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Abstract
Arthrospira is a filamentous cyanobacterium, rich in proteins and bioactive compounds, 
which is a dietary supplement for humans and animals. However, the contribution of this 
“superfood” on the life history traits of zooplankton is poorly addressed. We conducted 
Daphnia magna growth experiment using Arthrospira platensis comparing it with Chla-
mydomonas reinhardtii as quality food, to evaluate the nutritional adequacy of A. platensis 
for rearing daphnids. The trichomes of A. platensis was fragmented using a bead crusher 
for easier ingestion by the daphnids. The growth experiments revealed that A. platensis 
alone did not support both survival and growth of D. magna, but the daphnid survival 
increased after the addition of 20% C. reinhardtii. When A. platensis was supplemented 
with 50% and more of C. reinhardtii, however, growth was better than to those daphnids 
exclusively fed on C. reinhardtii. This suggests that A. platensis have some nutritional limi-
tations essential for daphnids survival and growth instead of less digestibility or toxicity. 
Carbon (C) to Phosphorus (P) ratio (C:P = 46) of A. platensis was far below the thresh-
old for daphnid growth (C:P = 116). This implies that P limitation is unlikely in A. platen-
sis as feed for daphnids. Although the lack of some essential biochemicals such as sterols 
and polyunsaturated fatty acids may be a more plausible explanation, a small addition of 
A. platensis to standard microalgal foods would result in better growth of zooplankton, 
including D. magna.
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Introduction

Daphnia is a keystone zooplankton, transferring energy and carbon (C) from primary pro-
ducers to higher trophic levels (Urabe et al. 1997; Martin-Creuzburg et al. 2005; Freese and 
Martin-Creuzburg 2013). It is a non-selective suspension feeder which consumes various 
phytoplankton including cyanobacteria and bacteria regardless of their nutritional quality 
(Fink et al. 2011; Freese and Martin-Creuzburg 2013; Bednarska et al. 2014; Wenzel et al. 
2021). Previous studies have revealed the inadequate food quality of cyanobacteria for 
supporting the growth and reproduction of crustacean zooplankton because of their poor 
manageability, toxicity, and lack of or an insufficient quantity of essential dietary materi-
als such as polyunsaturated fatty acids (PUFAs) and sterols (von Elert 2002; Wacker and 
Martin-Creuzburg 2012; Thomas et al. 2022).

Cyanobacteria is poorly ingested by zooplankton because of the long trichome or colo-
nial nature of their cells (von Elert 2002; Bednarska et  al. 2014; Thomas et  al. 2022). 
Daphnia efficiently consumes food particles in the intermediate size range of 0.3–40 μm, 
but not those over ca. 50 μm (Geller and Müller 1981; Porter and McDonough 1984; Urabe 
et  al. 1996). Long filamentous algae are too large for daphnids to ingest, and such large 
food items interfere with the collection of other foods, and consequently cause loss of fit-
ness (Bednarska et al. 2014).

On the other hand, C transfer from cyanobacteria to daphnids can be constrained by 
elemental limitations; for example, shortage of phosphorus (P) for daphnid growth happens 
when the C to P ratio in the diet exceeds 300 (Urabe et al. 1997, 2018; Gulati and Demott 
1997). Higher P allocation into ribosomal RNA is required to support fast protein synthe-
sis, which explains the direct relationship between growth and P availability in the food 
(Elser et al. 2003; Bukovinszky et al. 2012). The effect of P limitation in the life history 
traits of zooplankton depends on the developmental stages and taxa (Thomas et al. 2022). 
In Daphnia, P limitation is pronounced at both growth and reproduction stages (Hartnett 
2019), which makes it a crucial element in the food. In addition, the availability of P affects 
the relative importance of fatty acids in the diet (Gulati and Demott 1997; Thomas et al. 
2022).

Even though most cyanobacteria show such food quality constraints in supporting zoo-
plankton life history traits, some cyanobacterial species have outstanding nutritional pro-
files and provide substantial benefits for humans and animals. Arthrospira is a filamen-
tous cyanobacteria that is rich in proteins and bioactive compounds (Martins et al. 2021; 
Spínola et al. 2022). Its nutritional quality has been widely investigated and used as a food 
supplement for humans and animals, and in pharmaceutical products (Gentscheva et  al. 
2023). Its high levels of proteins (60–70%), essential amino acids, fatty acids, and carbo-
hydrates have attracted attention to it as a sustainable food source for humans (Wang et al. 
2021) and animals (Altmann and Rosenau 2022). It also has anticancer, antibacterial, anti-
fungal, and antiviral activities because of its phycocyanin, phycocyanobilin, and allophyco-
cyanin production (Nuhu 2013; Wang et al. 2021).

Arthrospira can be cultured using the anaerobically digested effluent (ADE) of organic 
wastes (Dunn et  al. 2013; Hultberg et  al. 2017; Matos et  al. 2021) and aquatic weeds 
(O’Sullivan et  al. 2010; Kimura et  al. 2019). Water hyacinth (Eichhornia crassipes), for 
example, is an invasive aquatic weed that has deleterious effects on various aquatic ecosys-
tems worldwide (Williams 2004; Villamagna and Murphy 2010). In our ongoing project, 
Arthrospira is cultured using ADE produced from over-growing water hyacinth in Lake 
Tana, Ethiopia (Dersseh et  al. 2019; Damtie et  al. 2022a, b). Utilizing the Arthrospira 
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produced from the ADE of water hyacinth to culture zooplankton, and then to culture fish 
using the zooplankton as feed, may be an appropriate way to maximize use of water hya-
cinth. However, there is limited information on the effects of Arthrospira on the growth 
and reproduction of zooplankton including daphnids. In this study, we conducted a D. 
magna growth experiment using A. platensis as a single food and in combination with C. 
reinhardtii to evaluate the food quality of A. platensis to rear D.magna.

Methods

Microalgae cultivation

A. platensis (NIES-39) and C. reinhardtii (NIES-2235) were cultured using SOT medium 
(Ogawa and Terui 1970) and C medium (Ichimura 1971), respectively (Table 1). Both A. 
platensis and C. reinhardtii were grown in 1-L flasks under a photoperiod of 12 D:12 L 
with light intensity of ca. 440 µmol photons m−2 s−1 at 25 °C and ca. 180 µmol photons 
m−2 s−1 at 20 °C, respectively. The algae were harvested at the exponential growth phase 
and concentrated through centrifugation (4200 g). An aliquot of the algal suspension was 
collected from the well-mixed algal culture, and the absorbance of the algal suspension 
was measured with a spectrophotometer (SP-300, OPTIMA®, Tokyo, Japan) at a wave-
length of 680 nm. The carbon concentration of the algal suspension was estimated from 
a regression equation between absorbance and the carbon mass of the cells established 
before the experiment. A new inoculation for the microalgal culture was made every 5 days 
for A. platensis and every 7 days for C. reinhardtii to provide a constant supply of fresh 
algal food throughout the experiment.

Table 1   Chemical compositions of SOT and C media

SOT medium C medium

Chemicals Concentration (mg/L) Chemicals Concentration (mg/L)
NaHCO3 16,800 Ca(NO3)2・4H2O 150
K2HPO4 500 KNO3 100
NaNO3 2500 β-Na2glycerophosphate・5H2O 50
K2SO4 1000 MgSO4・7H2O 40
NaCl 1000 Vitamin B12 0.0001
MgSO4·7H2O 200 Biotin 0.0001
CaCl2 40 Thiamine HCl 0.01
FeSO4·7H2O 10 Tris (hydroxymethyl) aminomethane 500
Na2EDTA.2H2O 80 Na2 EDTA·2H2O 3
H3BO3 2.86 FeCl3·6H2O 0.588
MnSO4·7H2O 2.5 MnCl2·4H2O 0.108
ZnSO4·7H2O 0.222 ZnSO4·7H2O 0.066
CuSO4·5H2O 0.079 CoCl2·6H2O 0.012
Na2MoO4·2H2O 0.021 Na2MoO4·2H2O 0.0075
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Fragmentation of A. platensis trichome

The size of untreated A. platensis trichomes ranges from 50 to 500 μm (Wan et al. 2021), 
which is too large for daphnids to ingest (Geller and Müller 1981; Wenzel et  al. 2012; 
Bednarska et al. 2014). To be easily ingested by the daphnids, A. platensis trichomes were 
fragmented with a bead crusher (µT-01, TAITEC). A 2-mL conical screw cap microtube 
(1392-200-C, WATSON) and zirconia beads (CZS0060, AS ONE Corporation) with a 
diameter of 0.4–0.6 mm were used to fragment the trichomes. Approximately one-third of 
the volume of the microtube was filled with zirconia beads, and the remaining volume was 
filled with an A. platensis suspension with concentration of 0.5–0.8 mg C mL−1. The shak-
ing speed of the bead crusher was set at 4600 rpm for 5–25 s. The fragmented A. platensis 
cells were checked by a microscope every 5 s, and the sizes of the trichomes were meas-
ured with a digital micrometer (Wraycam, NF500) under inverted microscope (Olympus, 
IX70) at a magnification of 20×.

Growth experiment in D. magna

A stock culture of D. magna was maintained in aged and filtered tap water (ATW) with 
a glass fiber filter (Whatman, GF/F, diameter, 47 mm) at 20 °C, photoperiod of 12 L:12 
D and light intensity of ca. 180 µmol photons m−2 s−1 with sufficient amounts of C. rein-
hardtii (> 105 cells mL−1). For each food treatment, arbitrarily sorted five neonates born 
within 12 h from a stock culture were transferred to a 200-mL glass jar filled with ATW 
and an algal food suspension. The food treatments were conducted at five different ratios 
of fragmented A. platensis:C. reinhardtii (100:0, 80:20, 50:50, 20:80, and 0:100) at a food 
concentration of 4 mg C L−1 (Table 2). The A. platensis trichomes used for this experiment 
was fragmented for 25 s. Control treatments exclusively using C. reinhardtii as the food 
alga were conducted at 20%, 50%, and 80% of 4 mg C L−1 (Table 2).

The experimental animals were transferred to new bottle containing fresh food and 
culturing water every day, and dead animals were recorded. All treatments were made 
in triplicate and lasted for 6 days. At the end of the experiment, the surviving animals 
from each treatment were collected from the jar, washed with ATW, transferred to a tin 
capsule, dried in an oven (DV-600, YAMATO) for 24 h, and then weighed on a digi-
tal balance with a minimum weighing value of 1 µg (AD-4212D-32, A&D Instruments 

Table 2   Food treatments at different supply ratios of Arthrospira platensis to Chlamydomonas reinhardtii 
(AP:CR) for Daphnia magna growth experiments at food concentration of 4 mg C L−1

Food treatment (AP:CR) Carbon mass of food (mg C L−1)

A. platensis alone (100:0) 4
80% A. platensis + 20% C. reinhardtii (80:20) 3.2 + 0.8
50% A. platensis + 50% C. reinhardtii (50:50) 2 + 2
20% A. platensis + 80% C. reinhardtii (20:80) 0.8 + 3.2
 C. reinhardtii alone (0:100) 4
 C. reinhardtii alone (0:80) 3.2
 C. reinhardtii alone (0:50) 2
 C. reinhardtii alone (0:20) 0.8

No food 0
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Ltd). In addition, 30 neonates born within 12  h were arbitrarily sorted from a stock 
culture, and the same procedure described above was carried out to determine the initial 
dry weight of the animals. Somatic growth rates (g) of the animals were calculated as 
the increment of the dry mass between newborn (M0) and 6-day-old animals (M6) using 
Eq. (1):

Elemental analysis of microalgae

To determine the elemental composition of C, nitrogen (N), and P of the microalgae, we 
took an aliquot of approximately 10–15 mL of the fresh algal suspension, equivalent to a 
dry weight of 9.1 ± 0.4 mg for A. platensis and 2.9 ± 0.16 mg for C. reinhardtii and filtered 
with a pre-combusted and pre-weighed glass fiber filter (GF/F, diameter, 47 mm, What-
man). The filtered microalgae were dried in an oven (DV-600, YAMATO) at 60 °C for 24 h 
and weighed on an electronic balance (AW220, SHIMADZU). C and N contents of the 
algal cells were determined with an NC analyzer (NCH-22 A, SUMIGRAPH). The P con-
tents were determined with an autoanalyzer (Bran + Luebbe, AACS II, Norderstedt, Ger-
many) after degrading the sample with potassium peroxodisulfate at a maximum absorb-
ance wavelength of 880 nm, based on the phosphomolybdenum blue method (Murphy and 
Riley 1962).

Statistical analysis

Differences in the somatic growth rates of daphnids among the food treatments were tested 
with one-way analysis of variance (ANOVA). Treatments with no surviving animal per 
beaker were excluded from the ANOVA. When the ANOVA showed a significant differ-
ence, Tukey’s honestly significant difference (HSD) test was conducted at p < 0.05. All sta-
tistical analyses were made using R statistical software (R Core Team 2022).

Results

Trichome sizes of A. platensis

Trichome sizes of untreated A. platensis ranged from 64 to 595  μm with an average 
size of 363  μm. These are too large for daphnid ingestion. To ease consumption, the 
trichomes were fragmented with a bead crusher at the speed of 4600  rpm for different 
lengths of time (Figs. 1 and 2). This efficiently reduced the trichome to 50 μm on average 
in 5 s. The fragmented A. platensis trichomes were further crushed for up to 25 s, result-
ing in an average size of 15.6 μm. This is a similar size range to C. reinhardtii, 10 μm on 
average, and can be easily ingested by daphnids. Therefore, we used this fragmented A. 
platensis for the following experiments.

(1)g=
𝑙𝑛𝑀

6
−𝑙𝑛𝑀

0

6
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Fig. 1   Size distributions of Arthrospira platensis trichomes fragmented with a bead crusher at 0, 5, 10, 15, 
20, and 25 s represented as a, b, c, d, e, and f, respectively. Blue vertical lines represent median values

Fig. 2   Average trichome sizes of Arthrospira platensis at different times of crushing. Vertical bars represent 
standard deviation
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Elemental composition of the two microalgae

The C, N, and P composition of A. platensis and C. reinhardtii cells is shown in Table 3. 
P contents in A. platensis and C. reinhardtii were 10.3 ± 0.6 and 15.4 ± 0.8  mg g dry 
weight−1, respectively. The C:P ratios in A. platensis and C. reinhardtii were 46.3 and 
35.5 dry weight, while C:N ratios were 3.9 and 4.8 dry weight, respectively. There were 
no noticeable differences in the composition of the elements between the two microalgae.

Survival and growth of D. magna

All experimental animals fed exclusively on A. platensis, and those without food (star-
vation) died within 5 days (Fig. 3). On the other hand, animals fed on A. platensis sup-
plemented with at least 20% C. reinhardtii survived longer than 5 days. The survival 
rates increased with increasing supplementation of C. reinhardtii. Although more than 
50% of daphnids fed on 80% C. reinhardtii alone died within 6 days old, the remaining 
animals produced eggs and neonates.

Growth rates of the daphnids increased from 0.25 ± 0.031 day −1 to 0.37 ± 0.041 day 
−1 with increasing proportions of C. reinhardtii in the mixtures from 20 to 80% (Fig. 4). 
The differences among the treatments were statistically significant (Table  4). The 
growth rate in the treatment of 80:20 of AP:CR was lower than that in 0:20, while that 
in 20:80 was higher than that in 0:80 (Fig. 4).

Table 3   Phosphorus (P), 
carbon (C), and nitrogen (N) 
composition of Arthrospira 
platensis and Chlamydomonas 
reinhardtii 

Microalgae Contents (mg g dry-wt−1) C:P C:N

P C N

A. platensis 10.3 ± 0.6 477.3 ± 21.2 123.6 ± 5.2 46.3 3.9
C. reinhardtii 15.4 ± 0.8 546.3 ± 33.9 114.3 ± 6.5 35.5 4.8

Fig. 3   Survival rates of Daphnia magna at different supply ratios of Arthrospira platensis to Chlamydomonas 
reinhardtii (AP:CR) as food during the study period
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Discussion

Poor manageability of some cyanobacteria owing to their long chain, spiral, or colonial 
forms is one of the major barriers in ingestion and trophic transfer of energy and C to 
zooplankton (Bednarska et  al. 2014). Mechanical interference with the filtering process 
is one reason for the inferior assimilation of cyanobacterial C to zooplankton (Porter and 
McDonough 1984). Although the trichome size of A. platensis (ca. 363 μm on average) 
was too large for daphnids, ingestion was easy when the size was reduced to < 20 μm after 
fragmentation. We found, however, that daphnids could not survive when fed on such frag-
mented A. platensis alone. This implies that A. platensis lacks some essential nutrients 
mandatory to the survival and growth of daphnids.

Supplementation of A. platensis by just 20% of C. reinhardtii to total amount of food 
enhanced the survival and growth rates of daphnids, but these rates were lower than 
daphnids exclusively fed on C. reinhardtii at 20% supply. This suggests that the short-
age of some essential elements in A. platensis for daphnid growth cannot be improved 
by a small supplementation of C. reinhardtii. Growth improved when the daphnids 
were fed on > 50% supplementation of C. reinhardtii. In 80% supplementation of C. 

Fig. 4   Average specific growth rates of Daphnia magna reared with a mixture of Arthrospira platensis 
(AP) and Chlamydomonas reinhardtii (CR) at different ratios from 100:0, 80:20, 50:50, 20:80, and 0:100 of 
AP:CR, and exclusively on CR at 20%, 50%, and 80% of 4 mg C L−1. Vertical bars denote standard devia-
tion. Different letters above each column indicate significant differences by post hoc test using Tukey’s HSD

Table 4   Results of one-way analysis of variance and post hoc Tukey’s HSD test for the effects of food treat-
ments on growth of Daphnia magna. D f, degrees of freedom; SS, sum of square; MS, mean square; F, F 
value; and p, p value

Df SS MS F p

Between groups 6 0.03048 0.005080 4.899 0.00793
Within group 13 0.01348 0.001037
Bartlett’s K-squared = 1.6583, df = 6, p = 0.9483
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reinhardtii, the growth rate was higher than those daphnids fed on C. reinhardtii alone. 
This suggests that daphnids may be able to digest A. platensis and that it can contrib-
ute more effectively to growth once the essential nutrients are compensated by addition 
of a suitable alga such as C. reinhardtii. Similar studies have also indicated that daph-
nids in cyanobacterial food needs at least 50% eukaryotic microalgae to meet the nutri-
tional limitations of cyanobacteria (Martin-Creuzburg et al. 2008; Pietrzak et al. 2010; 
Wenzel et al. 2012). The use of cyanobacteria mixed with other better-quality micro-
algae has been found to enhance daphnid growth (Gulati and Demott 1997; Urabe and 
Waki 2009; Bednarska et al. 2014). This clearly explains that, even though cyanobac-
teria alone cannot sustain zooplankton life history traits, they can contribute to better 
growth and reproduction once their limitations are relaxed.

The poor nutritional quality of food algae for rearing daphnids is probably related to 
the limitation of essential nutrients. The trophic transfer of C and energy is limited by 
a small subset of elements and their proportions in the diet (Demott et al. 1991; Gulati 
and Demott 1997). Models of nutrient recycling and energy flow in zooplankton have 
revealed that the C:P ratio of zooplankton species is relatively more constant than that 
of their phytoplankton food. Stoichiometric variation in the algal food, mainly the low 
availability of P, affects zooplankton by direct elemental limitations, reducing digest-
ibility and declining PUFA content in the diet (Müller‐Navarra1995; Urabe et al. 1997; 
Gulati and Demott 1997). In this study, the composition of elements in A. platensis 
appeared similar to that of C. reinhardtii, suggesting the availability of sufficient C, 
N, and P to rear daphnids. The C:P dry weight ratios of A. platensis (46.3) were well 
below the threshold of 116 for daphnid growth (Urabe et  al. 1997, 2018). This dem-
onstrates that elemental limitation is an unlikely explanation for the poor quality of A. 
platensis to rear daphnids.

Another reason for the poor quality of A. platensis for supporting daphnid growth 
might be the absence or insufficient availability of dietary lipids, especially PUFA 
and sterols. Previous studies have shown that 74% of lipid content of C. reinhardtii is 
unsaturated fatty acids (USFA) of which 48% are omega-3 fatty acids, while in Spir-
ulina (in commercial Arthrospira powder), 38.6% of the lipid content was USFA with 
< 1.5% omega-3 fatty acid. In addition, alpha-linolenic acid, an important PUFA for 
daphnid growth, was found to be 42.4% in C. reinhardtii and 0.12% in Spirulina (Dar-
wish et  al. 2020). The most biologically important PUFAs for daphnid growth and 
reproduction such as alpha-linolenic acid, arachidonic acid, eicosapentaenoic acid, and 
docosahexaenoic acid are found in smaller quantities in Spirulina platensis (= A. plat-
ensis) (Tokuşoglu and Ünal 2003). This implies that insufficient availability of bio-
logically important PUFAs in Arthrospira may contribute to its inferior performance in 
supporting daphnid growth.

Previous studies have clearly demonstrated that the poor quality of cyanobacteria 
for zooplankton is due to lack of sterols, which are important lipids responsible for cell 
membrane fluidity and are precursors of steroid hormones (Elert et al. 2003; Martin-
Creuzburg and Elert 2004; Martin-Creuzburg et  al. 2005, 2008, 2009). Crustaceans 
convert phytosterols to cholesterol (Teshima 1971). It has been shown that sterols are 
primarily limiting elements for daphnid growth and play an important role in juvenile 
development (Martin-Creuzburg et al. 2011). Daphnid growth was initially limited by 
sterol availability but switched to PUFA once sterols shortages are compensated (von 
Elert 2002; Martin-Creuzburg et  al. 2005, 2008). The premature death of daphnids 
when they fed on A. platensis in this study might be associated with lack of sterols.
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Conclusions

Although A. platensis was ingestible by D. magna after appropriate fragmentation, it 
does not support survival and somatic growth of daphnids. A. platensis supplemented 
with C. reinhardtii as a standard algal food enhanced the survival and growth of the 
daphnids, suggesting the limitation of essential nutrients in A. platensis to support 
daphnid’s life history traits. Although such insufficiency might be the cause of the poor 
nutritional quality of A. platensis for rearing D. magna, a small addition of A. platen-
sis to standard microalgal foods would contribute to better daphnid growth than when 
standard foods are fed exclusively.
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