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Abstract This paper provides a computational framework, based on defeasible

logic, to capture some aspects of institutional agency. Our background is Kanger-

Lindahl-Pörn account of organised interaction, which describes this interaction

within a multi-modal logical setting. This work focuses in particular on the notions

of counts-as link and on those of attempt and of personal and direct action to realise

states of affairs. We show how standard defeasible logic (DL) can be extended to

represent these concepts: the resulting system preserves some basic properties

commonly attributed to them. In addition, the framework enjoys nice computational

properties, as it turns out that the extension of any theory can be computed in time

linear to the size of the theory itself.
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1 Background and motivation

Recent works on agents and their societies assume that as in human societies, also in

artificial societies normative concepts may play a decisive role, allowing for the

flexible co-ordination of intelligent autonomous agents [Conte and Dellarocas 2001,
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Pitt forthcoming]. In line with this trend, in [Gelati et al. 2004] the authors of this

paper and other colleagues proposed to model organisations of agents in terms of

rule-based normative systems; accordingly, an organisation should be characterised

by specifying the normative positions relevant to design its structure. These

positions include not only duties and permissions, but also powers, as for instance

powers of creating further normative positions on the head of other agents.

Technically, in this paper we develop a formal machinery to capture some building

blocks among those analysed in [Gelati et al. 2004]. In particular, we focus on some

basic aspects of agency and institutionalised power. These concepts are embedded

in a non-monotonic framework based on DL.

As in [Gelati et al. 2004], the background of this paper is Kanger-Lindahl-Pörn

[Kanger 1972, Lindahl 1977, Pörn 1977] theoretical account of organised

interaction (see [Elgesem 1997]). The main references here are some recent

contributions [Santos et al. 1997, Jones and Sergot 1996, Jones forthcoming], which

have enriched this framework with some substantial refinements. The basic idea is

to describe agents’ interaction within a multi-modal logical setting. The resulting

view is abstract but flexible, as social agency is captured by simply combining

different modal operators, each of them corresponding to notions such as those of

action, power, obligation, and belief.

The paper is confined to two basic aspects of the above line of research: the

modal notion of agency and that of institutionalised power.

Despite some limitations (see [Segerberg 1992, Royakkers 2000]), modal logic of

agency [Elgesem 1997] is still very much adopted thanks to its flexibility, as actions

are simply taken to be relationships between agents and states of affairs. We will

focus on two well-known agency notions. The first is the idea of personal and direct

action to realise a state of affairs. In the mentioned logical framework, it is

formalised by the modal operator E, such that a formula like EiA means that the

agent i brings it about that A. Different axiomatisations have been provided for it

[Governatori and Rotolo 2005]. Here we will consider two basic logical properties

of this operator:1

EiA! A ðTÞ
EiEjA! :EiA ðEE:EÞ

Schema (T) expresses the successfulness of actions that is behind the common

reading of the ‘‘bring about’’ concept. Schema ðEE:EÞ is a specific axiom

advanced, for example, in [Santos et al. 1997]. The brings-it-about operator

expresses actions performed directly and personally. Hence, ðEE:EÞ states a

principle of rationality for modelling co-ordination in institutional organisations: it

is counter-intuitive that the same agent brings it about that A and brings it about that

somebody else achieves A.

The second aspect of agency considered here is that of attempt, formalised by the

operator H [Santos et al. 1997, Jones forthcoming]. HiA says that i attempts to make

1 Besides these schemata, the logic for E is usually closed under logical equivalence. Other common

properties, which are not considered here, correspond to :Ei> (No) and ðEiA ^ EiBÞ ! EiðA ^ BÞ (C).
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it the case that A. The operator Hi is not necessarily successful. Here we will simply

assume that each successful action is also an attempt:2

EiA! HiA ð1Þ

Let us focus now on the idea of institutionalised power. This notion is central for

describing norm-governed organisations of agents and comes from the distinction

between the practical ability to realise a state of affairs—which is not considered in

this paper [Elgesem 1997, Governatori and Rotolo 2005]—and the institutional

power to do this [Makinson 1986]. For example, if in an auction i raises one hand,

this implies that the act of making a bid is also obtained. In principle, this kind of

ability should be distinguished from the practical capacity to obtain a certain state of

affairs. The attempt to make a bid may not be successful: its being successful,

within the institutional context (the auction), depends on whether that institution

makes it effective. It is up to institutional (constitutive) rules to establish whether i’s
act makes so that a bid is effective or not, namely, that i’s act counts as bidding.

The logical nature of this kind of rules has been recently investigated following

different directions (see, e.g., [Grossi et al. 2005, Boella and van der Torre 2004,

Jones and Sergot 1996, Gelati et al. 2004]). Many of these approaches explicitly

recognise that constitutive rules are defeasible. In fact, it is intuitive that, e.g., if the

agent i raises one hand, this may count as making a bid but this does not hold if i
raises one hand and scratches his own head. This paper will adopt the approach

provided in [Gelati et al. 2004]. In that work, it is argued that constitutive rules of

the form ‘‘X counts as Y in the context C’’ [Searle 1995] are represented within a

conditional logic enjoying at least the basic properties (Reflexivity, Cut, and

Cautious Monotonicity) of cumulative reasoning (system CU [Artosi et al. 2002]).

In [Gelati et al. 2004] the logic was enriched by the modality Ds—originally

introduced in [Jones and Sergot 1996] but with a different meaning—to represent

institutional facts. In that specific perspective, the expression ‘‘A counts as B in the

institution s’’, formally A)s B, was stated to be equivalent by definition to

ðAVDsBÞ ^ ðDsAVDsBÞ, where V is the conditional obeying the principles of

cumulative reasoning. This view is meant to capture the fact that counts-as rules

may specify when (1) a brute fact (e.g., destroying the receipt) counts as a type of

institutional act (e.g., freeing the debtor from his obligation), and (2) an institutional

act (e.g., a contract made by person j in the name of person k) has the same effects

of another institutional act (e.g., a contract made by k). Ds represents the domain of

institutional facts and it corresponds to a classical non-normal modality. However,

in this paper we will not consider the modality Ds, as it is mainly relevant when

2 Besides that, H usually enjoys (C) and is closed under logical equivalence. In [Santos et al. 1997, Jones

forthcoming] a third operator G has been also defined, corresponding to the idea of indirect successful

action. The reading of GiA is that i ensures that A. G enjoys the same general properties of E. However,

instead of ðEE:EÞ, it is adopted GiGjA! GiA (GGG). (GGG) differentiates G from E insofar as the

former is meant to represent indirect actions. This operator will not be considered explicitly here. Besides

its most general reading, it can be argued that GiA, if strictly analysed in terms of agency, can be thought

as any iteration of the form EiEi1. . .Ein A, where n� 0. Notice that this specific reading of G is compatible

with that originally assigned to it, since the schemas EiA! GiA; EiEjA! EiGjA and GiEjA! GiGjA
are adopted in [Santos et al. 1997].
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more institutional contexts are compared and so the modality is used to mark the

different institutions where institutional facts hold. Accordingly, leaving aside Ds,

the modelling of counts-as rules will simply amount in this paper to dealing with

cumulative reasoning.

Notice that the framework we have just recalled is able to capture some

composite concepts regarding the normative co-ordination of agents. In particular,

[Gelati et al. 2004] shows that the introduction of the notion of proclamation allows

to account for the ideas of declarative power and delegation [Castelfranchi and

Falcone 1998, Norman and Reed 2001]. The logical representation of these ideas

has a counts-as structure. Institutional proclamations are formalised by the modal

operator proc: the expression prociA means that agent i proclaims A.3 The

combination of proc, agency operators, and the counts-as link enables us to capture

two forms of normative delegation, intended as kinds of true representation [Gelati

et al. 2004]. The first is procjðprociAÞ )s EjðprociAÞ, that is, when j proclaims that

i proclaims that A, this counts as j’s making so that i proclaims that A.4 In addition,

we can have procjðEiAÞ )s EjðEiAÞ. This type of representation is necessary when

the representative substitutes a principal which would not be able to perform

directly the activity which is delegated to the representative.

Although the above building blocks supply an intermediate level of fine

conceptual analysis, it seems difficult to use them directly for implementation. This

is due to the inherent computational complexity of multi-modal logics (see, e.g.,

[Halpern and Moses 1990]). In general, the addition of modal operators to the

classical propositional base leads to the increase of complexity of the logic. This is

mainly due to: (1) the rules to introduce modalities, (2) the axioms governing the

behaviour of modalities and their mutual interaction. But something similar applies

as well to the logic of counts-as, due to the well-known computational limits of

conditional logics (see, e.g., [Artosi et al. 2002]).

The main aim of this paper is to show how to introduce modalities in a

(computationally oriented) non-monotonic formalism (DL), and then to apply this

methodology to deal with the mentioned basic properties of institutional agency. In

this perspective, some basic patterns of defeasible reasoning will be extended to

account for the institutional dynamics insofar as counts-as links interact with the

notions of direct action and attempt. Notice that the use of DL to model the counts-as

link is immediate, as its basic form corresponds to cumulative reasoning enjoying the

properties we previously mentioned [Billington 1993]. As we will see, extending DL

to treat modal logic of agency requires some adjustments and integrations.

3 As is well-known, agent communication concepts play an important role in modelling agent

coordination. In [Gelati et al. 2004] the speech act of proclaiming has been defined to capture some

minimal properties of all speech acts that are intended to modify the institutional world. However, notice

that in this paper we will make a trivial use of the proc operator, as we will not model its logical

properties. We will simply use it to denote acts of proclamation. At any rate, the logic of proc is

characterised by very minimal properties: it is closed under logical equivalence and includes at least the

axiom ðprociA ^ prociBÞ � prociðA ^ BÞ. Of course, proc is not necessarily successful: prociA is just an

attempt to achieve A. Whether it is successful or not, within a certain institution s, depends on whether s
makes it effective by means of appropriate counts-as rules.
4 Of course, the achievement of A will depend on the presence on another rule which states that prociA
counts as EiA.
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The layout of the paper is as follows. Section 2 makes provision of the basics of

standard DL. In Sect. 3 we show how DL can be extended to deal with the notion of

institutional agency we previously recalled; the formal system will be illustrated

with the help of some simple examples. In Sect. 4 we provide some formal results of

our system. Section 5 presents a discussion of some related work, while Sect. 6

provides some directions for future work. The interested reader will find an

Appendix with proofs or proof sketches of the formal properties mentioned in

Sect. 4.

2 Overview of defeasible logic

DL is a simple, efficient but flexible non-monotonic formalism which has been

proven able to deal with many different intuitions of non-monotonic reasoning

[Antoniou et al. 2000b]. Here we propose a non-monotonic logic of agency based

on the framework for DL developed in [Antoniou et al. 2000a].

It is not possible to give here a complete formal description of the logic. We hope

to give enough information to make the discussion intelligible and we refer the

reader to [Nute 1994, Antoniou et al. 2001] for more thorough treatments. As usual

with non-monotonic reasoning, we have to specify (1) how to represent a knowledge

base and (2) the inference mechanism.

Accordingly a defeasible theory D is a structure ðF;R;[Þ where F is a finite set

of facts, R a finite set of rules (either strict, defeasible, or defeater), and [ a binary

relation (superiority relation) over R.

Facts are indisputable statements. Strict rules are rules in the classical sense:

whenever the premises are indisputable so is the conclusion; defeasible rules are

rules that can be defeated by contrary evidence; and defeaters are rules that cannot

be used to draw any conclusions. Their only use is to prevent some conclusions. In

other words, they are used to defeat some defeasible rules by producing evidence to

the contrary. The superiority relation among rules is used to define priorities among

rules, that is, where one rule may override the conclusion of another rule.

A rule r consists of its antecedent (or body) A(r) (A(r) may be omitted if it is the

empty set) which is a finite set of literals, an arrow, and its consequent (or head)

C(r) which is a literal. Given a set R of rules, we denote the set of all strict rules in R
by Rs, the set of strict and defeasible rules in R by Rsd, the set of defeasible rules in R
by Rd, and the set of defeaters in R by Rdft. R½q� denotes the set of rules in R with

consequent q. If q is a literal, *q denotes the complementary literal (if q is a

positive literal p then *q is :p; and if q is :p; then *q is p).

A conclusion of D is a tagged literal and can be either:

þDq: q is definitely provable in D (i.e., using only facts and strict rules).

�Dq meaning that we have proved that q is not definitely provable in D.

þoq meaning that q is defeasibly provable in D.

�oq meaning that we have proved that q is not defeasibly provable in D.

Provability is based on the concept of a derivation (or proof) in D. A derivation is a

finite sequence P ¼ ðPð1Þ; . . .;PðnÞÞ of tagged literals satisfying four conditions
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(which correspond to inference rules for each of the four kinds of conclusion).

Pð1. . .nÞ denotes the initial part of the sequence P of length i.

þD: If Pðnþ 1Þ ¼ þDq then

(1) q 2 F or

(2) 9r 2 Rs½q� : 8a 2 AðrÞ þ Da 2 Pð1. . .nÞ

�D: If Pðnþ 1Þ ¼ �Dq then

(1) q 62 F and

(2) 8r 2 Rs½q�9a 2 AðrÞ : �Da 2 Pð1. . .nÞ

The intuition behind the proof conditions is to give conditions under which we can

append a (tagged) literal at the end of a derivation. The definition of D describes

forward chaining of strict rules or, in other terms, it corresponds to Modus Ponens for

strict rules. Accordingly, for a literal q to be definitely provable we need to find a strict

rule with head q, of which all antecedents have been definitely proved previously. To

establish that q cannot be proven definitely we must establish that for every strict rule

with head q there is at least one antecedent which has been shown to be non-provable.

The inference conditions for negative proof tags are derived from the inference

conditions for the corresponding positive proof tag by applying the Principle of Strong

Negation introduced in [Antoniou et al. 2000a]. The strong negation of a formula

is closely related to the function that simplifies a formula by moving all negations to

an innermost position in the resulting formula and replaces the positive tags with

the respective negative tags and viceversa. For example, if in a proof condition for

þ# we have 8sðþ#1AðsÞ ^ �#2BðsÞÞ, the strong negation of the condition is

9sð�#1 StrongNegationðAðsÞÞ _ þ#2 StrongNegationðBðsÞÞÞ.
Accordingly, in what follows, we will often list only the positive version of the

inference rules.

þo: If Pðnþ 1Þ ¼ þoq then either

(1) þDq 2 Pð1. . .nÞ or

(2.1) �D�q 2 Pð1. . .nÞ and

(2.2) 9r 2 Rsd½q�8a 2 AðrÞ : þoa 2 Pð1. . .nÞ and

(2.3) 8s 2 R½�q� either

(2.3.1) 9a 2 AðsÞ : �oa 2 Pð1. . .nÞ or

(2.3.2) 9t 2 Rsd½q� : 8a 2 AðtÞ : þoa 2 Pð1. . .nÞ and t > s

Let us work through this condition. To show that q is provable defeasibly we have

two choices: (1) We show that q is already definitely provable; or (2) we need to

argue using the defeasible part of D as well. In particular, we require that there

must be a strict or defeasible rule with head q which can be applied (2.2). But now

we need to consider possible ‘‘attacks’’, i.e., reasoning chains in support of *q. To

be more specific: to prove q defeasibly we must show that *q is not definitely

provable (2.1). Also (2.3) we must consider the set of all rules which are not

known to be inapplicable and which have head *q (note that here we consider

defeaters, too, whereas they could not be used to support the conclusion q; this is in

line with the motivation of defeaters given earlier). Essentially each such rule s
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attacks the conclusion q. For q to be provable, each such rule s must be

counterattacked by a rule t with head q with the following properties: (i) t must be

applicable at this point, and (ii) t must be stronger than s. Thus each attack on the

conclusion q must be counterattacked by a stronger rule. In other words, r and the

rules t form a team (for q) that defeats the rules s. In an analogous manner we can

define �oq (see, for example [Antoniou et al. 2001]). The purpose of the �o

inference rules is to establish that it is not possible to prove þo. This rule is

defined in such a way that all the possibilities for proving þoq (for example) are

explored and shown to fail before �oq can be concluded. Thus a conclusion tagged

with �o is the outcome of a constructive proof that the corresponding positive

conclusion cannot be obtained.

We illustrate how the proof conditions work with the help of the following

theory:

F ¼ fA;Cg

R ¼ fr1 : A) B;

r2 : C ) E;

r3 : A;D) :B;

r4 : E) :Bg

fr3[r1; r1[r4g

Since A;C 2 F, we have þDA and þDC; by clause (1) we also have þoA and þoC.

To prove þoB we have to ensure that its negation cannot be definitely proved (i.e.,

proved using only facts and strict rules). This follows immediately since :B is not a

fact and there are no strict rules for :B. r1 is a defeasible rule for B whose

antecedent A(r1) is {A}, and we have already proved þoA, thus clause (2.2) is

satisfied. We have two rules for :B, namely r3 and r4. Using the same reasoning we

can show that þoE (clause 2.3 for the derivation of þoE is vacuously satisfied since

there are no rules for :E). For r3 we have that �oD (D 62 F and there are no rules

for it), so clause 2.3 is satisfied for r3 based on clause 2.3.1. For r4 we can use the

superiority relation r1[r4, to exhibit a rule (i.e., r1) for B which is stronger than r4.

Thus clause 2.3 is true also for r4, and then we are justified to append þoB at the end

of the derivation.

Sometimes all we want to know is whether a literal is supported, that is if there is

a chain of reasoning that would lead to a conclusion in absence of conflicts. This

notion is captured by the following proof conditions:

þR: if Pðnþ 1Þ ¼ þRp then

(1) þDp 2 Pð1. . .nÞ or

(2) 9r 2 Rsd½p� : 8a 2 AðrÞ þRa 2 Pð1. . .nÞ

The notion of support corresponds to monotonic proofs using both the monotonic

and non-monotonic parts of defeasible theories.
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3 A computational framework for institutional agency

As we have seen in Sect. 1 multi-modal logics have been put forward to capture the

intensional nature of (institutional) agency. Usually multi-modal logics are

extensions of classical propositional logic with some intensional operators. Thus

any multi-modal logic should account for three components: (1) the underlying

logical structure of the propositional base; (2) the logic behaviour of the modal

operators; and (3) the relationships among the modal operators. Alas, as is well-

known, classical propositional logic is not well suited to deal with real life

scenarios. The main reason is that the descriptions of real-life cases are, very often,

partial and somewhat unreliable. In such circumstances classical propositional logic

might produce counter-intuitive results insofar as it requires complete and consistent

information. Hence modal logics based on classical propositional logic are doomed

to suffer from the same problems.

On the other hand the logic should specify how modalities can be introduced and

manipulated. Some common rules for modalities are, e.g., Necessitation (i.e.,

‘ A= ‘(A) and RM (i.e., ‘ A! B= ‘(A!(B) [Chellas 1980]. Both dictate

conditions for introducing modalities in contrast with the analysis of institutional

agency as outlined in Sect. 1. To comply with the properties of this notion, in the

setting provided by DL we have to set (1) the rules describing the logical inferences

and (2) the rules to introduce the modal operators of agency Ei (the agent i brings
about), and Hi (the agent i attempts). Accordingly we will consider two types of

rules (strict, defeasible, and defeaters): a set of rules for the notion of counts-as, and

a set of rules for the notion of results-in.

Since we want to reason about actions we extend the language of DL with a set of

action symbols; we will use ai; bi; ci to denote atomic actions. The meaning of an

action symbol, for example ai, is that the action corresponding to it has been

performed by agent i, while we use :ai to denote that the action described by ai has

not bee performed. Given the modal operators Ei; Hi, and proci we form new

literals as follows: (i) if l is a literal then procil is a literal; (ii) if l is a literal then

Eil; :Eil; Hil and :Hil are literals if l is different from Eim; :Eim; Him and

:Him, for some literal m. We will use Lit to denote the set of literals.

In this perspective a defeasible institutional action theory is a structure

I ¼ ðA;F;Rc; fRigi2A;[Þ where, A is a finite set of agents, F is a set of facts, Rc

is a set of counts-as rules (i.e.,!c;)c; c), fRigi2A is a family of sets of results-in

rules (i.e., !i;)i; i; 8i 2 A), and [, the superiority relation, is a binary relation

over the set of rules (i.e., [� ðRc [ RAÞ2), where RA ¼
S

i2A Ri.

The intuition is that, given an institution, F consists of the description of the raw

institutional facts, either in form of states of affairs (literal and modal literal) and

actions that have been performed. Rc describes the basic inference mechanism

internal to an institution, while RA encodes the transitions from state to state

occurring as the results of actions performed by the agents within the organisation.

The rules in RA are used to introduce modal operators. To capture these notions we

impose some restrictions on the form of rules: literals of the form Eil; :Eil; Hil and

:Hil are not permitted in the consequent of results-in rules for i, while actions

symbols are not permitted in the consequent of results-in rules. The first restriction
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is motivated from the fact that (1) results-in rules are the rules to introduce the

modalities and in the present context sequences of modalities for the same agent are

useless5 (2) counts-as rules make possible the derivation of institutional actions

(modalised literals) only when they follow from specific actions (intentionally)

performed by the agent. The second restriction is due to the idea that results-in rules

describe, as their name suggests, the results of actions, not actions themselves.

Let us see by means of some examples the intuition behind this formalism. We

focus here on defeasible rules but similar remarks can be applied to the other kinds

of rules. Suppose the agent i is acting in the context of an auction. Then we may

have cases like the following:6

bidsi; auction begun)i offer ð2Þ

This rule is an example corresponding to the introduction of the modality Ei. In fact,

agent i’s fulfilment of the conditions in the antecedent produces the occurrence of

offer: agent i’s action of bidding has the result that i has made an offer. As we will

see, if offer can be derived, this permits the introduction of Ei (offer).

auction begun)i :offer ð3Þ

The example above does not specify any action in the antecedent (empty action).

This means that, when the auction is begun, agent i’s refraining from doing any

action has the result to have no offer. In logical terms, also this case can lead to the

introduction of E.7

Now suppose that agent i is acting on behalf of agent j.

bidsi; prociðEj offerÞ )j offer ð4Þ

This formula means that the fact that agent i makes a bid and proclaims that agent j
makes the offer permits to introduce Ej, namely that Ej offer.

Let us consider examples of counts-as rules.

raises handi; auction begun)c bidsi ð5Þ

This rule says that that agent i’s action of raising one hand counts as agent i’s action

of bidding, when the auction is begun.

auction begun; EiðofferÞ )c :raises offeri ð6Þ

Also here we have agent i’s generic refraining from doing any action in the

antecedent. This example represents the institutional connection linking such

refraining, and the fact that agent i made an offer when the auction is begun, to

5 An expression like EiEiA is useless since it is equivalent to EiA.
6 Bold type expressions correspond to action symbols, the italicised ones to state of affairs.
7 The ideas of empty action and refraining from doing a specific action should not be confused with what

it is expressed by :EiA. As we will see, this last corresponds to the non-derivability of A within I, which

can depend also on reasons that have nothing to do with agent i’s refraining from acting to realise A.
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agent i’s specific refraining from raising a new offer. Notice that the same

meaning is assigned to counts-as rules where the antecedent contains only non-

modal literals.

auction begun; raises handi )c offer ð7Þ

This rule is an example of the institutional analogous of results-in rules, where an

action and a state of affairs occur respectively in their antecedent and consequent.

However, in this case the result is an institutional fact and follows by convention

only within the institution. In fact, that an offer is a consequence of agent i’s raising

one hand is not a simple matter of agent i’s action results. The attempt of agent i to

make an offer by raising the hand is effective only if the institution recognises this.

Let us see a couple of examples with more than one agent. As above, agent i is

acting on behalf of agent j.

prociðEj offerÞ )c EiðEj offerÞ ð8Þ

This rule says that if agent i proclaims that agent j makes an offer, then this counts

as agent i brings it about that agent j makes such an offer.

prociðEj offerÞ; raises handi )c bidsj ð9Þ

Rule (9) expresses that agent i’s proclamation that agent j makes an offer counts as

agent j’s action of bidding.

It is worth noting that no explicit reference is made here to the modality Ds

[Gelati et al. 2004], as discussed in Sect. 1. In fact, the present setting accounts for

the idea of institution in terms a special kind of defeasible theory. Each institutional

action theory I encodes in itself all possible inferences that can be drawn within the

domain of institutional facts relative to a given s. This means that s may be

identified with I since all action results are obtained within such a domain of facts.

In other words, the introduction of the modality Ds corresponds here to the general

definition of derivability using counts-as and results-in rules. Technically, counts-as

rules are meant to capture the case DsAVDsB mentioned in Sect. 1. Roughly

speaking, on the other hand, the case AVDsB will be treated as a special kind of

results-in rule, where the manipulation of the consequent is made under the

constraints designed to account for the idea of institutional consequence. This is just

a technical device to differentiate the two cases: the logical behaviour of the counts-

as link as described in [Gelati et al. 2004] is here encoded in the whole formal

machinery corresponding to the definitions of the proof conditions.

Before moving to the proof conditions we have to introduce the notion of

complementary literals. In standard DL two literals are complementary to each other

if one is the negation of the other. This means that the two literals cannot hold at the

same time. The extension with modal operators has to consider when modal literals

are in conflict with each other. Since the agency operator E is successful (i.e.,

EiA! A), it is not possible to have together EiA for some agent i and A. In a similar

way we have to capture the strong notion of agency we intend to model within our

framework, i.e., where EiEjA! :EiA.
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Given an atomic literal p we use Ep to denote any string Ei1. . .Ein p where

Ei1. . .Ein is a (possibly empty) string of positive modal operators such that

8j; 1� j\n; ij 6¼ ijþ1. Let l be a literal, CðlÞ denotes the complement of l, i.e., the set

of literals that cannot be true when l is.

– if l = p, then CðlÞ ¼ fE�pg;
– if l ¼ Eip, then CðlÞ ¼ fE�p;E:Eipg;
– if l ¼ :Eip, then CðlÞ ¼ fEEipg.

The meaning of the first condition is that if p is true then no agent prevented p; for

the second condition we have that if an agent i has realised p, then no other agent

prevented p and no agent prevented i from realising p. Finally if an agent i has

refrained from doing p, then it is not possible that some other agents achieved that i
did p.

We are now ready to give the proof conditions for institutional agency. We begin

with the conditions for counts-as derivations.

þDc: if Pðnþ 1Þ ¼ þDcp, then either:

(1) Ep 2 F or

(2) 9r 2 Rs½Ep� : 8a; a;Ejb 2 AðrÞ;þDca;þDca;þDjb 2 Pð1. . .nÞ:

The conditions are in essence the same as those for definite conclusions for DL

given in Sect. 2. The first difference is in clause (1) where to prove a literal p
we can use any fact of the form Ep, let us say, for example EiEjp. This is due

to the successfulness of the Ei operator (see Sect. 1); in the limit case E is the

empty sequence, and we recover the basic condition of DL. Similarly, in clause

(2) we look for applicable counts-as rules for Ep instead of simply p. The last

difference is that a rule is now applicable if the literals in the antecedent are

proved with the right mode: þDc for unmodalised literals and action literals

and þDi for modal literals whose main operator is Ei. This follows the

intuition that modal rules for agent i behave as introduction rules for the modal

operator Ei.

�Dcp: if PðnÞ ¼ �Dcp, then both:

(1) Ep 62 F, and

(2) 8r 2 Rs½Ep� : 9a 2 AðrÞ;�Dca 2 Pð1. . .nÞ or

9a 2 AðrÞ;�Dca 2 Pð1. . .nÞ or

9Eib 2 AðrÞ;�Dib 2 Pð1. . .nÞ:

The intuiton for the condition for �Dc is similar to that of �D with the remarks

about the condition for þDc. The only issue we want to point out is that to reject a

rule (to show that a rule cannot be applied) we have to show that there is at least one

literal in the antecedent which is not provable with the appropriate mode. Finally, it

is easy to verify that the condition for �Dc is the strong negation of the condition for

þDc.

We can introduce the conditions for defeasible derivations. Again, the basic

intuition is the same as in DL with the additional considerations as the conditions

for strict derivations.
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þoc: if Pðnþ 1Þ ¼ þocp, then:

(1) þDcp 2 Pð1. . .nÞ, or

(2.1) �DCðpÞ 2 Pð1. . .nÞ and

(2.2) 9r 2 Rsd½Ep� 8a; a;Eib 2 AðrÞ : þoca;þoca;þoib 2 Pð1. . .nÞ and

(2.3) 8s 2 R½CðpÞ�: either

(2.3.1) 9a 2 AðsÞ;�oca 2 Pð1. . .nÞ or

(2.3.2) 9a 2 AðsÞ;�oca 2 Pð1. . .nÞ or

(2.3.3) 9Eib 2 AðsÞ;�oib 2 Pð1. . .nÞ or

(2.3.4) 9t 2 R½Ep� 8a; a;Eib 2 AðtÞ:
þoca;þoca;þoib 2 Pð1. . .nÞ and t > s.

The conditions for �oi are obtained from that for þoi using the mentioned principle

of strong negation.

�oc: if Pðnþ 1Þ ¼ �ocp, then:

(1) �Dcp 2 Pð1. . .nÞ and

(2.1) þDcCðpÞ 2 Pð1. . .nÞ or

(2.2) 8r 2 Rsd½Ep� : either

(2.2.1) 9a 2 AðrÞ : �oca 2 Pð1. . .nÞ or

(2.2.2) 9a 2 AðrÞ : �oca 2 Pð1. . .nÞ or

(2.2.3) 9Eib 2 AðrÞ : �oib 2 Pð1. . .nÞ and

(2.3) 9s 2 R½CðpÞ� 8a; a;Eib 2 AðrÞ : þoca;þoca;þoib 2 Pð1. . .nÞ and

(2.3.1) 8t 2 R½Ep�: either tks or

9a 2 AðtÞ;�oca 2 Pð1. . .nÞ or

9a 2 AðtÞ;�oca 2 Pð1. . .nÞ or

9Eib 2 AðtÞ;�oib 2 Pð1. . .nÞ.
To conclude the presentation of the proof conditions for counts-as conclusions we

give the conditions for support.

þRc: if Pðnþ 1Þ ¼ þRcp, then

(1) Ep 2 F or

(2) 9r 2 Rsd½p� 8a; a;Eib 2 AðrÞ:
þRca;þRca;þRib 2 Pð1. . .nÞ.

�Rc: if Pðnþ 1Þ ¼ �Rcp, then

(1) Ep 62 F and

(2) 8r 2 Rsd½p�: either

9a 2 AðrÞ;�Rca 2 Pð1. . .nÞ or

9a 2 AðrÞ;�Rca 2 Pð1. . .nÞ or

9Eib 2 AðrÞ;�Rib 2 Pð1. . .nÞ.

The conditions are the same as þD and �D; the only difference is that for support

we consider both strict and defeasible rules instead of only strict rules, and the two

conditions are the strong negations of each other.

The conditions for derivations involving results-in rules are more complicated

since we have to cater for more possibilities. First of all we have that I ‘ Eip if either

I ‘ þDip or I ‘ þoip,8 and I ‘ Hip if I ‘ þRip. In other words it is possible to derive

8 It is possible to prove Eip from a theory I also in the case that I ‘ þDcEip or I ‘ þoc Eip and similarly

for Hi.
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Eip if we have either a strict or defeasible derivation of p using both results-in and

counts-as rules, and that agent i (in an institution I) attempts p ðHipÞ if I supports p
using counts-as ad results-in rules. The output of a results-in rule produces Ei

modal literals, and we have seen in Sect. 1 that the Ei operator is a success

operator; therefore we add the conditions that it is possible to derive þDcp from

þDip and þqcp from þqip. In particular, it is worth noting that a counts-as rule

can be used as it were a results-in rule if all the literals occurring in its antecedent

are proved as appropriate results-in conclusions. In this case, we say that we have

a conversion from a counts-as rule into a results-in rule. For example, suppose we

have that

auction begun; raises handi )c offer

If we have raises handi and prove auction_begun as a results-in conclusion, in

particular as Eiauction_begun, then we can say that agent i brings offer about,

namely that Eioffer. More on conversions can be found in [Governatori et al. 2006].

In the same way we have that �qip corresponds to :Eip and �Ri p to :Hip in

addition to the cases where the modal literal is provable with a counts-as derivation

(e.g., I ‘ þocEip). This is in agreement with the principle of strong negation used to

define the inference conditions.

þDi: if Pðnþ 1Þ ¼ þDip then

(1) EEip 2 F; or

(2) þDcEip 2 Pð1. . .nÞ; or

(3) 9r 2 Ri
s½p� 8a; a;Ejb 2 AðrÞ : þDia;þDia;þDjb 2 Pð1. . .nÞ or

(4) 9r 2 Rc
s ½p� : 9a 2 AðrÞ \ Lit; and 8a; a 2 AðrÞ : þDia;þDca 2 Pð1. . .nÞ:

To prove non-defeasible brings-it-about, we need either that it is given as a fact (or

the set of facts contains a chain of brings-it-about operators where the last one is Ei)

(1), or that Eip has been proved using counts-as rules, or that we have a strict rule

for results-in (an irrevocable policy) whose antecedent is indisputable (3). However

we have another case (4): if an agent knows that B is an indisputable consequence of

A in the institution (it is always the case that A counts as B), and it produces A, then

it must realise B.

�Di: if Pðnþ 1Þ ¼ �Dip then

(1) EEip 62 F and

(2) �DcEip 2 Pð1. . .nÞ and

(3) 8r 2 Ri
s½p�: either

9a 2 AðrÞ;�Dca 2 Pð1. . .nÞ or

9a 2 AðrÞ;�Dca 2 Pð1. . .nÞ or

9Ejb 2 AðrÞ;�Djb 2 Pð1. . .nÞ, and

(4) 8r 2 Rc½p�, either

AðrÞ \ Lit ¼ ; or

9a 2 AðrÞ : �Dia 2 Pð1. . .nÞ or

9a 2 AðrÞ : �Dca 2 Pð1. . .nÞ:
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As usual the condition for �Di is the strong negation of that for þDi. The only points

to notice are clause (2) where we have to consider that Eip is not provable using

counts-as rules, and the first condition of clause (4) that imposes that conversions from

counts-as rules to results-in rules are not possible if the antecedent of the counts-as

rule does not contain any literal (even if it may contain actions). According to clause

(4) of the two conditions above, given the facts EiA and bj we can use the rule

A; bj !c B to derive þDiB and consequently EiB, but not the rule bj !c B.

We give now the proof condition for support for i ð	RiÞ.

þRi: if Pðnþ 1Þ ¼ þRip then

(1) Eip 2 F; or

(2) 9r 2 Ri
sd½p� 8a;Ejb; a 2 AðrÞ : þRca;þRjb;þRca 2 Pð1. . .nÞ; or

(3) 9r 2 Rc
sd½p� 9a 2 AðrÞ \ Lit and; 8a; a 2 AðrÞ : þRia;þRca 2 Pð1. . .nÞ:

The inference conditions for Hi are very similar to those for strong results-in rules;

essentially they are monotonic proofs using both the monotonic part (strict rules) and

the supportive non-monotonic part (defeasible rules) of a defeasible institutional

action theory. Given the close similarity between the conditions forþDi andþRi and

the fact that all pairs of proof conditions for the proof tags given in this paper are in

agreement with the principle of strong negation the conditions for �Ri are omitted.

To capture the results of defeasible actions we have to use the superiority

relations to resolve conflicts. Thus the inference conditions for þqi are:

þoi: if Pðnþ 1Þ ¼ þoip then

(1) þDip 2 Pð1. . .nÞ or

(2.1) �DCðEipÞ;�DiEkp 2 Pð1. . .nÞ and

(2.2) 9r 2 Ri
sd½p� [ Rc

sd½EEip� : 8a; a;Ejb 2 AðrÞ;
þoca;þoca;þojb 2 Pð1. . .nÞ or

9r 2 Rc
sd½p� : AðrÞ \ Lit 6¼ ;, and

8a; a 2 AðrÞ;þoia;þoca 2 Pð1. . .nÞ; and

(2.3) 8s 2 R½CðEipÞ� [ Ri½Ekp�: either

9a 2 AðsÞ : �oca 2 Pð1. . .nÞ or

9a 2 AðsÞ : �oca 2 Pð1. . .nÞ or

9Ejb 2 AðsÞ : �ojb 2 Pð1. . .nÞ, and

8s 2 Rc½Ekp�: either

AðsÞ \ Lit ¼ ; or

9a 2 AðsÞ : �oca 2 Pð1. . .nÞ or

9a 2 AðsÞ : �oia 2 Pð1. . .nÞ; or

(2.3.1) 9t 2 Ri½p� [ Rc½EEip� : t[s and

8a; a;Ejb 2 AðtÞ;þoca;þoca;þojb 2 Pð1. . .nÞ or

9r 2 Rc½p� : AðtÞ \ Lit 6¼ ;, and

8a; aðtÞ;þoia;þoca 2 Pð1. . .nÞ

The conditions for proving the results of defeasible actions are essentially the same

as those given for defeasible derivations in Sect. 2. Also here, at each stage, we

have to check for two cases, namely: (1) the rule used is a results-in rule; (2) the

rule is a counts-as rule. In the first case we have to verify that factual antecedents

are defeasibly proved/disproved using counts-as (	qc), and brings-it-about
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antecedents are defeasibly proved/disproved using results-in rules (	qi). In the

second case we have to remember that a conclusion of a institutional counts-as rule

can be transformed (converted) into a results-in if all the literals in the antecedent

are defeasibly executed. For the attack phase (clause 2.3) we have to consider all

rules in CðEipÞ as well as all results-in rules for agent i for Ekp, i.e., rules meaning

that agent i does something so that agent k personally does p (again, see Sect. 1 for

the motivation and intuition behind this condition). Finally, for the same reason we

have to ensure that all counts-as rules for Ek ðk 6¼ iÞ do not behave as results-in

rule for agent i. This means we have to verify that either the rule cannot be

converted into a results-in rule for i (i.e., AðrÞ \ Lit ¼ ;) or that the conversion is

blocked, i.e., that there is a literal which is not provable for qi. This means that the

event corresponding to the literal is not under the control of agent i, and so the

whole conclusion, which would correspond to the delegation to agent k, is not

under the influence of agent i.
For �qi we have:

�qi: if Pðnþ 1Þ ¼ �oip then

(1) �Dip 2 Pð1. . .nÞ and

(2.1) þDCðEipÞ 2 Pð1. . .nÞ or þDiEk 2 Pð1. . .nÞ
(2.2.1) 8r 2 Ri

sd½p� [ Rc½EEip� either

9a 2 AðrÞ : �oca 2 Pð1. . .nÞ or

9a 2 AðrÞ : �oca 2 Pð1. . .nÞ or

9Ejb 2 AðrÞ : �ojb 2 Pð1. . .nÞ, and

(2.2.2) 8r 2 Rc½p� either

AðrÞ \ Lit ¼ ; or

9a 2 AðrÞ : �oia 2 Pð1. . .nÞ or

9a 2 AðrÞ : �oca 2 Pð1. . .nÞ, or

(2.3) 9s 2 R½CðEipÞ� [ Ri½Ekp� : 8a; a;Ejb 2 AðsÞ,
þoca;þoca;þojb 2 Pð1. . .nÞ or

9s 2 Rc½Ekp� : 9a 2 AðsÞ \ Lit, and

8a; a 2 AðrÞ;þoia;þoca 2 Pð1. . .nÞ, and

(2.3.1) 8t 2 Ri½p� [ Rc½EEip� either skt or

9a 2 AðtÞ : �oca 2 Pð1. . .nÞ or

9a 2 AðtÞ : �oca 2 Pð1. . .nÞ or

9Ejb 2 AðtÞ : �ojb 2 Pð1. . .nÞ, and

(2.3.2) 8t 2 Rc½p� either

AðsÞ \ Lit ¼ ; or

9a 2 AðtÞ;�oia 2 Pð1. . .nÞ or

9a 2 AðtÞ;�oca 2 Pð1. . .nÞ or skt.

Let us examine the above conditions at work with the help of some examples. We

assume the following theory:

F ¼ fai; p;Ejqg;
R ¼ fr1 : ai; p;Ejq)i s; r2 : s)i r; r3 : r )c tg:
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In this theory we are able to prove Eit. The facts fire r1, thus we can prove

þois ðEisÞ. Now, since s has been brought about, s is the case. We can use this to

fire the rule r2. Hence we obtain þqir, which is Eir. This implies that all the

requisites of r3 have been brought about; but r3 states that r counts as t; this means

that t has been brought about, hence þqit and Et.
Let us replace r3 with r03 : p; r )c t. This time we can prove þqct, but not

Eit ðþoitÞ. The reason is that p is the case without a specific ‘‘intention’’ of the

agent to bring it about. Similarly, if we replace r3 by r003 : Eir )c t we can no longer

derive Eit. Here Eir is understood as a mere institutional fact, and not as the

successful intention of the agent to realise r in order to realise t.
In the previous example we have seen how we can argue in favour of Eip (for

same literal p). Let us examine the conditions to attack it. Let I be the following

institutional defeasible theory

F ¼ fai; p; qg;
R ¼ fr1 : ai; p)i s; r2 : q)c r; r3 : p; r )c :sg

Clearly Eis ðþoisÞ is not derivable from the given theory since there is an applicable

rule for :s. r3 is applicable since we can derive þqcr. Similarly, if we replace r2

with q)i r; r3 is still applicable. We can prove þqir: this means that there is a

successful action resulting in r. In general to discard a rule we have to show that

some of the premises cannot be derived. With a factual literal we have to show that

the literal is not the case (or, in other terms, that there are no literals that count as it),

and that the literal is not the result of a successful action: results of successful

actions are indeed the case. Finally we replace r3 with r003 : p; r )i Ejs. Again we

cannot conclude Eis; see the motivation for the principle ðEE:EÞ in Sect. 1.

Let us now consider how to represent the following business scenario. For normal

orders a company has pre-defined invoices and the finance department can delegate

the preparation of the invoices to the shipping department. The preparation of an

invoice requires to check that the details in it are correct and to sign it. However

special orders require more care and processing, and the finance department is in

charge for their invoices. Finally goods can be delivered only after the finance

department has prepared the invoice. This scenario is depicted by the following

institutional theory,

r1 : procFðESðinvoice readyÞÞ;ESðinvoice readyÞ )F invoice ready
r2 : special order;ESðinvoice readyÞ )c :invoice ready

r3 : sign invoiceX )X invoice checked
r4 : invoice checked )c invoice ready
r5 : EFðinvoice readyÞ )c ship order

where r2[r1 and r2[r4. Here rule r1 is the rule governing the delegation of the

preparation of the invoice, where r2 is an exception to it. r3 is a schema that

establishes that the act of signing an invoice by an agent (a role) X results in the

invoice being checked by X. The meaning of r4 is that according to the business rule

of the company is that once an invoice has been checked then the invoice is ready to
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be sent. Finally r5 states that items can be shipped only after their invoice has been

approved by the finance department.

Let us consider the following scenario. The company receives an order. The

finance department considers the order to be a standard order and it delegates the

whole process to the shipping department, which processes it and a clerk in this

department signs the invoice. In this case the facts are procFðESðinvoice readyÞÞ,
and sign invoiceS. We can apply r3 to derive ESðinvoice checkedÞ. According to

rule r4 we have that the invoice is ready. However the invoice has been signed by a

clerk in the shipping office, the result of this action is qualified as an act performed

by the shipping department. This means that we carry over the qualification from the

antecedent to the consequent of rule r4. Hence we obtain ES(invoice_ready). Since

the shipping department was delegated by the finance department to process the

invoice, we can apply rule r1 to derive that the invoice had been prepared by the

finance department via delegation ðEFðinvoice readyÞÞ and the order can be

delivered. On the other hand, if an order is classified as a special order, then the only

alternative is that the finance department process the invoice by itself, that is

somebody in the finance department has to sign the invoice.

4 Properties of the logic

First of all, as it was mentioned in Sect. 1, it is worth noting that the consequence

relation induced by the defeasible relation for the counts-as—which is characterised

by proof conditions for standard DL—is a cumulative consequence relation and thus

it obeys the basic properties of Reflexivity, Cautious Monotonicity and Cut we

previously required for the counts-as conditional. The proof for this result can be

found in [Billington 1993].

Let us see some properties of the logic we have just described.

The purpose of the �D and �q inference rules is to establish that it is not possible

to prove a corresponding tagged literal. These rules are defined in such a way that all

the possibilities for proving þqp (for example) are explored and shown to fail

before �qp can be concluded. Thus we have a constructive proof that the

corresponding positive conclusion cannot be obtained.

As a result, there is a close relationship between the inference rules for þq and

�q, (and also between those for þD and �D, and þR and �R). The structure of the

inference rules is the same, but the conditions are negated in some sense. This

feature allows us to prove some properties showing the well behaviour of DL.

Theorem 1 Let # ¼ Dc; oc;Rc;Di; oi;Ri; and I be an institutional action theory.
There is no literal p such that I ‘ þ#p and I ‘ �#p:

The above theorem states that no literal is simultaneously provable and

demonstrably unprovable, thus it establishes the coherence of the DL presented in

this paper.

Theorem 2 Let I be an acyclic institutional action theory, and M 2 fc; ig;
i 2 A: I ‘ þoMp and I ‘ þoM�p iff I ‘ þDMp and I ‘ þDM�p:
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This theorem gives the consistency of DL. In particular it affirms that it is not

possible to bring conflicting states about (þqi p and þoi�p) unless the information

given about the environment is itself inconsistent. Notice, however, that the theorem

does not cover attempts (Ri). Indeed it is possible to attempt something and its

negation. We will say that an institutional theory is consistent if Theorem 2 holds

for the theory.

Let I be an institutional action theory I. With Dþc we denote the set of literals

strictly provable using the counts-as part of I, i.e., Dþc ¼ fp : I ‘ þDcpg. Similarly

for the other proof tags.

Theorem 3 Let I be an institutional action theory, and M 2 fc; ig; i 2 A.

1. DþM � oþM � RþM;

2. R�M � o�M � D�M;

3. Let I be a consistent institutional action theory such that I ‘ �Dip: If
I ‘ þoiEjp then I ‘ �oip:

4. For any i; Dþi � Dþc ; and oþi � oþc :

Since þqi and þRi correspond to Ei and Hi, we have that that 1. and 2. correspond

to the axiom EiA! HiA. 3. is an immediate consequence of clause 2.3.2 of the

inference condition for þqi. This property corresponds to the axiom ðEE:EÞ of

Sect. 1. Finally 4. corresponds to the successfulness of the Ei operator (i.e., axiom T).

To conclude this section we give a result justifying the choice of DL as our

computational framework. Given an institutional action theory I, the universe of

I; UI is the set of atomic propositions and action symbols occurring in it. The

extension of I is the set of all proof tags derivable from I, restricted to the (modal)

literals that can be built from UI.

Theorem 4 Let I be an institutional action theory. The extension of I can be
computed in time linear to the size of the theory, i.e., OðjRj 
 jUI j 
 jAjÞ:

The proof is based on a variation of the data structure used by Maher [Maher

2001] to prove that the basic DL has linear complexity, see [Governatori and Pham

2005, Governatori et al. 2006].

5 Related work

An impressive amount of literature has been devoted to agent interaction and

coordination. Our work presents a rule-based system and so it fits into a long and

extensive AI tradition. As regards agent interaction, we can identify in particular

two recent strands: (a) a cognitive account of agents that specifies their mental

attitudes; (b) modelling agents’ behaviour by means of normative concepts. In this

section we simply comment some contributions which are strictly related to the

specific perspective adopted here, a perspective originating from [Gelati et al.

2004] and which belongs to the research line mentioned under point (b) above.

The current work is a technical extension of [Gelati et al. 2004], as it takes some

of the building blocks used there and re-defines them within a computational
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framework, where by ‘‘computational framework’’ we mean a logical system

which enjoys nice computational properties and which is directly designed for

implementation.

Different formal theories of action have been used to deal with institutional

agents. Logics such as Event and Situation Calculi, the STIT approach, Dynamic

Logics—just to mention a few examples—were all proven useful in combination

with normative concepts, and especially with deontic notions (for recent

applications in the field, see [Demolombe and Herzig 2004, Farrell et al. 2005,

Horty 2001, Broersen 2004]). However, the aim of this paper is not to develop an

alternative methodology to these theories, as our approach focuses on very minimal

and abstract properties of agency in the spirit of the modal logic of agency

described in [Elgesem 1997]. In this specific perspective, our contribution is meant

to show how such minimal properties can be embedded in DL, and so how they

can be re-interpreted within a non-monotonic system specifically oriented to

implementation.

A further goal of this paper was to see how agency can interplay with counts-as

rules. As far as the logical nature of these rules is concerned, the literature provides

different views.

In a first perspective, the institutional status of constitutive rules is directly

related to some epistemic notions [Boella and van der Torre 2004]: using the

metaphor of normative systems as agents, this approach attributes to them some

peculiar mental attitudes. Hence, norms are considered as mental objects and

constitutive rules, in particular, are modelled as beliefs.

In a second perspective, the attention is rather focused on the role of institutional

rules intended as external factors constraining agents’ behaviour. Clearly, our paper

draws inspiration from this second perspective. Within this view, we can mention at

least two alternative options (see [Grossi et al. 2006] for a fine discussion of the

different meanings of the counts-as link).

A first approach is in line with Goldman’s theory of actions generating actions

[Goldman 1970]. It may be argued that the generation of institutional facts via

counts-as rules is close to the idea of causality. If so, counts-as relations cannot be

reflexive since ‘‘it is precisely the property of non-reflexiveness that distinguishes a

generation relation as such’’ [Jones et al. 2003]. In [Jones and Sergot 1996], Jones

and Sergot basically follow this approach and develop an analysis of the notion of

institutionalised power by introducing a new (classical but not normal) conditional

connective ‘‘)s’’. This connective expresses the ‘‘counts as’’ connection holding in

the context of an institution s. In particular, when applied to action descriptions,

formulas like EiA)s EiB and EiA)s EjB represent respectively i’s institutional

power to produce B when A is realised and i’s power to perform an action as if

something else were made by j (see [Jones and Sergot 1996, Jones forthcoming]).9

In addition, the logic for )s is integrated by the KD modality Ds, such that Ds A
means that A is a ‘‘constraint on the institution s’’. The connection between)s and

9 A computational framework for modelling the counts-as link, insofar as it is viewed as a kind of causal

relation, has been later devised by Sergot [Sergot forthcoming]. He developed the language (C/Cþ)þþ to

represent counts-as relations between actions in terms of conventional generations of actions.
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Ds is characterised by the schema (A)s B) ? Ds(A?B). This approach differs

from our view, as Jones and Sergot state that the counts-as be non-reflexive and

transitive, while we see it as at least enjoying Reflexivity, Cut, and Cautious

Monotonicity. Reflexivity affects the meaning ascribed to the count-as link. If the

defeasibility of counts-as must be accepted, we have to decide whether reflexivity

must prevail over transitivity or the other way around, since transitivity and

reflexivity imply monotonicity (see [Artosi et al. 2002]). As in [Gelati et al. 2004],

we assume that the counts-as link has a classificatory nature, and defeasible

classificatory relations, such as typicality, normally enjoy reflexivity.

A second approach, by Grossi, Meyer, and Dignum [Grossi et al. 2005], views

counts-as statements as yielding contextual classifications. Hence, as we do here, it

is emphasised the classificatory role of the notion of counts-as, a notion which is

investigated by Grossi and colleagues by means of modal logic techniques from a

semantics-driven perspective. In particular, the authors model the counts-as

connection within the multi-modal logic KD45i-j
n . Despite its conceptual clarity,

this analysis has two drawbacks. First, the defeasible nature of constitutive rules is

disregarded. Second, contextual modalities suffer of the so-called ‘‘omniscience

problem’’, a problem which also affects Jones and Sergot’s Ds modality: if

making_a_bid is an institutional act, this would imply in that approach that

making a bid _ drinking some water holds as well within an institution. Our

approach tries to avoid this difficulty, as institutional consequences are derived only

if stronger reasons do not block these derivations.

6 Discussion and future work

Our aim was to develop a computational treatment of the notion of institutional

agency as described in [Gelati et al. 2004]. In this perspective, our contribution does

not include any explicit refinement (e.g., in terms of articulating new axioms) of

what has been already proposed in [Gelati et al. 2004]. This does not mean,

however, that the model presented here cannot be a potential starting point to

achieve new proof-theoretical results. Let us recall that the propositional base of the

modal logic of agency is classical propositional logic [Santos and Carmo 1996,

Elgesem 1997]. On the other hand, any refinement to introduce non-monotonic

reasoning as a crucial aspect of institutional agency has been confined both in

[Gelati et al. 2004] and in [Jones and Sergot 1996, Jones forthcoming] to account

only for the counts-as link. Although this paper provides a machinery to reason

about actions only with regard to institutional domains, it proposes some inferential

mechanisms that may be generalised to define a non-monotonic theory of agency.

How to do this and which is the axiomatisation resulting from such a generalisation

is a matter of future research.

The logic presented here is just one of the many logics that can be defined using the

main idea of the paper. Non-monotonic reasoning is a complex phenomenon with

many facets. Several variants of DL have been put forward to deal with different

intuitions behind non-monotonic reasoning. Accordingly a designer of a DL of agency

has to chose the most appropriate defeasible inference mechanism and the degree of

44 G. Governatori, A. Rotolo

123



provability corresponding to the modalities at hand for the intended application.

Similarly, the designer can chose more or less liberal conditions to use counts-as rules

to derive brings-it-about literals. For example in this paper we have assumed that we

can use a counts-as rule to derive a brings-it-about literal if all the literal in the

antecedent of the rule can be derived as results-in conclusions. A more liberal

condition could just require that only one of them is derived in such a way.

The aim of the paper was to provide a computationally oriented framework for

the notion of counts-as and institutional agency. The model was given by a multi-

modal extension of DL, and we have shown that the complexity of the resulting

logic is linear. At the same time it is possible to use the logic as both a conceptual

and executable specification of an institution. Accordingly it is natural to ask

whether the logic has been implemented. While specific implementations for the

logic do not exist, [Governatori and Pham 2005] describes an implementation of a

similar modal (deontic) variant of DL. The implementation follows very closely the

data structures and algorithm used to prove Theorem 4. Therefore the logic

presented here can be easily implemented (indeed a Python prototype for the

inference engine can be implemented with a few hundred lines of code).

Finally, we suggest some conceptual refinements for our future research.

First, the model should cope with a wider range of properties and with other

concepts of agency, such as those mentioned in Sect. 1, i.e. the notions of ability

[Elgesem 1997] and indirect successful action. Both of them are crucial in

modelling the co-ordination of agents: (a) the inference of institutional facts may be

conditioned by the practical capability of an agent to do things that generate by

convention these facts; (b) the characterisation of the institutionalised power may

require that an agent is empowered to realise indirectly a state of affairs without

specifying the chain of agents that will bring about such a state of affairs.

Another issue concerns the relations between different institutions. These

relations are relevant when an action takes place in different institutional contexts

and produces diverse, and possibly contradictory, results. Following [Gelati et al.

2004], multi-institutional contexts are captured by stipulating that A)s B ¼def

ðAVDsBÞ ^ ðDsAVDsBÞ ^ ðDsAVDs0BÞ. They may be represented here intro-

ducing counts-as rules indexed by different institutions: the superiority relations

would play an important role in settling possible contradictions between different

institutional contexts. But that is not all since the matter regards the complex

problem of the relation between normative systems [Prakken 1997].

We also have to develop a more accurate mechanism to deal with conflicting

institutional results arising from the exercise of different powers and which lead to

dropping institutional facts which were previously derived. This question requires

to develop a dynamic account of the institutional mechanisms. Of course, the idea,

according to which the generation of institutional facts is close to the concept of

causality, is a feasible option in this regard. However, as we said, this diverges

from our view of the counts-as link. An alternative possibility is thus to introduce

explicit temporal dimensions, as done in [Governatori et al. 2005], in order to

make explicit when an institutional fact p is cancelled by a conflicting one which

results from the subsequent exercise of a different power, or even of the same

power that produced p.
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Finally, we have to introduce in the current framework deontic modalities, as

they are, too, crucial in modelling the normative coordination of agents. Some

promising results in this perspective are already provided, for example, in

[Governatori et al. 2005, Governatori et al. 2006], but a more extensive work is

needed in studying the properties of the system when deontic concepts are added.

Appendix

Proofs of the Theorems in Sect. 4

Theorem 1 Let # ¼ Dc; oc;Rc;Di; oi;Ri; and I be an institutional action theory.
There is no literal p such that I ‘ þ#p and I ‘ �#p.

Proof The result is a straightforward consequence of the principle of strong

negation [Antoniou et al. 2000a, Antoniou et al. 2000b] used to define the proof

conditions for the logic at hand. According to the principle of strong negation the

condition for þ# is the constructive negation of that of �# and the other way

around. Thus if the condition for þ# is satisfied the condition for �# fails and the

other way around.

Theorem 2 Let I be an institutional action theory, and M 2 fc; ig; i 2 A.

I ‘þoMp and I ‘þoM�p iff I ‘þDMp and I ‘þDM�p:

Proof We have to show that if we have both þqMp and þoM:p then the only

possible derivation is one where the two are both justified by clause (1) of the proof

conditions for þq, and combinations of justifications where one of them is justified

in terms of clause (2) lead to a contradiction.

It is clear that a combination of clauses (1) does not lead to any contradiction.

Thus we have that both þDMp and þDM:p.

Let us consider the cases where one is justified by clause (2). This means that

clause (2.1) is satisfied thus for M¼ c we have �DcCðpÞ, and for M¼ i both

�DiCðEipÞ and �DiEkp. But both :p 2 CðpÞ and �p 2 CðEipÞ, thus we have

�DMp. By Theorem 1 it is not possible that both I ‘ þDMp and I ‘ �DMp. Thus in

this case we get a contradiction.

We examine now the situation where M¼ c and both conclusions are justified by

clause (2). This means that 9rþ 2 Rsd½Ep� such that the rule is applicable (i.e., the

condition of clause (2.2) is satisfied), and at the same time we have that

9r� 2 Rsd½E�p� such that r� is applicable. Rsd½E�p� � R½CðpÞ�, thus there must be

a rule t0 2 R½Ep� such that t0 applicable and t0[r� (according to clause (2.3.4)). We

have two cases (i) t0 is maximal (i.e., :8s[t0) (ii) t0 is not maximal. For (i) we have

that t0 2 R½Cð�pÞ� and is applicable thus t0 satisfies clauses (2.3) of �qc. Therefore,

�oc�p, and we have a contradiction according to Theorem 1. For (ii) let us consider

the set T0 ¼ fs : s[t0 ^ s 2 R½E�p�g. Notice that r� 62 T0, since the theory I is

acyclic. From T0 we eliminate the rules that are not applicable for condition (2.2) of

þqc, and we call the resulting set S0. Since we have þqcp this means that for every
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rule s2 S0 there is a rule t0 2 R½Ep� such that the rule is applicable and stronger than

s. Let s0 and t1 be such rules, If t1 is maximal we are done as in the previous

reasoning. We build the set T1 ¼ fs : s[t1 ^ s 2 R½E�p�g and then S1 in the same

way as S0. Since the theory is acyclic we have that S0 � S1. We can repeat this

construction n times for each rule in S0 until we reach a point where the rules we

have for Ep are maximal, and we get that �oc�p, from which we get again a

contradiction.

For M¼ i we have to consider rules in Rc½CðEipÞ� [ Ri½Ekp� [ Rc½Ekp� and the

conditions of applicability of clause (2.2) for þqi, when we build the sets Tn and Sn,

but the reasoning for qi carries over this case as well.

Theorem 3 Let I be an institutional action theory, and M 2 fc; ig; i 2 A:

1. DþM � oþM � RþM;

2. R�M � o�M � D�M;

3. Let I be a consistent institutional action theory such that I ‘ �Dip: If
I ‘ þoiEjp then I ‘ �oip.

4. For any i; Dþi � Dþc ; and oþi � oþc .

Proof For 1. The inclusion Dþ � oþ is immediate given clause (1) of the the proof

condition for þqM, which allows us to extend a derivation with þqMp if þDMp is

already in the derivation.

For the inclusion oþM � RþM , the proof is by induction on the length of the

derivation of þqMp. Notice that it is not possible to have a defeasible derivation

consisting of a single step: a minimal defeasible derivation has at least two lines. We

will use this case as inductive base. We have two possibilities. We have (i)

Pð1Þ ¼ þDMp for p¼ a, a 2 F or Eip 2 F, and then Pð2Þ ¼ þoMp justified by P(1);

or (ii) Pð1Þ ¼ �D�p (there are no strict rules for *p), and Pð2Þ ¼ þoMp, justified

by the fact that there is a strict or defeasible rule r in RM; AðrÞ ¼ ;, and

R½CðEipÞ� [ R½Ekp� ¼ ; and either Rc½Ekp� ¼ ; or 8s 2 Rc½Ekp�;AðsÞ \ Lit ¼ ;, for

k 6¼ M.

For (i) we have that the justification for P(1) corresponds to clause (1) of the

proof condition for þRM, thus we can create a proof for þRMp. For (ii) r 2 Rsd½p�
and the conditions (2) and (3) of the proof condition for þRM are vacuously

satisfied. We can now assume that the property holds for the derivation of þqMp of

length n. For the inductive step we have to consider whether þqMp is justified by

clause (1) or clause (2) of the proof condition for þqM. For (1) we have two sub-

cases: the conclusion is a fact and we can repeat the argument of the inductive base

or either clauses (2) or (3) of þDM apply. This means that by inductive hypothesis

there is a strict rule that satisfies either the condition of clauses (2) or (3) of RM. In

case þqMp is justified by clause (2.2) of þqM, then all we have to notice is that we

consider the same sets of rules as in clause (2) and (3) of þRM, plus the inductive

hypothesis.

For 2. The property follows immediately from 1 and the principle of strong

negation.

For 3. To prove this case we have to show how to build a derivation for �qip
given a derivation of þoiEkp, and give the appropriate conditions. If we can derive
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þoiEkp since we have þDiEkp, then by clause (2.1) we can derive �qip. Otherwise

we consider the rule r used to derive the conclusion. We have two cases (a)

r 2 Ri½Ekp� [ Rc½EEiEkp� or (b) r 2 Rc½Ekp�. The two cases are analogous, the only

difference is in the condition of applicability of the rule. We will say that r is

applicable if the appropriate conditions in clause (2.2) of þqi are satisfied. We

consider two exhaustive cases: (i) r is maximal, i.e., :9s; s[r, (ii) r is not maximal.

For (i) the maximality of r ensures that clauses (2.3.1) and (2.3.2) of �qi are

satisfied and then the applicability of r makes clause (2.3) true. Thus in this case we

can derive �qip. For (ii) if r is not maximal we consider the set of rules

S0 ¼ fs : s[rg. Let R
 ¼ Ri½p� [ Rc½EEip� [ Rc½p� If S0 \ R
 ¼ ;, then clauses

(2.3.1) and (2.3.2) are vacuously satisfied and again we are done. Otherwise,

consider a rule s2 S0. If s is discarded, it meets either conditions of clause (2.3) of

þqi, then we have that s satisfies also either clause (2.2.1) or (2.2.2), and we can

remove s from S0. Otherwise if s is applicable, then there is a rule t that satisfies

(2.3.3), and in particular t[s. At this stage we consider if t is maximal or not. If t is

maximal we have a rule that satisfies clause (2.3) of �qi, and again we are done. If t
is not maximal, we consider the set S1 ¼ fs : s[tg. Since [ is acyclic we have that

S1 \ R
 � S0 \ R
. We can now repeat the above reasoning for the rules in S1 \ R
,
and we can repeat it n times for each applicable rule in the set. In this way we

remove rules until we arrive at an applicable rule t0 2 Ri½p� [ Rc½Eip� [ Rc½p� such

that it is either maximal or that all stronger rules than it in R* are discarded. In this

way for every applicable rule in R* we have a rule that satisfies clause (2.3) of �qi,

and thus we can conclude �qip.

For 4. The proof is by induction on the length of the proof. We start with definite

conclusions. For the inductive base, i.e., Pð1Þ ¼ Dip, either EEip 2 F or there is a

rule r 2 Ri
s½p� such that AðrÞ ¼ ;. If EEip 2 F, then E0p 2 F ðE0 ¼ EEiÞ and

Ri
s½p� � Rs½Ep�, thus in both cases we can build a derivation for þDcp.

For the inductive step, i.e., Pðnþ 1Þ ¼ þDip, we assume as usual that the

property holds up to derivation of length n. Since Ri
s½p� � Rs½Ep�, and the conditions

of applicability of strict rules in clause (3) of þDi are the same as those of clause (2)

of þDc we have the same situation as in the inductive base. If Pðnþ 1Þ ¼ þDip is

justified by clause (4) of þDi (conversion), then there is a rule r 2 Ri
s½p� such that

AðrÞ \ Lit 6¼ ; and 8a 2 AðrÞ, þDca 2 Pð1. . .nÞ, and 8a 2 AðrÞ;þDia 2 Pð1. . .nÞ
are under the inductive hypothesis, thus we have that we can build a proof P0 where

8a 2 AðrÞ;þDca 2 P0ð1. . .mÞ, and thus we can conclude þDcp, using clause (2) of

þDc. If Pðnþ 1Þ ¼ þDip is justified according to clause (2) of þDi, then we have

that either EEip 2 F or there is a rule r 2 Rs½Eip� such that 8l 2 AðlÞ;
þDl 2 Pð1. . .nÞ. In both cases we can repeat the reasoning for the inductive base

to prove that there is a proof for þDcp.

For qþ the proof is essentially the same as that for Dþ. The only differences are

that we have to consider the two clauses (2.3). It is immediate to verify that (2.3.1)–

(2.3.3) of þqc and (2.3) of þqi are identical; in addition we have that clause (2.3.1)

of þqi (reinstatement by conversion) can be transformed into clause (2.3.4) of þqc

by inductive hypothesis as we did in the case for Dþ. Finally, for clause (2.1) all we

have to do is to notice that CðpÞ ¼ fEpg and CðEipÞ ¼ fE�p;E:Eipg, and thus

CðpÞ � CðEipÞ.
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Theorem 4 Let I be an institutional action theory. The extension of I can be
computer in time linear to the size of the theory, i.e., OðjRj 
 jUI j 
 jAjÞ:

Proof The proof is based on a modification of the algorithm given by Maher

[Maher 2001] to show that propositional DL has linear complexity.

The main idea of the proof is to build appropriate data structure to implement a

series of transformations reducing the complexity of the rules, and where each

literal and modal literal is examined only once. The focal point of the

transformations is based on the following properties:

– Let D ‘ þop then D [ fr : p1; . . .; pn; p) qg � D [ fr : p1; . . .; pn ) qg:
– Let D ‘ �op then D [ fr : p1; . . .; pn; p) qg � D.

The properties allow us (1) to remove already proved literals from the body of rules

and (2) to remove rules which have been discarded.

The algorithm has three phases. (1) A pre-processing phase where we use the

transformations given in [Antoniou et al. 2001] to transform a theory into an

equivalent theory without superiority relation and defeaters; the transformation is

linear. (2) A rule loader that parses the theory obtained in the first phase and

generates the data structure that encodes the theory. (3) The inference engine applies

transformations to the data structure, where at every step it reduces the complexity

of the data structure.

We set VI ¼ ;, then the rule loader first scans the set of rules and extracts the

set of conclusions Cn(I), and the set of atomic literals in it Lit(I). For each

element l 2 CnðIÞ [ LitðIÞ we add l;Eil;:Ei for every i2A to VI if the

expressions are well formed according to the formation conditions given in

Sect. 3.10 At this stage the rule loader builds a data structure where every

element of VI is associated with four hash tables: þh the rules that can prove the

elements, þh the rules that can disprove the element, þb the rules that need the

element to be applicable, and �b the rules that can be discarded by the element.

Each hash table depends on the type of literal it is associated to according to the

following conditions.

For a, we have:

– þh is the list of (pointers to) rules in Rc½a�;
– �h is the list of rules in Rc½�a�;
– þb is the list of rules in fr 2 R : a 2 AðrÞg;
– �b is the list of rules in fr 2 R : �a 2 AðrÞg.
For p (a plain literal), we have:

– þh is the list of (pointers to) rules in R½Ep�;
– �h is the list of rules in R½E�p�;
– þb is the list of rules in fr 2 R : p 2 AðrÞg;
– �b is the list of rules in fr 2 R : E�p 2 AðrÞg.

10 Notice that VI is in general smaller than UI, but it is easy to see that for every element e2UI�VI, we

have I ‘�oc;ie.
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For Eip (a modalised literal), we have:

– þh is the list of (pointers to) rules in Ri½p� [ Rc½EEip� [ Rc½p�;
– �h is the list of rules in R½E�p� [ R½E�Eip� [ Rc½Ekp� [ Ri½Ekp� for any

k = i;
– þb is the list of rules in fr 2 R : Eip 2 AðrÞg [ fr 2 Rc : p 2 AðrÞg;
– �b is the list of rules in fr 2 R : E�p 2 AðrÞg [ fr 2 R : :Eip 2 AðrÞg
[ fr 2 R : EiEkp 2 AðrÞg, for any k = i.

Each results-in rule r is represented by the rule loader as a pair (h,b) where h is

pointer to the head of the rule and b has pointers to the literals in A(r). On the other

hand a counts-as rules is implemented as an nþ 3-tuple (n ¼ jAj, the number of

agents in I) ðh; a; b; a1; . . .; anÞ. h is as per results-in rules, a is the set of pointers for

action literals in AðrÞ; b is the set of pointers for non action literals in A(r), and each

ai is either a set of pointers to non action literals if either AðrÞ \ Lit 6¼ ; or there is

no literal of the form Eip 2 AðrÞ; otherwise b is the special symbol nil.
The Inference Engine is based on an extension of the Delores algorithm/

implementation proposed in [Maher 2001] as a computational model of basic DL. In

turn

1. It asserts each literal l2F as a conclusion and removes l from all rules in þb(l),
and remove all rules (pointers to rules) in the hash tables for �h. For counts-as

rules, if l¼ a we remove l from the a part of the rules; if l ¼ p, we remove it

from the p part of the b part, and if l¼Eim, then (1) we remove both m and Eim
from the rules in þb(Eip), and (2) for counts-as rules we remove Eim and m
from the b part and p from the ai part as appropriate.

2. Then it scans the set of rules for rules where b is empty. For counts-as rules it

looks for rules where both a and either b or ai are empty for some i2A. For each

of such rules it takes a(r) and Eia(r) (only Eia(r) for counts-as rule where ai is

empty), and it checks that �h(a(r)), �h(Eia(r)) are empty. If so, it adds aðrÞ;
EiaðrÞ to the set of conclusions as appropriate.

3. It repeats the first step, using the conclusions obtained from the previous step.

4. The algorithm terminates when one of the two steps fails. On termination the

algorithm outputs the set of conclusions.11

Notice that all the operations described in the above steps correspond to hash

functions, thus they have constant complexity O(1). It is immediate to see that the

algorithm runs in linear time. Each (modal) atom/literal in a theory is processed

exactly once and every time we have to scan the set of rules, thus the complexity of

the above algorithm is OðjVI j 
 jRj 
 jAjÞ.
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