norm sentences are usually called

normative statements or norm-propositions. I prefer ‘norm-attributions’ myself;

what such statements do is essentially to assert the membership of norms in the sets

that constitute the system. Now, norm-attributions unlike norms simpliciter are true

or false of course. The logical relations between them can therefore be understood in

the usual way in terms of truth-preserving inferences. This has been perceived by

many to put us in a position to read off systematic relations between the norms

themselves from the logical relations holding between the norm-attributions. Such a

view has been championed by e.g. Alchourrón and Bulygin (1981), von Wright

(1998) and by Hans Kelsen in his classic Pure Theory of Law:

Since legal norms, being prescriptions … can neither be true nor false, the

question arises: How can logical principles, especially the Principle of

the Exclusion of Contradictories and the Rules of Inference be applied to the

relation between legal norms, if according to traditional views these principles

are applicable only to assertions that can be true or false. The answer is:

Logical principles are applicable, indirectly, to legal norms to the extent that

they are applicable to the rules of law which describe the legal norms and

which can be true or false … one norm may be deduced from another if the

rules of law that describe them can be deduced from a logical syllogism

((Kelsen 1967), p. 74).

What Kelsen calls ‘rules of law’ are just norm-attributions, and Kelsen takes them

to provide an indirect route to the logic of norms proper. This claim faces one basic

difficulty from which there is, in my opinion, no recovery; it is either trivial or

viciously circular. This becomes clear as soon as one asks oneself ‘what determines

the membership of the norms in the system?’. Of course, the answer to that depends
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on how we construe the concept of a system. We have essentially only two choices:

We may say that any set of norms G is a normative system. In that case the only

norm-attributions we can form are purely boolean combinations of simple

membership assertions ‘it is true of Norwegian law that wearing a mask in public

is in general prohibited and it is true that driving on the right is mandatory’ and so

forth. Alas, if this is all we can do, then there simply is no logic of norms or

normative reasoning beyond boolean logic. The other option is to say that the

system is the closure C(G) of G under some suitable operation C. Depending on

C this could perhaps give us more interesting and non-trivial norm-attributions.

Clearly, though, we would have to know the behaviour of C before we can know

which norm-attributions are true of C(G). Thus C, whatever it is, must be construed

as conceptually prior to the norm-attributions. Stated differently, the truth of norm-

attributions can only be determined if we already know the logic that governs the

norms, not vice versa. Norm-attributionists have the tail wag the dog, therefore.

True, any given norm n of a normative system s can be mapped to a corresponding

statement ‘ ‘n’ is a valid norm of s’, but we come to know that that is true by

deriving n from s.

Judging by the forerunner (Makinson 1999) as well as the original input/output

papers themselves (Makinson and van der Torre 2000, 2001, 2003), the Jørgensen/

Dubislav-problem was the principal motivation for the introduction of the input/

output idiom. Input/output logic is conceived as a logic of norms from its very

inception:

Input/output logic takes its origin in the study of conditional norms. These

may express obligations under some legal, moral or practical code, goals,

contingency plans, advice, and so on. They may be expressed in imperative

form, in such-and-such a situation, do so-and-so, or in indicative form, in

terms like In such-and-such a situation, so-and-so should be the case, or …
should be brought about, or … should be worked towards, or … should be

followed—these locutions corresponding roughly to the kinds of norm

mentioned (Makinson and van der Torre 2003, p. 1).

In other words, input/output attempts to tackle the Jørgensen/Dubislav-problem

head-on by offering an alternative to the proposition as the paradigm of a norm. The

proposition is replaced with an abstract conception of a norm whose principal

characteristic is that a conditional norm is no longer construed as a conditional in

the logical sense, and is not assumed to have a truth-value. More specifically, a

norm is taken to be a logically arbitrary stipulation and the role of logic is seen as a

modest one: To preprocess input before it goes in to the system and to unpack the

output on the other side (Makinson and van der Torre 2003).

The out operator from definition 1 admits a syntactical representation in terms of

a system of inference rules:

Theorem 1 For any G, out(G) is precisely the set of norms that are derivable in
the system consisting of axioms (t, t) and (a, b) for all (a, b) [ G, together with the
inference rules (this is [Observation 1,38]):
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SI
ðc; bÞ
ða; bÞ if a ‘ c AND

ða; bÞ; ða; cÞ
ða; b ^ cÞ WO

ða; bÞ
ða; cÞ if b ‘ c

Here as in (Makinson and van der Torre 2003) a derivation is understood in terms

of rules as follows: A rule r of arity n C 0 is an n ? 1-ary relation over the set

L 9 L of pairs of formulae in the language L. For any element

((a1, b1), …, (an, bn), (an?1, bn?1)) [ r we call (a1, b1), …, (an, bn) the premises

of the rule and (an?1, bn?1) its conclusion. A derivation of a pair (a, b) from a set

G of pairs of formulae, given a set R of rules, is understood to be a tree with (a, b) at

the root, each non-leaf node related to its immediate parents by the inverse of a rule

in R, and each leaf node either the conclusion of a zero-premise rule in R, or an

element of G, or of the form (t, t). If we denote the set of elements that are derivable

from G in the system above as deriv(G) then theorem 1 states that out(-
G) = deriv(G). Note that these operators are closure operators, that is, they satisfy

monotony, inclusion and idempotence.

The reader should note that the out-operator considered here corresponds to the

one Makinson and van der Torre call simple-minded output (2000)—it is the least

comitting of the input/output operators. Although quite weak, it has the great virtue

that it can be viewed as a most natural and immediate generalisation of classical

logic. More precisely, classical logic is the special case where the set of norms G is

the diagonal relation over L:

Theorem 2 Let G be the diagonal relation over L. Then out(G, a) = Cn(a).

Proof We prove only the left-to-right-direction, the converse is trivial: Suppose

b [ out(G, a). By compactness for classical consequence there is a set

(a1, b1), …, (an, bn) [ G such that a ‘ aj for 1 B j B n and
Vn

i¼1 bi ‘ b. Since

G is the diagonal over L we have that aj = bj for 1 B j B n, whence
Vn

i¼1 ai ‘ b.

Thus, a ‘
Vn

i¼1 ai ‘ b so b [ Cn(a) as desired. h

Thus, simple-minded output makes a small step up the ladder of abstraction,

substituting ordered pairs for conditional statements. This has two effects: First,

outputs cannot be recycled as inputs, meaning that norms cannot be chained

together. Chaining of conditional obligation is a contentious issue (see e.g. Hansen

2004; Stolpe 2008b; von Wright 1998; Vranas 2008) and it is by no means obvious

that normative implicature is transitive. There are ways to add transitivity on top of

simple-minded output (the reader is referred to the original input/output papers), but

it should be considered a feature, not a bug, that it is not integral to the idiom.

Secondly, conditional norms are not in the general case reflexive. This is very

important, and captures an essential feature of normative reasoning: The whole

point of having a logic of norms is to represent and reason about the potential

discrepancy between the actual and the ideal. If conditional norms are taken to be

reflexive, the actual is always ideal so the distinction collapses. Non-reflexivity can

be seen as a characteristic feature of all forms of conventional generation. Whatever

holds according to a norm holds as a matter of conventionally accepted implicature.

Indeed there may be warrant for speaking about non-reflexive logics as on a par with
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non-monotonic logics. The latter denotes a broad range of inference patterns that in

some way or other involve assumptions of falsity, which in turn make arguments

sensitive to the absence of information. The former may in a similar spirit be taken

to stand for a family of inference patterns that share the characteristic that they are

mediated by convention. Examples include permissive norms, mandatory norms,

norms of etiquette and constitutive norms (which should also not be construed as

reflexive). Simple-minded output has the virtue that it isolates this feature in its

purest form, and makes it easy to track the things that change. Of course, the

operative assumption is that we will learn something useful that we can apply to

more sophisticated versions later.

Having said that, the reader may already find reason to pause at the principles

that simple-minded output does satisfy, in particular the principle of input

strengthening (SI). Uncontroversially, normative reasoning is not monotonic, so

input strengthening seems counter-intuitive. The thing to keep in mind though is

that simple-minded output constitutes a model of prima facie norms only. The

whole point of the present paper is to investigate ways of overriding or suspending

such norms. Input strengthening is prima facie valid. In the absence of evidence to

the contrary an obligation that applies to one context also applies to stronger

contexts, but if contrary information can be brought to bear then that inference is

blocked. Thus input strengthening is not simply discarded. When it fails it fails

instructively with reference to a particular context. This is as it should be.

3 Properties of the theory of simple-minded output

3.1 Complementation

The conditions under which a normative system ought to be counted inconsistent is

a topic of much debate in the literature, and no clear consensus seems to have

emerged. Yet, this is an issue pertinent to the matter at hand, since revision—the

topic of Sect. 5—is usually defined in terms of it. I shall later follow suit and define

the revision of a set of norms G with a norm (a, b) as the removal of incompatible
material from the consequences of G prior to the addition of (a, b). It is therefore

necessary to take a stand on what ‘contradiction’ should be taken to mean when

applied to norms, and whether ‘incompatible material’ should be understood in this

sense.

In von Wright (1963), Kelsen (1967), takes the coexistence of conflicting norms

from the same source to provide an adequate criterion for the contradictoriness of a

code of norms: The giving of two conflicting norms is the expression of an irrational

will; it is a performative self-contradiction and as such a pure fact that fails to create

a norm (Hansen 2004, p. 486). Kelsen says: ‘‘To say that a ought to be and at the

same time ought not to be is just as meaningless as to say that a is and at the same

time that it is not. A conflict of norms is just as meaningless as a logical

contradiction’’ (Kelsen 1967, p. 205–206). In Alchourrón and Bulygin (1971, p. 62)

express the same view: ‘‘Generally speaking, a normative system a is inconsistent in

a case Ci (…) if a correlates Ci with two or more solutions in such a way that the
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conjunction of these solutions is a deontic contradiction’’. Translated into input/

output idiom this criterion deems a code G inconsistent if out(G) contains (a, f) for

some a.

It is remarkable that all the above mentioned writers later reject this view. Kelsen

(1991) ultimately comes to view logic as simply inapplicable to norms, and

therefore to law. C.E. Alchourrón and E. Bulygin argue that a system of norms that

it is impossible to obey might be unreasonable and its norm-giver blameworthy, but

its existence does not constitute a logical contradiction [ibid.,20]. Similarly, in

(1999) von Wright concedes that existing normative systems may or may not be

contradiction-free, and reformulates deontic principles as meta-norms for consistent

norm-giving [ibid.,20].

All continue, to regard the coexistence of conflicting norms as a flaw, though.

Yet, if we regard a normative system as a set of norms that is closed under some

notion of entailment, then there are good reasons, why a system that contains

(a, f) need not be deemed neither inconsistent nor incoherent. It is common for a

code of norms—probably unavoidable if the code is of any complexity—to regulate

two distinct states of affairs separately, which may nevertheless happen to occur

simultaneously. Whether or not two events can occur at the same time, is usually a

matter of contingent fact, and not a possibility that can be ruled out by stipulation.

Say you have volunteered for the local fire brigade and also for the rescue service in

the local Red Cross unit. In case of an avalanche you are obliged to assist the Red

Cross on site, and similarly, in case of a fire you are obliged to assist the fire brigade

at that site. Since it is clearly possible that a fire breaks out at the same time as an

avalanche occurs, and since it is possible for these events to occur at locations far

removed from one another, then in a not too far-fetched scenario you may happen to

have taken upon you two incompatible commitments. It is nevertheless clearly not

absurd or practically irrational, in any sense we can make of it, for you to volunteer

both for the Red Cross and for the fire brigade. That an agent cannot, under unhappy

circumstances, live up to all his commitments, is something a code should give us

the resources to anticipate, it is not something the code should seek to prevent.

Indeed, one of the things we should expect a formal model of normative systems to

do is precisely to alert us to such conflicts, and the circumstances under which they

arise. Derived norms (a, f), at least, ought to be read this way. According to this

interpretation the derivability of (a, f) is a feature, not a bug, and the norm (a, f) can

be regarded as intuitively equivalent with the ‘contrapositive’ ðt;:aÞ—the general

prohibition against doing a.1

In order to talk about these issues with a reasonable level of precision, we may

call the norm ða;:bÞ the local negation of (a, b), and the norm ð:a;:bÞ the global
negation of (a, b). From a lattice-theoretic point of view it is the global negation

that is the complement of the norm. Consider the operations Y and Z defined as

follows:

1 The inference from (a, f) to ðt;:aÞ is not, however, licensed by any of the input/output systems

currently on offer.
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ða; bÞYðc; dÞ :¼ ða ^ c; b _ dÞ
ða; bÞZðc; dÞ :¼ ða _ c; b ^ dÞ

Since the operations Z and Y are defined by way of boolean conjunction and

disjunction the lattice equalities linking conjunction and disjunction are reflected by

Y and Z. Take the principle of absorption a _ ðb ^ aÞ ¼ a as an example:

ða; bÞYðða; bÞZðc; dÞÞ ¼ ða; bÞYða _ c; b ^ dÞ
¼ ða ^ ða _ cÞ; b _ ðb ^ dÞÞ
¼ ða; bÞ

All the other lattice equalities can be reproduced in a similar manner, and thus

hL2;Y;Zi is a distributive lattice. Now, for any (a, b) [ L2 we have:

ðf ; tÞYða; bÞ ¼ ða ^ f ; b _ tÞ ¼ ðf ; tÞ

and

ðt; f ÞZða; bÞ ¼ ðt _ a; f ^ bÞ ¼ ðt; f Þ

Thus (f, t) is the top and (t, f) the bottom element of the lattice (or, in the infinite

case, of its congruence). Now, since

ða; bÞZða; bÞ0 ¼ ða _ :a; b ^ :bÞ ¼ ðt; f Þ ¼ ?

it follows that ð:a;:bÞ is the lattice-theoretic complement of (a, b). This

complement is unique, since hL2;Y;Zi is a distributive lattice (Davey and Priestley

2002, chapter 4.13).

This strongly suggests treating G as inconsistent iff ðt; f Þ 62 outðGÞ. We can then

derive the welcome property that an inconsistent set of norms coincides with the

total relation L2 over L:2

Theorem 3 (t, f) [ out(G) iff out(G) = L2.

Hence, just as a set of sentences is consistent iff it does not contain the entire

language, a set of norms, according to the definition above, is consistent iff it does

not contain the total relation.

This criterion—the inclusion of (t, f) in the system—is similar to one proposed

by Vranas in (2008) according to which a set of norms is inconsistent iff it contains

an omniviolable norm, that is, if it contains a necessarily violated norm. Conditional

norms with a consistent condition of application are not omniviolable in this sense,

since the applicability condition may not be satisfied. If it is not, then the obligation

is neither violated nor fulfilled—it simply doesn’t apply. It seems more reasonable

to say, as Vranas does, that the obligation is avoided. Stated differently, even if

out(G) contains (a, f), a may not be true whence f may not be derivable from

out(G) under the prevailing circumstances. Hence, the system may continue to give

consistent directions for other cases than a, so it is not on the whole inconsistent. It

is just a system that flags a as a source of problems—a state of affairs to be avoided.

2 Proofs of the lemmas and theorems in this subsection—they are all very easy—can be found in Stolpe

(2008a).
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Truly inconsistent is the system that yields f always, for all states of affairs. The

only norm that does that, the only omniviolable norm, is (t, f).
This should make it fairly obvious that overall inconsistency is not the right

notion to focus on for purposes of norm-system revision, because the aim of revising

G with (a, b) is to make b consistently applicable to the context described by a. A

removal of (t, f) from G does not suffice for this purpose, since it is entirely possible

to have ðt; f Þ 62 outðGÞ whilst (a, f) [ out(G) for some a. Removing (f, f), on the

other hand, would restore consistency within a, but at the cost of purging

inconsistencies from all contexts. But it has just been argued that one essential

service that a model of a normative systems should provide, is the ability to

diagnose potential sources of problems by predicting e.g. that (a, f). What we want,

therefore, is just local consistency—we want to purge the context a of conflicting

elements, but we do not want the process to spill over into unrelated contexts.

As, the next lemma shows, removing locally inconsistent elements will suffice

for overall local consistency:

Theorem 4 For any a [ L, ha� L;Z;Yi is a sub-algebra of hL2;Z;Yi, and local
negation isthe unique complement.

Thus the local negation of (a, b) is the locally unique complement in the sub-

lattice of L2 determined by a, whence revision with local negation always restores

(exempt a few limiting cases) consistency to the context expressed by the

antecedent of the norm that is scheduled for addition.

Note that local negation requires attention to limiting cases, for as the next

example shows it does not preserve equivalence modulo out:

Example 1 Consider the two norms (a, t) and (b, t) and assume that a and b are

elementary letters. Both norms have tautologous consequents, and are therefore

equivalent modulo out. Their local negations are (a, f) and (b, f). Since a and b are

logically independent it follows that ða; f Þ 62 outððb; f ÞÞ, so (a, f) and (b, f) are not

equivalent.

As we shall see in Sect. 5, the non-preservation of equivalence under local

negation affects the revision operator which will be defined via the Levi identity as

the removal of the local negation of the element to be added. Special provisos must

therefore sometimes be introduced to hedge against limiting cases. These provisos

take the form of appeals to one of the following properties that give sufficient

conditions under which preservation of equivalence does hold:

Lemma 1 If out((a, b)) = out((c, d)) and 0b then b � d and a � c.

Proof Suppose out((a, b)) = out((c, d)). Then (a, b) [ out((c, d)). Since 0b,

(a, b) must be derived from (c, d) using SI, WO or both. It follows that a ‘ c and

d ‘ b. Conversely, we have (c, d) [ out((a, b)). Moreover 0d, since d ‘ b and 0b.

Hence (c, d) must be derived from (a, b), whence c ‘ a and b ‘ d. h

Lemma 2 If out((a, b)) = out((c, d)) and a:c then b : d.

Proof Suppose that b is not equivalent to d and that a: c. Then we have

outððc; dÞ; aÞ ¼ CnðdÞ 6¼ CnðbÞ ¼ outðða; bÞ; aÞ, so out((c, d)) = out((a, b)). h
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3.2 Deduction properties

Since norm-system revision, or amendment as it shall be called, will be analysed in

terms of consistency preserving additions—this is Sect. 5—it will be expedient to

establish a few results that has to do with reasoning about a code in the presence of

additional rules. In classical logic reasoning in the presence of extra assumptions is

summed up by the deduction theorem which says that a proposition q can be derived

from K in the presence of an extra assumption p iff the proposition p?q can be

derived from K directly. A similar property holds for norms, and it will be utilised

extensively in subsequent sections (proofs can be found in Stolpe (2008a, chap. 4).

We have

Lemma 3 (Easy half of deduction) If ða ^ c; b! dÞ 2 outðGÞ and c ‘ a then
ðc; dÞ 2 outðG [ ða; bÞÞ.

and the converse

Lemma 4 (Hard half of deduction) If ðc; dÞ 2 outðG [ ða; bÞÞ then
ða ^ c; b! dÞ 2 outðGÞ.

In the limiting case where (c, d) [ G already (a, b) need not be required for its

derivation. Hence, there need not be any logical relationship between a and

c. However, in all other cases—that is in all cases where (a, b) is a leaf in the

derivation of (c, d) from G—we have that c ‘ a, and may thus conclude that

ðc; b! dÞ 2 outðGÞ. To see this, note first that the antecedent of the root of a

derivation will be logically stronger than the body of any other rule closer to the

leaves:

Lemma 5 For each node n: (a, b) in a derivation, write Ln for the set of leaves in
the subtree determined by n. Then, if (c, d) [ Ln then a ‘ c.

Proof By induction on n and the last rule in a derivation. Let n: (a, b) be any node

in the tree and suppose (c, d) [ Ln. For the base case we have: If (a, b) is a leaf of

the tree, then (a, b) = (c, d) so c ‘ a as desired. For SI, suppose (a, b) is derived

from p: (g, h) by SI, then a ‘ g. By the induction hypothesis the property holds for

p, and thus g ‘ c. Hence a ‘ c as desired. For WO, suppose (a, b) is derived from p:

(g, h) by WO. Then a :g. By the induction hypothesis we have g ‘ c, so a ‘ c as

desired. For AND, suppose (a, b) is derived from p: (g, h) and q: (g0, h0) by AND.

Then g � g0 � a. By the induction hypothesis we have g � g0 ‘ c so a ‘ c as

desired. h

The following input-entailment property falls off immediately:

Lemma 6 If ðc; dÞ 2 outðF [ ða; bÞÞ n outðFÞ then c ‘ a.

Proof Since ðc; dÞ 2 outðF [ ða; bÞÞ ¼ derivðF [ ða; bÞÞ but not in out(F) = der-
iv(F). It follows that (a, b) is a leaf in some derivation of (c, d) from F [ ða; bÞ.
Hence c ‘ a by lemma 5. h

I shall have occasion to appeal to this later.
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3.3 Remainders

In classical revision-theory, a contraction on a set is carried out by intersecting

maximally non-implying subsets, aka. remainders. That is, to remove an element

a from a theory A one considers subsets of A that are such that they do not entail

a whereas all proper supersets do. This has turned out to be a sustainable

mathematical idiom, and it is an idea that will be taken over in this paper. We

therefore need to generalise the notion of a remainder to input/output logic. This is

entirely straightforward:

Definition 2 (Remainders sets) outðGÞ ? ða; bÞ is the set of H such that

1. H � outðGÞ
2. ða; bÞ 62 outðHÞ, and

3. If H � I � G then (a, b) [ I.

Note that remainders are defined as subsets of the closed set out(G) rather than of

the base G, so we are aiming for a version of theory contraction rather than, in the

terminology of (Hansson 1993), base-contraction. An important property of

remainders, as so defined, is that they are closed under out:

Lemma 7 If H 2 outðGÞ ? ða; bÞ then H = out(H).

Proof Suppose that H 2 outðGÞ ? ða; bÞ. We need to show that H = out(H). By

inclusion for out, it suffices to show that (c, d) [ H whenever (c, d) [ out(H).

Suppose therefore that (c, d) [ out(H). By monotony for out we have that

outðHÞ � outðGÞ, hence (c, d) [ out(G). Now, suppose for reductio ad absurdum

that ðc; dÞ 62 H. Then since H 2 outðGÞ ? ða; bÞ and (c, d) [ out(G) we know that

ða; bÞ 2 outðH [ ðc; dÞÞ. But since (c, d) [ out(H) by assumption, we have that

outðHÞ ¼ outðH [ ðc; dÞÞ so that (a, b) [ out(H), contrary to hypothesis. h

Input/output logic also enjoys a compactness property that ensures that a non-

implying subset of out(G) (w.r.t. to some norm (a, b)) can always be expanded to a

maximally non-implying subset of G, that is, to a remainder (a proof can be found in

((Stolpe 2008a), chap. 4)):

Lemma 8 (Maximalisability) If ða; bÞ 62 F � outðGÞ then there is an Fþ � F such

Fþ 2 outðGÞ ? ða; bÞ.

Finally, it is possible to establish a principled relation between different sets of

remainders: If F is a subset of out(G) that maximally does not imply (a, b), and

F happens not to imply (a, c), then it is also maximally non-implying w.r.t (a, c). To

prove this, we shall need to appeal to the following property, which mirrors

(Alchourron et al. 1985, lemma 2.1):

Lemma 9 Let H :¼
T
ðoutðGÞ ? ða; bÞÞ. Then outðG; aÞ � outðH [ ða; bÞ; aÞ.

Proof Suppose that d [ out(G, a). We want to show that d 2 outðH [ ða; bÞ; aÞ.
By AND it suffices to show that b?d [ out(H, a). Note that, b?d [ out(G, a), by

WO, since d [ out(G, a). Suppose for reductio ad absurdum that b! d 62 outðF; aÞ

260 A. Stolpe

123



for some F 2 outðGÞ ? ða; bÞ. Then, by the maximality of F it follows that

b 2 outðF [ ða; b! dÞ; aÞ, so lemma 4 and 7 yield (a, (b?d)?b) [ F. Now,

ðb! dÞ ! b ¼ :ðb! dÞ _ b

¼ :ð:b _ dÞ _ b

¼ ðb ^ :dÞ _ b

¼ b

Hence (a, b) [ F, by one application of WO, contradicting F 2 outðGÞ ? ða; bÞ. h

This suffices to establish the above-mentioned relationship:

Lemma 10 If F 2 outðGÞ ? ða; bÞ then F 2 outðGÞ ? ða; cÞ for all (a, c) [ out(G)

with ða; cÞ 62 F.

Proof Suppose F 2 outðGÞ ? ða; bÞ and ða; cÞ 62 F for (a, c) [ out(G). It will

suffice to show that whenever F � F0 � outðGÞ then (a, c) [ F. Let

F � F0 � outðGÞ. Since F 2 outðGÞ ? ða; bÞ we have (a, b) [ F. But also, since

F 2 outðGÞ ? ða; bÞ then outðGÞ ? ða; bÞ is non-empty so
T
ðoutðGÞ ? ða; bÞÞ � F0.

Hence outðG; aÞ � outðF0 [ ða; bÞ; aÞ whence since (a, c) [ out(G) we have

(a, c) [ F as desired. h

4 Derogation

Although theory revision was first put on the agenda in the work of the philosophers

Harper (1976a, b) and Levi (1977, 1991), Alchourrón and Makinson (1981) are

usually given credit for turning it into a well-defined research programme (Williams

and Rott 2001).

The basic idea underlying the AGM paradigm, is to break down the revision of a

theory into two steps: First the theory is downsized, or contracted, to just below the

threshold of making it inconsistent with the new data, and then the reduced theory is

expanded by adding the new proposition and taking the closure of the result. This is

conceptually very simple, but from the technical side of things there are certain

difficulties to overcome, the principal one being the following: In general there is

more than one way to reduce a theory so as to make it consistent with a given input.

In most cases the result is not unique, and we obtain a number remainders of the

theory to be revised that are all compatible with the proposition to be added.

Furthermore, neither each subset taken alone (called maxichoice contraction), nor

their common part (full meet contraction) can serve as a reasonable solution; the

former preserves too much, whereas the second retains too little information

(Alchourron and Makinson 1982; Bochman 2001, p. 323) . The solution devised by

Alchourrón et al. is well known; they use a preference mechanism to select only a

subset—intuitively the preferred ones—among the remainders. Unlike maxichoice

and full-meet contraction, the set of remainders scheduled for intersection is

selected, which adds flexibility to the model. The resulting framework is known as

partial meet contraction—the paradigm of revision theory.
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Adapting this approach to input/output logic requires us first of all to be explicit

about what a selection function is:

Definition 3 A selection function for a set of norms G, is any function of type

22outðGÞ 7!22outðGÞ
, such that

(a) ; � dðXÞ � X if X is a non-empty subset of 2out(G), and

(b) d(X) = {out(G)} otherwise.

A partial meet derogation operator can now be defined in the usual way as

follows:

Definition 4 outðGÞ � ða; bÞ ¼
T

dðoutðGÞ ? ða; bÞÞ, where d is a selection

function for G.

Intuitively the operation d chooses the most preferred elements among the set of

remainders of out(G) (w.r.t. the derogandum (a, b)), if there are any. If there are

none, d returns the set consisting only of out(G). Note that the selection function d is

entirely abstract. That is, we make no assumptions about how d selects the

remainders. It may of course be fleshed out at some later point. Various explicitly

defined preference relations from the literature (see e.g. (Alchourron and Makinson

1981; Prakken 1997; Prakken and Sartor 1997; Nebel 1992)) could be used—some

of them are specifically tailored for legal reasoning—but it makes sense to leave all

options open at the outset.

Most of the properties that are characteristic of partial meet derogation, as so

defined, resemble closely the properties that characterise classical contraction—but

there are some interesting new-comers as well:

Theorem 5 Partial meet derogation satisfies the following properties:

D� Closure : out(G) - (a, b) = out(out(G) - (a, b))

D� Inclusion : outðGÞ � ða; bÞ � outðGÞ
D� Success : If 0 b then ða; bÞ 62 outðGÞ � ða; bÞ
D� Extensionality : If out((a, b)) = out((c, d)). then out(G) - (a, b) = out(G) -

(c, d)

Input Dependence : If ðc; dÞ 2 outðGÞ n outðGÞ � ða; bÞ then a ‘ c
Local Recovery : If (c, d) [ out(G) and a ‘ c then ðc; dÞ 2 outððoutðGÞ�
ða; bÞÞ [ ðc; bÞÞ

Proof We prove only the last two postulates. The remaining proofs can be found

in (Stolpe 2008a). The proof of Local Recovery is similar to that of lemma 9 with

minor modifications: Suppose that (c, d) [ out(G) and that a ‘ c. We want to show

that ðc; dÞ 2 outððoutðGÞ � ða; bÞÞ [ ðc; bÞÞ. By AND it suffices to show that

(c, b?d) [ out(G) - (a, b). Note that, (c, b?d) [ out(G), by WO, since

(c, d) [ out(G). Suppose for reductio ad absurdum that ðc; b! dÞ 62 H for some

H 2 outðGÞ ? ða; bÞ. Then, by the maximality of H it follows that

ða; bÞ 2 outðH [ ðc; b! dÞÞ, so lemma 4 and 7 yield ðc ^ a; ðb! dÞ ! bÞ 2 H.

Now,
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ðb! dÞ ! b ¼ :ðb! dÞ _ b

¼ :ð:b _ dÞ _ b

¼ ðb ^ :dÞ _ b

¼ b

Hence ðc ^ a; bÞ 2 H, by one application of WO. Since a ‘ c it follows that

(a, b) [ H, contradicting H 2 outðGÞ ? ða; bÞ. For Input Dependence, suppose

ðc; dÞ 2 outðGÞ n outðGÞ � ða; bÞ. We need to show that a ‘ c. It follows from the

supposition that there is an F 2 outðGÞ ? ða; bÞ with ðc; dÞ 62 F. By F 2 outðGÞ ?
ða; bÞ we have ða; bÞ 2 outðF [ ðc; dÞÞ whence a ‘ c by lemma 6 as desired. h

The interpretation of these conditions is mostly straightforward. A-Closure says

that derogation of a norm from a system produces a new system, that is, derogation

produces a set of norms that is closed under the rules that characterise the out-
operator. D-Inclusion precludes the addition of new norms in the process of

derogation, D-Success ensures that the derogandum is no longer in the system after

the derogation has been performed (unless the derogandum is a norm with a

tautologous consequent), whilst D-Extensionality says that derogating equivalent

norms (modulo out) from the same code produces the same result—i.e. only the

logical content of a norm, not its particular formulation, affects derogation. The

postulate of Input Dependence is notable for the fact that it lacks a counterpart in

classical AGM-revision theory. It can therefore be regarded as a genuine

idiosyncrasy of normative reasoning. Together with Local Recovery, to which I

shall return shortly, it expresses the locality of normative reasoning. By the locality

of normative reasoning I shall mean the fact that only weaker contexts than the one

described by the antecedent of the norm to be removed need be taken into

consideration in order to remove that norm. Incisions are confined, so to speak, to

the context described by the antecedent of the derogating norm. Local Recovery

expresses a different aspect of essentially the same phenomenon. It is a restricted

version of the recovery postulate from classical revision theory which captures a

global notion of the same property:

AGM-Recovery: A � CnððA� aÞ [ aÞ whenever A is a theory.

This is often referred to as the principle of minimal-mutilation, since it prevents

unmotivated retraction of elements. Indeed AGM-Recovery keeps incisions into a

theory so small that they can be undone by simply adding the removed sentence

(Fuhrmann 1997, p. 43). The intuitive plausibility of this property is controversial,

though (see e. g. Makinson 1987; Hansson 1991; Fuhrmann 1991; Levi 1991).

Hansson (1999, p. 73) gives the following counterexample (in which theories are

interpreted as belief sets):

I believe that ’Cleopatra had a son’ (/) and that ’Cleopatra had a daughter’

(w), and thus also that ’Cleopatra had a child’ (/ _ w, briefly j). Then, I

receive information that makes me give up my belief in j, and contract my

belief set accordingly, forming A - j. Soon afterwards I learn from a reliable

source that Cleopatra had a child. It seems perfectly reasonable for me to then

add j (i.e. / _ w) to my set of beliefs without also reintroducing either / or w.
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It is interesting to note, therefore, that the operation of derogation, does not

satisfy a corresponding global version of recovery. That is, the following principle is

not valid:

Global Recovery: outðGÞ � outððoutðGÞ � ða; bÞÞ [ ða; bÞÞ.

Example 2 (Counterexample to Global Recovery) Put G :¼ fða; bÞ; ða ^ c; bÞg.
Suppose that a and c are logically distinct and that 0 b. From the latter assumption,

it follows by D-Success and SI that ða; bÞ 62 outðGÞ � ða ^ c; bÞ. Now, suppose for

reductio that ða; bÞ 2 outððoutðGÞ � ða ^ c; bÞÞ [ ða ^ c; bÞÞ. Then it follows from

lemma 6 that a ‘ c contradicting the assumption that a and c are logically distinct.3

Local Recovery and Input Dependence are thus aspects of the same phenomenon

in the following sense: Whereas removals of norms from a system only require

incisions into contexts that are weaker than the one described by the antecedent of

the derogating norm, additions of new norms to a system conversely only affects

stronger contexts. Hence if the norm (a, b) is removed from a system out(G), and

(c, b) is added back in, where c is logically weaker than a, then out(G) recovers in

all contexts from c up to and including a, but in none weaker than c.

In philosophical terms, the locality of normative reasoning expressed by Input

Dependence and Local Recovery, is a consequence of the anti-naturalism w.r.t.

norms that is built into the input/output idiom: A norm is simply an agreed upon

standard of correctness. Such standards come to exist and pass out of existence in

the course of the history of a normative system—sometimes as a consequence of

acts of legislation, sometimes as commandments of a trusted authority or leader,

sometimes as a result of gradually formed societal habits, customs and traditions,

explicit agreement or design (Ross 1968)—they are not platonic universals or

logical truths. Stated differently, norms are posited by human acts of will, and, in

the words of Kelsen; ‘Norms posited by human acts of will are arbitrary in the

genuine signification of the word: that is, they can decree any behaviour whatsoever

to be obligatory’ (Kelsen 1991, p. 4).

As mentioned earlier, this view is basic to the input/output idiom where the

notion of an arbitrary stipulation is reflected by ordered pairs. Norms are thus not

construed as propositions so there is no logical relationship between the norms as

such. Compare the counterexample above with a representation in propositional

logic: Put K :¼ fa! b; a ^ c! bg. Then Cn(K) contains ða ^ c! bÞ ! ða! bÞ
since ða! bÞ ! ðða ^ c! bÞ ! ða! bÞÞ is a tautology. A standard result from

classical revision theory tells us that ða ^ c! bÞ ! ða! bÞ belongs to every

subset of Cn(K) which is maximally such that it does not contain a?b. This

property generalises to all propositions in Cn(K) for arbitrary K, whence classical

contraction recovers globally: CnðKÞ � CnððCnðKÞ � ða ^ c! bÞÞ [ða ^ c! bÞÞ.
In contrast no statement like ða; bÞ ! ðða ^ c; bÞ ! ða; bÞÞ is derivable in input/

output logic—indeed such a statement is not even well-formed. But we have

b?(c?b) for all consequents of norms b, whence input/output logic recovers

locally.

3 The failure of the global version of recovery for contraction of input/output systems was noted in

Boella et al. (2009). The authors do not offer an alternative, however.
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Note that we could have expressed locality with a single postulate:

Locality: If ðc; dÞ 2 outðGÞ n outðGÞ � ða; bÞ then (c, b?d) [ out(G) - (a, b).

since this is equivalent to the conjunction of Local Recovery and Input

Dependence:

Theorem 6 Locality is equivalent to the conjunction of Local Recovery and Input
Dependence.

Proof To show that Locality implies Local Recovery, suppose (c, d) [ out(G) and

a ‘ c. The limiting case where (c, d) [ out(G) - (a, b) is trivial, so suppose

ðc; dÞ 62 outðGÞ � ða; bÞ. Then (c, b?d) [ out(G) - (a, b) by Locality. Hence

ðc; dÞ 2 outððoutðGÞ � ða; bÞÞ [ ðc; bÞÞ by AND. For the converse direction,

suppose ðc; dÞ 2 outðGÞ n outðGÞ � ða; bÞ. Then by Input Dependence we have

a ‘ c. Hence, by Local Recovery we have ðc; dÞ 2 outððoutðGÞ � ða; bÞÞ [ ðc; bÞÞ,
whence (c, b?d) [ out(G - (a, b)). h

Hence, we could have obtained a more compact representation of derogation

substituting Locality for Input Dependence and Local recovery. There is in fact

more than one way to reduce the number of postulates, for we could also have

adapted the generalisation from classical revision theory that substitutes relevance
for recovery:

D-Relevance: If ðc; dÞ 2 outðGÞ n outðGÞ � ða; bÞ then there is an F s. t.

1. outðGÞ � ða; bÞ � F � outðGÞ
2. ða; bÞ 62 outðFÞ, and

3. ða; bÞ 2 outðF [ ðc; dÞÞ:

The postulate of relevance (of which D-Relevance is a straightforward

translation) was first introduced in classical revision theory by Hansson in (1991).

Hansson proves the equivalence of relevance and recovery for contraction on closed
sets of sentences, and an analogous property holds for derogations:

Theorem 7 D-Relevance is equivalent to Input Dependence and Local Recovery
in the presence of D-Closure, D-Success, D-Inclusion and D-Extensionality.

Proof It was proved in Stolpe (2008a) that partial meet derogation, as defined in

definition 4 is completely characterised by D-Closure, D-Success, D-Inclusion,

D-Extensionality and D-Relevance. The equivalence therefore follows as a corollary

to the representation theorem 8 below. h

Notwithstanding this equivalence, D-Relevance does not, in my opinion, give a

very informative characterisation of the derogation operation (and the same goes for

relevance in classical revision theory), since it comes very close to simply stating

the condition for being a preferred remainder. Preferred remainders belong to the

semantics, or the construction, of partial meet derogation. Hence the possibility of

characterising that construction in terms of D-Relevance is not very surprising.

What we would want, ideally, is a representation expressed as far as possible in

terms of the membership or non-membership of norms as a consequence of

derogation, without appealing directly to auxiliary constructions such as maximally

non-implying sets and so forth. Local Recovery and Input Dependence live up to
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that requirement to a considerable extent. Moreover the separation of concerns

between them yields a clearer picture of the idiosyncrasy of normative reasoning

than does the more compressed postulate of Locality—hence, the axiomatisation

above.4

The main result of the present section is the representation theorem that shows

the above-mentioned axiomatisation to give a complete characterisation of

derogation. In order to prove it, it will be convenient to appeal to postulates that

are not in fact in the list themselves. These are:

D-Failure: If ‘ b then out(G) = out(G) - (a, b)

and

D-Vacuity: If ða; bÞ 62 outðGÞ then out(G) = out(G) - (a, b).

As the next pair of lemmas show, these postulates are implied by other members

in the list, taken jointly, so there is no need to expand the set of postulates:

Lemma 11 D-Closure, D-Inclusion, Input Dependence and Local Recovery imply
D-Failure.

Proof We have outðGÞ � ða; bÞ � outðGÞ by D-Inclusion. For the other direction

suppose suppose ‘ b and (c, d) [ out(G). We want to show that (c, d) [ out(G) -

(a, b). Suppose not. Then, by Input Dependence we have a ‘ c so ðc; dÞ 2
outðoutðGÞ � ða; bÞÞ [ ðc; bÞÞ by Local Recovery. By D-Closure, ‘ b and SI
therefore, we have (c, b) [ out(G) - (a, b). Hence outðoutðGÞ � ða; bÞÞ [ ðc; bÞÞ
¼ outðGÞ � ða; bÞ, by one more application of D-Closure, so (c, d) [ out(G) -

(a, b) as desired. h

Lemma 12 D-Inclusion, D-Closure, Input Dependence and Local Recovery imply
D-Vacuity.

Proof By D-Inclusion it suffices to show that outðGÞ � outðGÞ � ða; bÞ on the

assumption that ða; bÞ 62 outðGÞ. So suppose ðc; dÞ 62 outðGÞ � ða; bÞ. We need to

show that ðc; dÞ 62 outðGÞ. Assume the opposite. Then, by Input Dependence we

have a ‘ c. Thus, since (c, d) [ out(G) and a ‘ c we have ðc; dÞ 2 outððoutðGÞ �
ða; bÞÞ [ ðc; bÞÞ by Local Recovery. Moreover if ða; bÞ 62 outðGÞ it follows that

ðc; bÞ 62 outðGÞ, by SI, whence ðc; bÞ 62 outðGÞ � ða; bÞ by D-Inclusion. In other

words outððoutðGÞ � ða; bÞÞ [ ðc; bÞÞ ¼ outðoutðGÞ � ða; bÞÞ so out(out(G) -

(a, b)) = out(G) - (a, b) by D-Closure. Thus, ðc; dÞ 2 outððoutðGÞ � ða; bÞÞ [
ðc; bÞÞ entails that (c, d) [ out(G) - (a, b) contrary to assumption. h

Necessary is also the following conditional converse of extensionality:

Lemma 13 If outðGÞ ? ða; bÞ ¼ outðGÞ ? ðc; dÞ then out((a, b)) = out((c, d)),

whenever (a, b), (c, d) [ out(G).

Proof Suppose for reduction that outðGÞ ? ða; bÞ ¼ outðGÞ ? ðc; dÞ while

outðða; bÞÞ 6¼ outððc; dÞÞ, say outðða; bÞÞ* outððc; dÞÞ. By the monotony and

4 Having said that, I shall resort to the use of D-Relevance in the characterisation of revision of sets of

norms in Sect. 6, since a better representation of the revision operation has not been forthcoming.
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idempotence for out we have ða; bÞ 62 outððc; dÞÞ. Hence, since (c, d) [ out(G) it

follows that out((c, d)) can be expanded to a maximal subset F of G such that

ða; bÞ 62 F. Thus F 2 outðGÞ ? ða; bÞ while F 62 outðGÞ ? ðc; dÞ since (c, d) [ F,

contrary to assumption. h

This suffices to prove that partial meet derogation is characterised by the listed

postulates:

Theorem 8 Every operation that satisfies D-Closure, D-Inclusion, D-Extension-
ality, D-Success, Input Dependence and Local Recovery is a partial meet
derogation operation.

Proof In the appendix. h

4.1 On the relation between contraction and derogation

Before we turn to the operation of amendment, we should pause to record a few

facts about the relationship between derogation, as here defined, and classical

contraction, as this relationship may be of some theoretical interest. Theorem 2

shows that input/output logic generalises classical logic, so it is natural to expect a

structured relationship. Knowing the precise nature of this relationship, could be

very useful for carrying results and techniques over from classical revision theory to

the realm of normative reasoning. The results in this section were presented in

(Stolpe 2010). They are repeated here, for the sake of expository completeness:

Define a function l as follows:

Definition 5 Let l : outðGÞ ? ða; bÞ7!2L be a function such that l(F) = F(Cn(a)).

Then l maps remainders of a normative system to remainders of its output under

the input of the derogandum:

Lemma 14 If F 2 G ? ða; bÞ then lðFÞ 2 GðCnðaÞÞ ? b.

Proof Suppose F 2 G ? ða; bÞ and suppose for reduction that lðFÞ 62 GðCnðaÞÞ
? b. By definition l(F) = F(Cn(a)), and since F [ G\(a, b) we have F � G
whence FðCnðaÞÞ � GðCnðaÞÞ. There are thus two cases to consider:

1. FðCnðaÞÞ ‘ b: By compactness for logical consequence, there is thus a finite set

of rules (a1, b1), …, (an, bn) [ F such that ai [ Cn(a) for each i B n, andVn
i¼1 bi ‘ b. Hence (a, b) [ out(F), by repeated applications of SI, AND and

WO, contradicting F 2 G ? ða; bÞ.
2. There is a B 2 GðCnðaÞÞ ? b such that FðCnðaÞÞ � B: It follows that there is a

d 2 B n FðCnðaÞÞ. Since B � GðCnðaÞÞ we have (c, d) [ G for some c [ Cn(a).

Clearly ðc; dÞ 62 F so ða; bÞ 2 outðF [ ðc; dÞÞ by the membership of F in

G ? ða; bÞ. Now, since b 62 B 	 FðCnðaÞÞ it follows that ða; bÞ 62 F whence

ða; bÞ 2 outðF [ ðc; dÞÞ n outðFÞ. By lemma 6 we therefore have a ‘ c, and by

lemma 4 we have (a, d?b) [ out(F). Hence FðCnðaÞÞ ‘ d ! b so B ‘ d ! b
by monotony for classical logic. Since d [ B therefore, it follows that B ‘ b,

contrary to the assumption that B 2 GðCnðaÞÞ ? b. h
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This mapping is onto:

Lemma 15 l is surjective.

Proof We want to show that B = l(F) for every B 2 GðCnðaÞÞ ? b and some

F 2 G ? ða; bÞ. So, suppose that B 2 GðCnðaÞÞ ? b and put F :¼ fðc; dÞ 2
G : B ‘ d and c 2 CnðaÞg. We first show that B = F(Cn(a)). For the left-in-right

inclusion suppose d 2 B � GðCnðaÞÞ then (c, d) [ G for some c [ Cn(a), so

(c, d) [ F by the construction of F. It follows that d [ F(Cn(a)). The converse

inclusion is immediate from the construction. Next we show that F 2 G ? ða; bÞ.
Since b 62 B by the assumption that B 2 GðCnðaÞÞ ? b, it follows that ða; bÞ 62 F
since B = F(Cn(a)). Moreover, F � G by the construction of F so it may be

expanded to an F0 � G such that F0 2 G ? ða; bÞ, by lemma 8. We show that

F(Cn(a)) = F0(Cn(a)). The left in right inclusion is immediate. For the converse

inclusion, suppose F0ðCnðaÞ*FðCnðaÞÞ. Then there is a d 2 F0ðCnðaÞÞn FðCnðaÞÞ,
whence d 62 B ¼ FðCnðaÞÞ. It follows that B [ d ‘ b so FðCnðaÞÞ [ d ‘ b, whence

FðCnðaÞÞ ‘ d ! b. In other words, we have d?b [ Cn(F(Cn(a))), which means

that ða; d ! bÞ 2 outðFÞ � outðF0Þ. But then (a, b) [ out(F0) by AND, since

d [ F0(Cn(a)) by assumption, contradicting F0 2 G ? ða; bÞ. h

and one-to-one:

Lemma 16 l is injective.

Proof We need to show that l(F) = l(F0) implies F = F0 for F;F0 2 G ? ða; bÞ.
Suppose for reductio that F(Cn(a)) = F0(Cn(a)), but F = F0. Assume without loss

of generality, that ðc; dÞ 2 ðF0 n FÞ 6¼ ;. Then ða; bÞ 2 outðF [ ðc; dÞÞ so a ‘ c and

ða ^ c; d ! bÞ 2 F, whence (a, d?b) [ out(F). Moreover, (a, d) [ out(F0), by SI,
since (c, d) [ F0. It follows that we have FðCnðaÞÞ [ F0ðCnðaÞÞ ‘ d and

FðCnðaÞÞ [ F0ðCnðaÞÞ ‘ d ! b. However, since F(cn(a) = F0(Cn(a)) this is tanta-

mount to saying F0ðCnðaÞÞ ‘ d and F0ðCnðaÞÞ ‘ d ! b. Therefore F0ðCnðaÞÞ ‘ b,

whence (a, b) [ out(F0), contradicting F0 2 G ? ða; bÞ. h

Thus, we have the following corollary:

Corollary 1 outðGÞ ? ða; bÞ and outðG; aÞ ? b are in one-to-one correspondence.

Hence, every derogation operation can be represented by a contraction operation

in the following sense:

Theorem 9 For every partial meet derogation operator - there is a partial meet-
contraction operation v such that outðoutðGÞ � ða; bÞ; aÞ ¼ outðG; aÞvb.

Proof Suppose outðGÞ � ða; bÞ ¼
T

dðoutðGÞ ? ða; bÞÞ. Choose cðoutðG; aÞ ? bÞ
to be the set fB 2 outðG; aÞ ? b : l�1ðBÞ 2 dðoutðGÞ ? ða; bÞÞg. It suffices to show

that ða; dÞ 2
T

dðoutðGÞ ? ða; bÞÞ iff d 2
T

cðoutðG; aÞ ? bÞ. For the left-to-right

direction suppose d 62
T

cðoutðG; aÞ ? bÞ. Then there is a B 2 cðoutðG; aÞ ? bÞ
such that d 62 B. By the definition of c we have that l�1ðBÞ 2 dðoutðGÞ ? ða; bÞÞ.
Now since d 62 B it follows that ða; dÞ 62 l�1ðBÞ so ða; dÞ 62

T
dðoutðGÞ ? ða; bÞÞ as

desired. For the converse direction, suppose ða; dÞ 62
T

dðoutðGÞ ? ða; bÞÞ.
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Then there is an F 2 outðGÞ ? ða; bÞ such that ða; dÞ 62 F. It follows that

d 62 outðF; aÞ ¼ lðFÞ. By lemma 14, lðFÞ 2 outðG; aÞ ? b, whence lðFÞ 2
cðoutðG; aÞ ? bÞ, by the definition of c. It follows that d 62

T
cðoutðG; aÞ ? bÞ,

which completes the proof. h

and vice versa:

Theorem 10 For every partial meet contraction operator v, there is a partial
meet derogationoperator—such that outðG; aÞv b ¼ outðoutðGÞ � ða; bÞ; aÞ there
is a partial meet-contraction operation v such that out(out(G) - (a, b), a) = .

Proof Similar in all its essentials to the preceding one. h

Hence,

Corollary 2 An operation - is a partial meet derogation operation iff there is a

partial meet contraction operation v such that outðG; aÞv b ¼ outðoutðGÞ �
ða; bÞ; aÞ .

The function l thus provides a convenient bridge that can be used to explore

aspects of norm-system dynamics that have well-understood counterparts in

classical revision theory. See (Stolpe 2010) for an example. Another interesting

possibility would be to study the priority relation over out(G) induced by a

derogation operation -. The counterpart in classical revision theory is known as

epistemic entrenchment (see e.g. Makinson and Gärdenfors 1988; Rott 1992;

Bochman 2001). Epistemic entrenchment is interesting for several reasons. First, it

yields a constructive definition of partial meet contraction, and secondly it gives

insights into the basic properties of preference that are determined by the logical

properties alone of the items so related. It goes without saying that a similar analysis

applied to norms, would be of great value for understanding the mechanisms of

norm-system dynamics that require conflict resolution, such as indeed predicaments,

contrary-to-duty situations and permission. I leave this for future research.

5 Amendment

A well-known principle called the Levi-identity in (Gärdenfors 1988) after Isaac

Levi, identifies a revision of a theory with respect to a proposition a with the

contraction of :a followed by the addition of a (and the subsequent closure of the

result). The basic idea is to understand revision as consistency preserving addition,

i. e. revision is construed as a two-step process; first remove enough of the original

theory to ensure that the outcome is consistent with the scheduled addition, then add

the new element and close the result. Generalising this principle to input/output

logic suggests the following definition:

Definition 6 outðGÞuða; bÞ :¼ outððoutðGÞ � ða;:bÞÞ [ ða; bÞÞ:

I shall call this operation an operation of amendment in order to keep it separate

from classical revision. The reader should note though that the term ‘amendment’ in
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its legal sense usually refers to a change made to a previously adopted or pending

bill, or to a change made to a written constitution. Definition 6, in contrast, does not

presuppose the existence of any norm, and, of course, may require such norms, if

they do exist, to be suspended. As with the operator of derogation, the legal term

‘amendment’ may be regarded as a special case of the corresponding notion defined

in this paper, that is, as a special case of norm-system revision.

Note that definition 6 interprets amendment as locally consistent expansion.

Thus, norm-system revision does not require coherence across contexts generally.

This is as it should be. The point of adding a new norm (i.e. a conditional directive)

to a code is to regulate the circumstances expressed by that condition of application.

Nevertheless, as the postulates of Input Dependence and Local Recovery show,

revising a context may require revision of logically weaker contexts, which will in

turn affect logically stronger contexts (by the rule of input strengthening). However,

logically independent contexts will never be affected. We may see this as an

expression of one important idiosyncrasy of normative reasoning; it is localised. The

locality of normative reasoning, on the analysis given here, is ultimately due to the

fact that norms are construed as arbitrary stipulations—there is no necessary logical
relationship between antecedents and consequents of norms, they are simply

decreed to hold. As argued in Sect. 3.1 the negation of a norm should should

therefore be understood as local not global negation, although technically only the

latter is a lattice-theoretic complement in the set of all norms.

The principal properties of amendment as defined in 6 are given by the next

theorem:

Theorem 11 u satisfies all of the following:

1. A� Closure : outðGÞuða; bÞ ¼ outðoutðGÞuða; bÞÞ
2. A� Inclusion : outðGÞuða; bÞ � outðG [ ða; bÞÞ
3. A� Success : ða; bÞ 2 outðGÞuða; bÞ
4. A� Consistency : If ða; f Þ 2 Guða; bÞ then b ‘ f
5. A� Extensionality : If out((a, b)) = out((c, d)) and a:c then outðGÞuða; bÞ ¼

outðGÞuðc; dÞ.
6. A� Relevance : If ðc; dÞ 2 outðGÞ n outðGÞuða; bÞ, then there is an F such

that,

(a) ðoutðGÞuða; bÞÞ \ outðGÞ � F � outðGÞ,
(b) ða;:bÞ 62 outðFÞ, and

(c) ða;:bÞ 2 outðF [ ðc; dÞÞ:

Proof We prove A-Extensionality and A-Relevance only, all others are entirely

obvious: For A-Extensionality, suppose out((a, b)) = out((c, d)) and a:c. Then by

lemma 2 we have that b: d. Hence outðGÞuða; bÞ ¼ outððoutðGÞ � ða;:bÞÞ[
ða; bÞÞ ¼ outððoutðGÞ � ðc;:dÞÞ [ ðc; dÞÞ ¼ outðGÞuðc; dÞ, by D-Extensionality

together with WO and SI. For A-Relevance, suppose ðc; dÞ 2 outðGÞ n outðGÞu
ða; bÞ. We need to find an F such that;

1. ððoutðGÞuða; bÞÞ \ outðGÞ � F � outðGÞ.
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2. ða;:bÞ 62 outðFÞ, and

3. ða;:bÞ 2 outðF [ ðc; dÞÞ.

Since amendment has been defined by the Levi identity we have

outðGÞuða; bÞ ¼ outððG� ða;:bÞÞ [ ða; bÞÞ. By assumption ðc; dÞ 62 outðGÞu
ða; bÞ, so ðc; dÞ 62 outðGÞ � ða;:bÞ by the closure properties of the out operator.

By D-Relevance and the assumption that (c, d) [ out(G) there is thus an F such that

(a) outðGÞ � ða;:bÞ � F � outðGÞ,
(b) ða;:bÞ 62 outðFÞ, and

(c) ða;:bÞ 2 outðF [ ðc; dÞÞ:

It follows from (a) and maximalisability (lemma 8) that F can be extended to an

F0 2 outðGÞ ? ða;:bÞ. By the definition of remainders we thus have that ða;:bÞ 6
2 F0 ¼ outðF0Þ by lemma 7, so condition 2 holds. Morover ða;:bÞ 2 outðF [
ðc; dÞÞ � outðF0 [ ðc; dÞÞ since F � F0, so condition 3 holds too. It remains to show

condition 1: Note first that (a, b) [ F0 if (a, b) [ out(G). Suppose not. Then, since

F 2 outðGÞ ? ða;:bÞ it follows that ða;:bÞ 2 outðF0 [ ða; bÞÞ. Hence ða; b! :bÞ
¼ ða;:bÞ 2 F0, contrary to condition 2. As a result outðGÞ \ ða; bÞ � F0. By (a) we

therefore have ðoutðGÞ � ða;:bÞÞ [ ðoutðGÞ \ ða; bÞÞ � F0. Now,

ðoutðGÞ � ða;:bÞÞ [ ðoutðGÞ \ ða; bÞÞ
¼ ððoutðGÞ � ða;:bÞÞ [ outðGÞÞ \ ððoutðGÞ � ða;:bÞÞ [ ða; bÞÞ

by distribution for [
¼ outðGÞ \ ððoutðGÞ � ða;:bÞÞ [ ða; bÞÞ by D-Inclusion

¼ outðGÞ \ ðoutðGÞuða; bÞÞby the definition of u

So outðGÞ \ ðoutðGÞuða; bÞÞ � outðF0Þ � outðGÞ, as desired. h

The interpretation of these properties is again fairly straightforward: A-Closure

says that amendment produces a new normative system, that is, it produces a set of

norms that contains all the norms it entails. According to A-Inclusion amendment

never transcends simple expansion. This can be seen as a simple relevance criterion;

no material that is not implied by the code and the new norm will be included in the

result of amending the code with that norm. According to A-Success amendment is

always effective—the norm scheduled for addition will always be included in the

result. One way to read this is to say that the new norm always takes priority over

norms already in the code. A-Success therefore expresses a simple kind of lex
posterior derogat lex priori principle. A-Consistency says that amendment always

produces a code that is locally consistent with respect to the applicability condition

of the norm to be added, unless that norm is itself locally inconsistent. A-

Extensionality says that amending a code with equivalent norms produces similar

results. Note though that this property is subject to a proviso. Extensionality does

not hold simpliciter, as the following example shows:

Example 3 Suppose out((a, b)) = out((c, d)) and that a is not equivalent to

c. Then ‘ b and ‘ d. Hence outðGÞuða; bÞ ¼ outððoutðGÞ � ða;:bÞÞ [ ða; tÞÞ ¼
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outððoutðGÞ� ða;:bÞÞ ¼ outðGÞ � ða; f Þ. Similarly outðGÞuðc; dÞ ¼ outðGÞ�
ðc; f Þ. Let a and b be logically independent and put G : = {(a, f), (b, f)}. Then

ða; f Þ 2 outðGÞ � ðc; f Þ n outðGÞ � ða; f Þ so outðGÞuða; bÞ 6¼ outðGÞuðc; dÞ.

The example shows that extensionality without the proviso fails for norms with

tautologous consequents. The reason is that the equivalence of such norms is not

preserved by local negation. That is, if b and d are both tautologies we can have

out((a, b)) = out((c, d)) and outðða;:bÞ 6¼ outððc;:dÞÞ. The significance of this

non-preservation property is easy to miss. It is an example of one of the many quirks

that makes input/output logic different from classical logic, and an example of one

of the more subtle properties of amendment that surfaces when there is a

construction to back up the postulates. Such a constructive account is lacking in

(Boella et al. 2009) and may be partly responsible for the fact that the authors put

forth the unqualified version of extensionality as a candidate principle for norm-

system revision. The analysis presented here, in contrast, gives a strong reason not

to regard that principle as valid. Turning finally to A-Relevance, this principle says

pretty much the same about amendment as D-Relevance does about derogation

(recall that derogation, according to theorem 7, may be characterised using

D-Relevance instead of Input Entailment and Local Recovery), namely that an

element that does not contribute to the derivation of the local negation of the norm

scheduled for addition will never be eliminated. In other words, change is minimal.

In fact A-Relevance simply passes the responsibility for keeping changes small on

to the underlying derogation operator, for as it turns out ðoutðGÞuða; bÞÞ \
outðGÞ ¼ outðGÞ � ða;:bÞ whenever u is defined by the Levi identity:

Lemma 17 outðGÞ \ outððoutðGÞ � ða; bÞÞ [ ða;:bÞÞ ¼ outðGÞ � ða; bÞ.

Proof The right-in-left inclusion follows immediately from D-inclusion and

the closure properties of the out operator. For the converse, suppose

ðc; dÞ 62 outðGÞ � ða;:bÞ. We need to show that ðc; dÞ 62 outðGÞ \ outððoutðGÞ �
ða;:bÞÞ [ða; bÞÞ. If ðc; dÞ 62 outðGÞ then we’re done. We may therefore suppose

that (c, d) [ out(G) whence it suffices to show that ðc; dÞ 62 outððoutðGÞ � ða;:bÞÞ
[ða; bÞÞ. Suppose for reductio ad absurdum the opposite. Since we have assumed

that ðc; dÞ 2 outðGÞ n outðGÞ � ða;:bÞ, D-Relevance tells us that there is an F such

that

1. outðGÞ � ða;:bÞ � F � outðGÞ,
2. ða;:bÞ 62 outðFÞ, and

3. ða;:bÞ 2 outðF [ ðc; dÞÞ:

From condition 2 and 3 it follows that a ‘ c, by lemma 6. Hence,

outððoutðGÞ � ða;:bÞÞ [ ða; bÞÞ � outððoutðGÞ � ða;:bÞÞ [ ðc; bÞÞ, by SI, so

ðc; b! dÞ 2 outðGÞ � ða;:bÞ by lemma 4, since ðc; dÞ 2 outððoutðGÞ � ða;:bÞÞ [
ðc; bÞÞ by assumption. It follows by condition 1 that (c, b? d) [ F. Hence, it suffices

by AND to show that ðc;:b!dÞ2F, because then (c, d) [ out(F) so outðFÞ ¼
outðF [ ðc; dÞÞ whence condition 2 contradicts condition 3. Suppose therefore that

ðc;:b! dÞ 62 F. Then ðc;:b! dÞ 62 outðGÞ � ða;:bÞ by condition 1. Since we

have ðc;:b! dÞ 2 outðGÞ from (c, d) [ out(G) by WO, there is thus an H 2
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dðoutðGÞ ? ða;:bÞÞ such that ðc;:b! dÞ 62 H. It follows that ða;:bÞ 2 out
ðH [ ðc;:b! dÞÞ. Hence ða ^ c; ð:b! dÞ ! :bÞ 2 outðHÞ by lemma 4. Since a ‘
c it follows that ða; ð:b! dÞ ! :bÞ 2 outðHÞ. Now ð:b! dÞ ! :b ¼ :b so

ða;:bÞ 2 H by lemma 7 contradicting H 2 outðGÞ ? ða;:bÞ. h

The identity recorded in lemma 17 is a special case of the principle known as the

Harper identity from classical revision theory. This principle was named after

William Harper who proposed that just as revision is definable in terms of

contraction by the Levi identity, contraction may conversely be definable in terms of

revision as that which is common to the result of the revision and the original set.

Lemma 17 shows that the Harper identity holds, as a derived property, between any

operator of amendment u and its underlying derogation operator. More specifically,

when u is defined by the derogation operation—via the Levi Identity, the Harper

identity does indeed produce a contraction operation, and that operation is just the

derogation operation we started with. This is a standard result of classical revision

theory (cf. Gärdenfors and Rott 1995, p. 57). Its significance is well known, and I

shall return to it shortly. Suffice it for now to note that a similar argument can be

made w.r.t. to the Levi identity when we start with an arbitrarily chosen amendment

operation:

Lemma 18 Let u be any operation that satisfies the postulates from theorem 11.
Then we have outððoutðGÞ \ ðoutðGÞuða; bÞÞÞ [ ða; bÞÞ ¼ outðGÞuða; bÞ.

Proof For the left-in-right inclusion it suffices, by monotony and idempotence for

out together with A-Closure, to show that ðoutðGÞ \ ðoutðGÞuða; bÞÞÞ [ ða; bÞ �
outðGÞ uða; bÞ. But ðoutðGÞ \ ðoutðGÞuða; bÞÞÞ � outðGÞuða; bÞ, by general set-

theory, and ða; bÞ 2 outðGÞuða; bÞ, by A-Success, so this is immediate. We prove

the converse by contraposition and reductio ad absurdum: Suppose ðc; dÞ 62 out
ððoutðGÞ \ ðoutðGÞuða; bÞÞÞ [ ða; bÞÞ, whilst ðc; dÞ 2 outðGÞuða; bÞ. Then it fol-

lows that ðc; dÞ 62 outðGÞ. By A-Inclusion outðGÞuða; bÞ � outðG [ ða; bÞÞ, so

ðc; dÞ 2 outðG [ ða; bÞÞ n outðGÞ. Consequently there is a subset F of out(G) such

that ðc; dÞ 62 outðFÞ and ðc; dÞ 2 outðF [ ða; bÞÞ. Suppose that F * outðGÞuða; bÞ
for every such F. Then since outðGÞuða; bÞ � outðG [ ða; bÞÞ we have ðc; dÞ 62
outðGÞuða; bÞ contrary to our second assumption. There is an F, therefore, such that

F � outðGÞuða; bÞ and F � outðGÞ with ðc; dÞ 2 outðF [ ða; bÞÞ. By monotony for

out it follows that ðc; dÞ 2 outððoutðGÞ \ ðoutðGÞuða; bÞÞÞ [ ða; bÞÞ, contrary to

assumption. h

We are now in position to reproduce the central representation theorem for

classical revision: If an amendment operation satisfies the properties listed in

theorem 11, then it can be constructed from some partial meet derogation operator

via the Levi identity:

Theorem 12 If an amendment operation u satisfies A-Closure, A-Inclusion, A-
Success, A-Consistency, A-Extensionality and A-Relevance, then it is definable by
some derogation operation via the Levi identity.
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Proof In the appendix. h

Taking stock we have the following situation: Theorem 5 shows that the Levi

identity maps the set of partial meet derogation operators into the set of operators

that satisfy the amendment postulates. Theorem 12 shows that this relation is not

merely into but onto: Every operator that satisfies the amendment postulates can be

constructed from some partial meet derogation operator by the Levi identity.

Lemma 17 next shows that the Harper identity—according to which the derogation

of a norm (a, b) from a code is identified with the intersection of that code with its

revision with ða;:bÞ—provides a way back; what the former does the latter undoes.

Moreover, applying theorem 12 once more, it follows that the Harper identity is

onto too. Hence, derogation and amendment operators are in one-to-one

correspondence with the Harper and Levi identities as inverse bijective maps. This

can all be set out in a more compressed idiom as follows:

Theorem 13 Let h and l be operations turning an amendment operation into a
derogation operation and vice versa, via the Harper and Levi identities respectively.
Then h and l are both onto.

Proof That l is onto is theorem 12. To show that h is onto suppose 
 is a partial

meet derogation operator. We need to find a partial meet amendment operator

? such that hðþÞ ¼ 
 . Put þ :¼ lð
 Þ, then we have the desired result by

lemma 17. h

Theorem 14 Let h and l be defined as in theorem 13. Then h and l are inverses.

Proof Let hðlð�ÞÞ ¼ v. Then :

outðGÞ
ða;bÞ :¼ outðGÞ\ ðoutðGÞuða;:bÞÞ for someu by def. of h
¼ outðGÞ\outððoutðGÞ�ða;bÞÞ[ ða;:bÞÞ by the definition of l
¼ outðGÞ�ða;bÞ by lemma 17

so �¼ 
 . Similarly, let lðhðuÞÞ ¼þ. Then:

outðGÞþ ða;bÞ :¼ outððoutðGÞ� ða;:bÞÞ[ ða;bÞÞ for some �by def. of l
¼ outððoutðGÞ\ ðoutðGÞuða;bÞÞÞ[ ða;bÞÞ by the definition of h
¼ outðGÞuða;bÞ by lemma 18

Hence u ¼ þ and we are done. h

What this means is essentially that amendment and derogation are interchange-

able idioms. We may view norm-system dynamics in terms of amendment, treating

derogation as the derived notion, or vice versa, it doesn’t matter. Any method for

constructing an operator that satisfies the one list of properties automatically yields

a construction for an operator that satisfies the other list. This is a standard result

from classical revision theory. It is nice to know that it carries over into input/output

logic, and it may be taken as confirmation that the core theory of norm-system

dynamics is complete.
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6 Sketch of an application: calculating permissions implicit in a code

The aim of the present section is to round off this paper by giving an example of

how the theory may be applied. It is hoped that this will suffice to convince the

reader of the utility of the general vantage point provided by the theory. This is a

point of view according to which norms must be analysed in the larger context of

the system to which they belong, rather than, as logicians are wont to, in isolation.

Stated differently, it is a salient feature of the theory set out in the preceding pages

that there is no logic of norms without attention to the overall behaviour of the

system, which includes its modes of transformation. It is my opinion that this gives a

more holistic picture—although, to be sure, an idealised one—of the relationship

between a code and the norms it contains, and that it can fruitfully be applied to the

analysis of concepts in analytical jurisprudence and theoretical computer science

alike. As an illustration, the material that follows gives as skeleton theory of what it

means for a permission to be implied by a code of norms. The reader should note

that this material has been published before (cf. Stolpe 2010a, b). However, since it

was precisely the problem of calculating implicit permission that motivated the

investigations in the preceding sections to begin with (cf. Stolpe 2008a) a brief

recapitulation in the context of the present theory should be warranted.

Now, it is generally agreed that permitted actions fall under one of two broad

kinds; those that are negatively permitted and those that are positively permitted or

permitted by decree. Negative permission is simple and denotes an absence of a

contrary regulation—in criminal law it is known as the principle nullum crimen sine
lege. Now, an interesting subset of such actions are those that are antithetically
permitted, where an antithetically permitted act is understood as one that cannot be

prohibited by a code without making that code contradict a positive permission. The

exact nature of the latter two concepts, and the relationship between them, is an

interesting question to which I shall try to provide an answer.

Let’s say, to begin with, that an explicitly permitted action is one that a code

explicitly pronounces to be permitted or one that is implicit in what has thus been

pronounced. This immediately raises the following problem: What is the nature of

this implication relation? Which actions ought to count as implied, and under what

circumstances?

Consider the following example from Sect. 8 of the Norwegian personal

information act:

Section 8. Personal information may only be processed by the consent of the

registered person, or if processing is statutorily warranted, or such processing is

required in order to

(a) honour an agreement with the registered person, or to perform a task that

accords with the registered person’s wishes before such an agreement was

entered into,

(b) fulfil a legal obligation on the part of the person responsible for handling the

information,

(c) attend to the registered persons vital interests,

(d) perform a task in the interest of the general public,
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(e) exercise public authority, or

(f) attend to a justifiable interest that is not outweighed by the regard for the

registered person’s right to privacy.

This pattern is typical: The statute lays down a general prohibition, and then goes

on to list a set of cases for which the prohibition is suspended. In other, words the

explicitly permitted actions function as exceptions to the general ban.

This kind of positive permission may be called exemptions, since what they do is

to override a general prohibition in particular elect cases. Several writers have

noticed this feature, for instance Ross who says: ‘‘norms of permission have the

normative function only of indicating, within some system, what are the exceptions

from the norms of obligation of the system’’ (Ross 1968, p. 120). Ross is not,

however, correct in claiming that permissive norms necessarily exempt from

already existing mandatory norms. Consider for instance constitutional rights. A

constitutional guarantee does usually not override a prohibition that actually exists.

Rather, it is meant to reject in advance prohibitions that could conceivably be

passed. We may call this class of permissive norms antithetic permissions since

what they do is to prevent the code from growing in such a manner as to prohibit a

contrary course of action.

Now, we wish to analyse permissions in the larger context of a system, i.e. to

study the interplay between permission and mandatory norms against the

background of the sum total of such norms. Hence the proper unit of analysis is

a pair hG;Pi consisting of a set of mandatory norms G and a set of explicitly

pronounced permissions P. Both are binary relations over L. I shall say that an item

(a, b) is mandatory or permitted (as the case may be) according to or in such a code,

meaning that b is permitted or mandatory whenever a is true. It seems natural to

analyse the class of permissions I have called exemptions as follows:

Definition 7 (Exemption) (a, b) is an exemption according to hG;Pi iff ða;:bÞ 2
outðGÞ n outðGÞ � ða;:dÞ for some (a, d) [ P.

I shall assume for the remainder of this section that the derogation operation in

question is a full meet operation. This is not free of problems though, as the full-

meet operation is very strong. However, as is shown in (Stolpe 2010), these

problems can be overcome in a way that preserves all the definitions and

relationships that are presented here. The account is therefore sound in general

outline, and should serve well as an illustration of how norm-system dynamics can

be employed in elucidating concepts of relevance to analytical jurisprudence.

Now, definition 7 casts exemptions as cut-backs on the code required to respect

the explicit permissions in P. More precisely (a, b) is deemed an exemption if the

code contains a prohibition that regulates the state of affairs a by prohibiting b, and

ða;:bÞ is such that, unless it is removed, the code will contradict an explicit

permission in P. To see how this works, consider the following example.

Example 4 Put G :¼ fðt;:pÞg and P: = {(c, p)}. Think of these norms as a

general prohibition against processing personal information and as an exception for

express consent respectively. We have ðc;:pÞ 2 outðGÞ by input strengthening. By
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D-Success for full meet derogation, however, ðc;:pÞ 62 outðGÞ � ðc;:pÞ, so

(c, p) constitutes an exemption.

Turning now to the concept of antithetic permission, the idea is to see (a, b) as

permitted whenever, given the mandatory norms in G, we can’t forbid b under the

condition a without thereby committing ourselves to forbid, under a condition c that

could possibly be fulfilled, something d which is implicit in what has been explicitly

permitted (Makinson and van der Torre 2003). Another way to put it is to say that

antithetic permissions prevent the set of mandatory norms from growing in such a

way as to render explicitly permitted actions forbidden. This checked-growth

perspective may be brought out as follows.

Definition 8 (Antithetic permission) (a, b) is antithetically permitted according to

hG;Pi iff ða;:bÞ 62 outðG [ ða;:bÞÞ � ða; dÞ where (a, d) [ P.

The following lemma gives an equivalent representation in terms of the norms in

out(G) exclusively:

Theorem 15 (a, b) is antithetically permitted in hG;Pi iff ða;:b! :dÞ 2 outðGÞ
where (a, d) [ P.

The next example gives a simple illustration of the behaviour of this concept:

Example 5 Put G := {(a, d?b)} and P := {(a, d)}. Then (a, b) is antithetically

permitted since ða;:b! :dÞ 2 outðGÞ and (a, d) [ P. However, (a, b) is not an

exemption, since ða; bÞ 62 outðGÞ.

As the example shows, antithetic permission does not coincide with exemption,

but there is obviously a quite close relationship between them. We are now in

position to bring this relationship out clearly, and a fortiori to answer (in part) the

question we started with:

Theorem 16 If (a, b) is antithetically permitted in hG;Pi iff hG [ ða;:bÞ;Pi.

Proof This is theorem 2 of (Stolpe 2010). h

Thus, the analysis shows that antithetically permitted actions are exemptions in a

larger code. Stated differently, antithetic permissions are actions that will be

exempted from an operative ban if added to the code. This agrees well with

intuition, and also finds support in the sources:

This is what happens with constitutional rights and guarantees the constitution

rejects in advance certain norm-contents (that would affect basic rights),

preventing the legislature from promulgating this norm-content, for if the

legislature promulgates such a norm-content, it can be declared unconstitu-

tional by the courts and will not be added to the system (Alchourron and

Bulygin 1981, p. 397–398).

Theorem 16 thus spells out, with welcome precision, what it means for a permissive

provision, such as e.g. a constitutional guarantee, to reject a norm in advance, as

Alchourrón and Bulygin put it. Many other deductions can be made from this simple
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analysis, but this will have to do for now. The interested reader should consult

(Stolpe 2010).

Acknowledgments This work was partially funded by the Semicolon project supported by the

Norwegian Research Council, contract no. 183260.

Appendix

Proof of theorem 8

Proof We need to show that any operation ‘–’ satisfying the listed properties

coincides with a partial meet derogation operation. That is, we need to show the

existence of a selection function d such that

outðGÞ � ða; bÞ ¼
\

dðoutðGÞ ? ða; bÞÞ

We construct the selection function d, using a familiar technique, as follows:

dðoutðGÞ ? ða; bÞÞ ¼ foutðGÞg if outðGÞ ? ða; bÞ ¼ ;; otherwise

fF 2 outðGÞ ? ða; bÞ : outðGÞ � ða; bÞ � Fg

�

We need to show, first of all, that d is well-defined and that it is a selection function:

Well-definedness. Starting with well-definedness we need to show that dðoutðGÞ ?
ða; bÞÞ ¼ dðoutðGÞ ? ðc; dÞÞ whenever outðGÞ ? ða; bÞ ¼ outðGÞ ? ðc; dÞ. So

assume that outðGÞ ? ða; bÞ ¼ outðGÞ ? ðc; dÞ.
In the limiting case that outðGÞ ? ða; bÞ ¼ ; ¼ outðGÞ ? ðc; dÞ, we have

dðoutðGÞ ? ða; bÞÞ ¼ foutðGÞg ¼ dðoutðGÞ ? ðc; dÞÞ, by the first case of the

definition of d, so we may assume that outðGÞ ? ða; bÞ 6¼ ; 6¼ outðGÞ ? ðc; dÞ.
Proceeding on that assumption, we we turn to the case where either (a, b) or

(c, d), say wlog. (a, b), is not in out(G). Then outðGÞ ? ða; bÞ ¼ foutðGÞg, whence

outðGÞ ? ðc; dÞ ¼ foutðGÞg as well. Hence, it suffices to show that dðoutðGÞ ?
ðg; hÞÞ 6¼ ; for any (g, h) whenever outðGÞ ? ðg; hÞ 6¼ ;. The proof splits into two

cases:

1. Suppose ðg; hÞ 62 outðGÞ, then outðGÞ � outðGÞ � ðg; hÞ by D-Vacuity. Hence

outðGÞ 2 dðoutðGÞ ? ðg; hÞÞ by the second case of the definition of d, and we

are done.

2. Suppose on the contrary that (g, h) [ out(G). Since we are assuming that

outðGÞ ? ðg; hÞ is non-empty it follows that 0h by the properties of out-
entailment. By D-Success, therefore, it follows that ðg; hÞ 62 outðGÞ � ðg; hÞ,
whence, by D-inclusion and lemma 8, out(G) - (g, h) can be expanded to a

subset F of out(G) such that maximally ðg; hÞ 62 outðFÞ. It follows that F 2
outðGÞ ? ðg; hÞ and since outðGÞ � ðg; hÞ � F we also have F 2 dðoutðGÞ ?
ðg; hÞÞ. Hence dðoutðGÞ ? ða; bÞÞ ¼ dðoutðGÞ ? ðc; dÞÞ as desired.

This completes the limiting cases. h
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Now, for the principal case where outðGÞ ? ða; bÞ ¼ outðGÞ ? ðc; dÞ 6¼ ; and

(a, b), (c, d) [ out(G), note that F 2 dðoutðGÞ ? ða; bÞÞ implies outðGÞ � ða; bÞ �
F by the second case of the definition of d. Since outðGÞ ? ða; bÞ ¼ outðGÞ ? ðc; dÞ
and (a, b), (c, d) [ out(G) it follows, by lemma 13 that out((a, b)) = out((c, d)),

whence out(G) - (a, b) = out(G) - (c, d) by D-Extensionality. Hence outðGÞ�
ðc; dÞ � F, so F 2 dðoutðGÞ ? ðc; dÞÞ by the definition of d. Therefore dðoutðGÞ ?
ða; bÞÞ � dðoutðGÞ ? ðc; dÞÞ. The other direction is similar so d is well-defined.

d is a selection function. To prove that d is a selection function in the sense of

definition 3, we need to show that ; � dðoutðGÞ ? ða; bÞÞ � outðGÞ ? ða; bÞ
whenever outðGÞ ? ða; bÞ 6¼ ;, and that dðoutðGÞ ? ða; bÞÞ ¼ foutðGÞg otherwise.

The is immediate from the first case of the definition of d. For ; � dðoutðGÞ ?
ða; bÞÞ we have already shown that this holds whenever outðGÞ ? ðg; hÞ 6¼ ;. The

remaining case where outðGÞ ? ðg; hÞ ¼ ; is again immediate from the first case of

the definition of d. It only remains to show therefore, that dðoutðGÞ ? ða; bÞÞ �
outðGÞ ? ða; bÞ, which is immediate from the second case of the definition of d.

For outðGÞ � ða; bÞ ¼
T

dðoutðGÞ?ða; bÞÞ: Finally, we need to show that

outðGÞ � ða; bÞ ¼
T

dðoutðGÞ ? ða; bÞÞ. There are two cases to consider:

(a) Suppose outðGÞ ? ða; bÞ ¼ ;: Then
T

dðoutðGÞ ? ða; bÞÞ ¼ outðGÞ, by the

definition of d, whence outðGÞ � ða; bÞ � outðGÞ ¼
T

dðoutðGÞ ? ða; bÞÞ by

D-Inclusion. For the converse inclusion, note that outðGÞ ? ða; bÞ ¼ ; implies

‘ b. Hence out(G) - (a, b) = out(G) by D-Failure, and therefore
T

dðout
ðGÞ ? ða; bÞÞ ¼ outðGÞ � outðGÞ � ða; bÞ as desired.

(b) Suppose outðGÞ ? ða; bÞ 6¼ ;: Since F 2 dðoutðGÞ ? ða; bÞÞ iff F 2 outðGÞ ?
ða; bÞ and outðGÞ � ða; bÞ � F, the inclusion outðGÞ � ða; bÞ �

T
dðoutðGÞ ?

ða; bÞÞ follows immediately from the second case of the definition of d. For the

converse inclusion suppose ðc; dÞ 2 outðGÞ n outðGÞ � ða; bÞ. We need to find

an F 2 dðoutðGÞ ? ða; bÞÞ such that ðc; dÞ 62 F. Since ðc; dÞ 2 outðGÞ n
outðGÞ� ða; bÞ, we have a ‘ c by Input Dependence, whence ðc; dÞ 2
outððoutðGÞ� ða; bÞÞ [ ðc; bÞÞ, by Local Recovery. From lemma 4 it follows

that (c, b?d) [ out(G) - (a, b). By SI and D-Closure, therefore, we have

(a, b?d) [ out(G) - (a, b), whence ða;:b! dÞ 62 outðGÞ � ða; bÞ by

another application of D-Closure together with AND.Therefore ða; b _ dÞ 62
outðGÞ � ða; bÞ by WO, whence out(G) - (a, b) can be extended to a set

F 2 outðGÞ ? ða; b _ dÞ by lemma 8. Since F 2 outðGÞ ? ða; b _ dÞ we have

ða; b _ dÞ 62 F, whence ða; dÞ 62 F by WO and ðc; dÞ 62 F by SI. Moreover,

since ða; b _ dÞ 62 F we also have ða; bÞ 62 F, again by WO, so F 2 outðGÞ ?
ða; bÞ by lemma 10. Taking stock we have F 2 outðGÞ ? ða; bÞ and ðc; dÞ 62 F,

so the proof is complete.

This completes the proof.

Proof of theorem 12

Proof: It suffices to find a partial meet derogation operation which yields u via the

Levi identity. Let d be defined as follows:

Norm-system revision 279

123



dðoutðGÞ ? ða;:bÞÞ ¼ foutðGÞg if outðGÞ ? ða;:bÞis empty, otherwise

fF 2 G ? ða;:bÞ : ðoutðGÞuða; bÞÞ \ outðGÞ � Fg

�

We need to check that d is a selection function and that it is well-defined:

Well-definedness. We need to show that dðoutðGÞ ? ða; bÞÞ ¼ dðoutðGÞ ?
ðc; dÞÞ whenever outðGÞ ? ða; bÞ ¼ outðGÞ ? ðc; dÞ. All the limiting cases are

similar to theorem 8. For the principal case where outðGÞ ? ða; bÞ 6¼ ; and

(a, b), (c, d) [ out(G) we reason as follows: Since outðGÞ ? ða; bÞ ¼ outðGÞ ?
ðc; dÞ, we have out((a, b)) = out((c, d)) by lemma 13. Moreover, since outðGÞ ?
ða; bÞ 6¼ ; we also have 0b, whence a:c by lemma 1. By A-Extensionality it

follows that outðGÞuða; bÞ ¼ outðGÞuðc; dÞ, so dðoutðGÞ ? ða; bÞÞ ¼ dðoutðGÞ ?
ðc; dÞÞ as desired.

d is a selection function. To show that d is a selection function, it suffices to

show that dðoutðGÞ ? ða;:bÞÞ 6¼ ;, whenever outðGÞ ? ða;:bÞ 6¼ ;, since, as is

easy to check, all other cases are similar to theorem 8. In other words, we need to

show, on the assumption that dðoutðGÞ ? ða;:bÞÞ 6¼ ;, that there is an F 2
outðGÞ ? ða;:bÞ such that ðoutðGÞuða; bÞÞ \ outðGÞ � F. Clearly ðoutðGÞu
ða; bÞÞ \ outðGÞ � outðGÞ, so it suffices to show that ða;:bÞ 62 outðGÞuða; bÞ,
because then ða;:bÞ 62 ðoutðGÞuða; bÞÞ \ outðGÞ so this set can be extended to an

F 2 outðGÞ ? ða;:bÞ by lemma 8. Suppose for reductio ad absurdum that

ða;:bÞ 2 outðGÞuða; bÞ. Then since ða; bÞ 2 outðGÞuða; bÞ by A-Success it

follows that ða; f Þ 2 outðGÞuða; bÞ by AND. By A-Consistency therefore b ‘ f
whence ‘ :b. But then outðGÞ ? ða;:bÞ ¼ ; contrary to assumption.

Finally we verify the identity

outðGÞuða; bÞ ¼ outð
\

dðoutðGÞ ? ða;:bÞÞ [ ða; bÞÞ

As a mnemonic device put;

outðGÞudða; bÞ :¼ outð
\

dðoutðGÞ ? ða;:bÞÞ [ ða; bÞÞ

We thus need to prove that outðGÞudða; bÞ ¼ outðGÞuða; bÞ. We split the proof into

two mutually exclusive and jointly exhaustive cases:

(a) Suppose b is inconsistent: Then we have ‘ :b, so
T

dðoutðGÞ ? ða;:bÞÞ ¼
outðGÞ whence outðGÞudða; bÞ ¼ outðG [ ða; bÞÞ by the definition of ud. It

suffices to show, therefore, that outðG [ ða; bÞÞ ¼ outðGÞuða; bÞ. The right-in-

left is is just A-Inclusion. For the converse we need only show that

outðGÞ � outðGÞuða; bÞ, since we then have outðGÞ [ ða; bÞ � outðGÞuða; bÞ
by A-Success, whence outðoutðGÞ [ ða; bÞÞ � outðoutðGÞuða; bÞÞ, by monot-

ony for out, so outðG [ ða; bÞÞ � outðGÞuða; bÞ by the closure properties of

the out operator together with A-Closure. Now, by general set-theory outðGÞ �
outðGÞuða; bÞ whenever outðGÞ n outðGÞuða; bÞ ¼ ;, so it suffices to show

the latter. Suppose for reduction that ðc; dÞ 2 outðGÞ n outðGÞuða; bÞ. Then,

by A-Relevance there is an F � outðGÞ such that ða;:bÞ 62 outðFÞ. However

b is inconsistent so ‘ :b contradicting ða;:bÞ 62 outðFÞ. Therefore

outðGÞ n outðGÞuða; bÞ ¼ ;, which completes the case.
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(b) In the principal case where b is consistent we argue for each direction of the

desired identity separately:

[)]: We wish to prove that outðGÞuða; bÞ � outðGÞudða; bÞ. By the

definition of d we have outðGÞ \ ðoutðGÞuða; bÞÞ �
T

dðoutðGÞ ? ða;:
bÞÞ, from which it follows that ðoutðGÞ \ ðoutðGÞuða; bÞÞÞ [ ða; bÞ �

T
d

ðoutðGÞ ? ða;:bÞÞ [ ða; bÞ. By monotony for out, therefore, we have

outððoutðGÞ\ ðoutðGÞuða; bÞÞÞ [ ða; bÞÞ � outð
T

dðoutðGÞ ? ða;:bÞÞ [
ða; bÞÞ , which, by the definition of outðGÞud ða; bÞ implies outððoutðGÞ \
ðoutðGÞu ða; bÞÞÞ [ ða; bÞÞ � outðGÞudða; bÞ. By lemma 18 it thus follows

that outðGÞuða; bÞ � outðGÞudða; bÞ, as desired.

[(]: We wish to show that outðGÞudða; bÞ � outðGÞuða; bÞ, that is, we want

to show that outð
T

dðoutðGÞ ? ða;:bÞÞ [ ða; bÞÞ � outðGÞuða; bÞ. By

monotony for out and A-Closure it suffices to demonstrate that
T

dðoutðGÞ
? ða;:bÞÞ [ ða; bÞ � outðGÞuða; bÞ. Now, ða; bÞ 2 outðGÞuða; bÞ, by A-

Success, so we need only show that
T

dðoutðGÞ ? ða;:bÞÞ � outðGÞuða; bÞ.
The argument proceeds by contraposition: Suppose ðc; dÞ 62 outðGÞuða; bÞ.
In the limiting case where ðc; dÞ 62 outðGÞ we have ðc; dÞ 62

T
dðoutðGÞ ?

ða;:bÞÞ � outðGÞ so we are done. So, suppose (c, d) [ out(G). Then

ðc; dÞ 2 outðGÞ n outðGÞuða; bÞ. By A-Relevance there is an F such that

1. outðGÞ \ ðoutðGÞuða; bÞÞ � F � outðGÞ
2. ða;:bÞ 62 outðFÞ, and

3. ða;:bÞ 2 outðF [ ðc; dÞÞ.

By condition 1 and 2 and lemma 8 it follows that F can be extended to an

F0 2 outðGÞ ? ða;:bÞ. By condition 3 it follows that ðc; dÞ 62 F0, and by 1

again it follows that outðGÞ \ ðoutðGÞuða; bÞÞ � F0. Hence, F0 2 dðG ?
ða;:bÞÞ, whence ðc; dÞ 62

T
dðoutðGÞ ? ða;:bÞÞ ¼ outðGÞudða; bÞ as

desired.

This completes the proof.
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Vranes E (2006) The definition of ‘norm conflict’ in international law and legal theory. J Int Law 17(2)

Weinberger O (1985) The expressive conception of norms—an impasse for the logic of norms. Law

Philos 4(2):165–198

Weitzner DJ, Abelson H, Berners-Lee T, Feigenbaum J, Hendler J, Sussman GJ (2008) Information

accountability. Commun ACM 51(6)

Williams M-A, Rott H (eds) (2001) Frontiers in belief revision, vol 22 of Applied logic series. Kluwer

Academic Publishers

von Wright GH (1963) Norm and action. Routledge & Kegan Paul, London

von Wright GH (1998) Is and ought. In: Normativity and norms. Clarendon press, Oxford

von Wright GH (1999) Deontic logic—as I see it. In: McNamara P, Prakken H (eds) Norms, logics and

information systems. IOS, Amsterdam

Norm-system revision 283

123


	Norm-system revision: theory and application
	Abstract
	Introduction
	Input/output logic as a logic of norms
	Properties of the theory of simple-minded output
	Complementation
	Deduction properties
	Remainders

	Derogation
	On the relation between contraction and derogation

	Amendment
	Sketch of an application: calculating permissions implicit in a code
	Acknowledgments
	Appendix
	Proof of theorem 8
	Proof of theorem 12

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


