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Abstract
Sex development is a multi-step process involving determination, differentiation, and 
maintenance of the gonads, which culminates in producing fertile sperm and eggs. In tel-
eosts, candidate genes mastering this process can be thermosensitive before or just at the 
beginning of differentiation, the sensitive period in fish. The knowledge of these mecha-
nisms may be useful for the production of monosex populations in aquaculture. Here we 
investigated the influence of temperature on survival, growth, expression profiles of genes 
involved in early sexual development, and sex ratio. 5-day-old (undifferentiated) larvae 
were reared at 26, 28 and 31 °C for 90 days, and expression of genes involved in testis- 
(wt1b and ar) and ovary-determining (amh and foxl2) pathways, and vasa, were analysed 
four times from 20 to 90 days post-hatching, and the resulting sex ratios were estimated. 
Only foxl2 showed a thermosensitive transcription at 20 dph, decreasing at the highest 
temperature. None of the male-bias genes were regulated by temperature. Still, both wt1b 
and ar were upregulated in some individuals long after sex differentiation, suggesting the 
importance of testis-skewed genes not only at testis establishment but also at later stages. 
The sex ratio was not affected by temperature. Our study also revealed an unusual vasa 
expression profile before and after gonadal differentiation; in some fish increasing expres-
sion values were recorded while others presented low vasa expression even after differen-
tiation. Our results support a strict genetic control in the sex determination of tambaqui, 
despite thermosensitivity of some genes involved in its sexual development.
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Introduction

The establishment of the sex of an individual depends on the close relationship between 
the mechanisms of sex determination and gonad differentiation. Among vertebrates, fish 
are the most diverse group regarding both processes, which generally occurs in species-
specific and even strain-specific ways (Kossack and Draper 2019; Nagahama et al. 2021). 
In aquaculture species, the manipulation of reproduction and sex ratio are important fea-
tures to optimize fish production (Taranger et al. 2010; Martínez et al. 2014).

In short, teleost present genetic (GSD) and environmental (ESD) sex determination sys-
tems, with the possibility of mixed systems (Nagahama et al. 2021). In species displaying 
ESD, there are no consistent genetic differences between males and females and the sex 
ratio is rarely 1:1 (Valenzuela et  al. 2003; Sarre et  al. 2004; Valenzuela 2008). In these 
cases, the sex can be influenced by temperature, pH, photoperiod, hypoxia, density, and 
social interactions that somehow overlap the genetic background (reviewed by Fernandino 
et al. 2013). One of the most important environmental factors driving sex differentiation 
in fish is temperature (temperature-dependent sex determination, TSD). In such cases, the 
water temperature during the phase of undifferentiated gonads permanently and irrevers-
ibly influences the phenotypic sex of sensitive individuals (Valenzuela et al. 2003; Ospina-
Álvarez and Piferrer 2008). Even in some GSD species the exposure to extreme temper-
atures can alter the sex by epigenetic regulation (Shao et  al. 2014; Miyoshi et  al. 2020; 
Geffroy et al. 2021).

It is assumed that the thermal master switch, which directs the undifferentiated gonads 
to follow the male or female pathway, is the main gene(s) activated during the thermosen-
sitive period that drives specific responses during this developmental time window (Shen 
and Wang 2014). Candidates for this role are genes expressed prior to, or exactly at, the 
onset of the sensitive period. Genes such as hsd11b2, gr1, ar, sox9, sox8, fgf9, amh (mis), 
wt1 and dmrt1 (generally involved in the testis-determining pathway) and foxl2, cyp19a1a, 
wt4, rspo1 (implicated in the ovary-determining pathway) have been found to be sex-biased 
expressed and thermo-sensitive in fish (Fernandino et  al. 2012; Heule et  al. 2014; Shen 
et al. 2018; Shen and Wang 2018). In addition, the germ cells are important in mediating 
the direction of gonadal development in some species, and the degeneration or inhibition 
of germ cells by thermal stress are related to masculinization in many species (Shen and 
Wang 2018). Vasa have been reported to play pivotal roles in germ cell development and 
differentiation both in vertebrates (Tanaka et  al. 2000; Hartung et  al. 2014) and inverte-
brates (Hay et al. 1990; Yang et al. 2023). It is expressed only in germline cells and is a 
molecular marker gene in several fish species, such as medaka Oryzias latipes (Shinomiya 
et al. 2000), orange-spotted grouper Epinephelus coioides (Qu et al. 2020) and tambaqui 
Colossoma macropomum (Vasconcelos et al. 2019).

The tambaqui Colossoma macropomum is the second largest scaled fish from the Ama-
zon basin, can reach up to 30  kg and up to 1  m in length (Araújo-Lima and Goulding 
1988). It represents the most prominent native species in fish farming and consumption 
frequency in Brazil (IBGE 2021; Hilsdorf et al. 2022; St. Louis et al. 2022) and exhibits a 
sex-linked growth dimorphism (Almeida et al. 2016). Tambaqui is a gonochoristic species 
with a female homogametic system (XX/XY) and no sex-sensitivity to different pHs, in 
spite of originally living in basic and acidic waters (Morais et al. 2020; Varela et al. 2021). 
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The gonad differentiation occurs in 40 mm total length juveniles and is characterised by 
a sex biased gonad gene expression in which the Wnt/β-catenin pathway directs the ovar-
ian differentiation process, without the involvement of cyp19a1a (Lobo et al. 2020; Paixão 
et al. 2022). Among other genes, foxl2 and wt1, a classic antagonist of the Wnt/β-catenin 
pathway, are exclusively expressed in differentiating females and males respectively. And 
surprisingly the “male-bias” amh is differentially over-expressed by the females, being the 
first teleost to have higher expression of this gene in females during sexual differentiation. 
Among the classic thermo-sensitive sex-linked genes in teleost, tambaqui express ar and 
wt1 in developing testis and amh and foxl2 in developing ovaries (Lobo et al. 2020). How-
ever, it is still not known if the water temperature can affect sex ratio, which could facilitate 
sex manipulation in tambaqui farming and help in identifying possible threatness for the 
wild populations in global warming scenarios. Understanding the basis of tambaqui sexual 
development is therefore important to support the development of new farming technolo-
gies and for conservation biology. Thus, this work aimed to investigate the influence of 
water temperature on the sex determination and on the expression of genes involved in the 
sex differentiation of tambaqui.

Materials and methods

Ethics statement

All procedures of this work comply with the ethical of animal experimentation, adopted 
by the Brazilian College of Animal Experimentation (COBEA), and were approved by the 
Local Ethics Committee on Animal Use (CEUA) – of the Brazilian Institute for Research 
of the Amazon – INPA (n◦ 014/2017). The project has an Authorization of Access to 
Genetic Heritage under register A5784B5.

Animals, experimental conditions and sampling

A newly hatched full-sib progeny was obtained from a commercial hatchery at Presidente 
Figueiredo, Amazonas, Brazil. They were transported to the Laboratory of Ecophysiology 
and Molecular Evolution (LEEM), of the National Institute of Research in the Amazon 
(INPA/MCTI), Manaus, Brazil. During the first five days of acclimatization outdoors, a 
quick temperature trial was performed to establish the maximum and minimum tempera-
tures tolerated by tambaqui fries. Briefly, we tested temperatures ranging from 31 to 33 °C 
and from 24 to 26 °C for 24 h in groups of 20 fries. Based on the mortality registered in 
each group, the lowest and highest water temperatures tolerated were 26 and 31 °C, respec-
tively. Tambaqui larvae did not survive at the other temperatures tested.

On the 5th day, we gathered nine groups containing 60 larvae each, which were installed 
into 250 L tanks with aeration and water flow. Based on the pilot test of thermotolerance, 
the treatments consisted of three temperatures: 26 ºC, 28 ºC and 31 ºC, carried out in trip-
licates. To ensure the temperature stability of the experiment, a cooling system was used 
for the lowest temperature and thermostats heaters applied for the highest. For the third 
group (average 28 oC), there was no manipulation of the temperature, and the temperature 
followed the natural fluctuations of the water source of LEEM. The water temperature was 
monitored three times daily. To assure that treatment would cover the differentiation period 
of tambaqui, the treatments were applied during three months. Dissolved oxygen and pH 
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were recorded twice and once a day, respectively. Every two weeks water samples were 
collected from each tank for analyses of ammonia, nitrite, alkalinity and hardness.

During the experiment, a total of 72 juveniles were sampled (on the days 20, 35, 65 and 
95 post hatching; n = 6/treatment). For this, the fish were deeply anesthetized in a solution 
of buffered benzocaine (300 mg L− 1) (pH 7) followed by sectioning of the spinal cord. The 
juvenile trunks (after the removal of the head and region posterior to the urogenital papilla) 
were rapidly immersed in RNA later for total RNA isolation.

At the end of the treatment, the temperature of all tanks was stabilized at 28 °C and the 
fish were transported to the facilities of EMBRAPA Amazônia Ocidental, Manaus. Each 
group was allocated in a net-cage, all placed in a common earthen pond. The fish were 
maintained there for 8 months when the final sampling took place. At this sampling, the 
gonads were dissected, immediately fixed in Bouin’s solution for 24 h and included in par-
affin or methacrylate for histology, according to routine procedures. Microscopic analyzes 
were performed using the Zeiss Axio Imager 2 integrated optical microscopy system.

 RNA extraction and cDNA preparation

Total mRNA from trunks (n = 6/treatment) was isolated using Trizol reagent (Ambion 
RNA by life technologies), according to the manufacturer’s protocol. RNA integrity was 
confirmed by electrophoresis. The RNA quantity and purity were assessed by spectropho-
tometry on a nanodrop ND-1000 instrument (ThermoFisher Scientifics). After quantifica-
tion the samples were treated with DNAse using the RQ1 RNase-free DNAse kit (Pro-
mega). After DNase treatment, mRNA samples were again quantified by fluorimetry with 
the aid of Qubit 3.0 (Thermo Fisher). Complementary DNA was prepared by reverse tran-
scription of 6  µg of total RNA using the GoScript™ Reverse Transcriptase System Kit 
(Promega) according to the manufacturer’s recommendations.

Quantitative PCR

We chose two genes involved in the female pathway (foxl2 and amh) and two from the male 
pathway (wt1b and ar), known to play roles during early tambaqui differentiation (Lobo 
et al. 2020). In addition, we evaluated the transcription of vasa, a key gene for germline 
survival and development.

The qPCR primers were designed from mRNA sequences retrieved from the NCBI 
database (No. GSE130895), avoiding regions of conserved domains, and looking for 
intron-exon junctions to avoid amplification of genomic DNA (Table  1). The Primer-
BLAST (NCBI National Center for Biotechnology Information) and OligoAnalyzer Tool 
and PrimerQuest Tool (Integrated DNA Technologies) were used for primer design and 
analysis, respectively.

Quantitative PCR was performed in duplicates in 96-well optical plates, each well 
containing 10 µL of Fast Sybr Green Master Mix (Applied Biosystems), 100 ng of 
cDNA and 200 nM of each forward and reverse primer to a final volume of 20 µL. Ther-
mocycling was conducted in a 7500 Fast Real-Time PCR System v2.3 (Applied Bio-
systems). The following thermal profile for qPCR was used: initial denaturation step of 
95 °C for 10 min, followed by 3-step cycling for a total of 40 cycles of denaturation for 
15 s at 95 °C, annealing for 1 min at 60 °C and extension for 30 s at 72 °C. No template 
controls for each gene were run in all qPCR plates. To validate the assays, the amplifi-
cation efficiency was first estimated using serial dilutions of a pool of ovary and testes 
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cDNA (1:4, 1:16, 1:64, 1:256) and the determination coefficient (R2) were all above 
0.98. The melt curve was analysed at the end of each assay. The relative gene expression 
was calculated using the 2 − ΔΔCt method. All values were normalized to β-actin (Nas-
cimento et al. 2016) and calibrated to the average ΔCt of the group maintained at 28 °C.

Statistical analysis

All results were checked for homogeneity of variances by the Shapiro-Wilk test, and 
are presented as mean ± sd. For the analysis of the physical-chemical parameters of the 
water and the mortality rate, one-way ANOVA was used, followed by Tukey test for 
multiple comparisons of means when necessary. For expression analysis, the non-para-
metric Kruskal-Wallis test was used, followed by Dunn’s multiple comparison, since the 
assumption of homogeneity of variances was not met. Differences in sex ratio between 
the groups and deviation from 1:1 sex ratio were analysed using the chi-square test. All 
statistical analyses were performed in GraphPad Prism 9.4.1.

Results

Experimental conditions

The water temperature of the treatments was stable during the experiment. The high-
est variation was − 2.7 degrees in the temperature 28  °C, and the standard deviation 
was 0.30, 0.94 and 0.29 for the treatments of 26, 28 and 31 °C, respectively (Table 2). 
Dissolved oxygen decreased along with the increase of water temperature but did not 
reach the lower limit of tolerance for tambaqui (3 mg L− 1). The other physical-chemical 
parameters analysed did not differ during the experiment (p < 0.05; Table 2).

Table 1   Primers used for RT-qPCR

Gene Primer (5’ → 3’) Product size Accession number

vasa AGT​GGC​GAT​GGT​GAT​TTT​GG 147 pb DN199605_c6_g11_i1
ATT​TCC​ACC​ACC​ACT​GTT​CC

amh AGA​GCT​GCT​GTC​TGT​GCT​GA 97 pb DN202592_c6_g1_i1
CAT​CTG​CAG​TTT​GTCCA​

foxl2 GAG​TGT​AGC​AGA​AAC​GGA​GAC​ 120 pb DN147551_c0_g2_i1
CAC​GTA​CGA​GTA​AGG​AGG​TTTC​

wt1b TTG​GTG​TTC​GTG​GCT​GTT​GC 122 pb DN194293_c1_g1_i1
GGA​TAG​TGG​GCA​CAG​CGG​G

ar TTA​ACG​CTG​GAC​CAA​CAG​TC 169 pb DN179200_c1_g1_i1
GCG​ATT​CAG​CTA​ATC​TCC​CTT​

ẞ-actin CGT​GAT​GGA​CTC​TGG​TGA​TG 169 pb DN200938_c19_g2_i1
TCA​CGG​ACA​ATT​TCC​CTC​TC
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Fish growth and gene expression in early gonadal development

At the first sampling (20 dph), the fish had a mean standard length of 21 ± 1.0, 22 ± 2.1 and 
34 ± 2.35 mm in the groups of 26 °C, 28 and 31 °C, respectively. At 95 days post hatching 
(dph), standard length was 55 ± 3.0, 55 ± 1.9, 79 ± 4.5  mm at 26  °C, 28 and 31  °C, 
respectively, indicating that the treatment started before and finished after the period 
of sex differentiation (Lobo et  al. 2020) (Fig.  1a). vasa transcripts were detected in all 
samples. In each sampling, there was no difference in the mean vasa expression between 
the groups. However, the transcription increased with fish growth, most likely owing to 
their gonad growth and constant multiplication of germ cells (Fig. 1b). Interestingly, in all 
samplings there was a group of fish that presented low vasa expression, irrespective of the 
water temperature. On the contrary, there were other fish with higher expression of this 
gene, mainly around the differentiation period (40 mm; at approximately 40 dph; Fig. 1).

At 15 days of treatment, when undifferentiated larvae were 20 dph, only the female-
biased genes showed some regulation in transcription (Fig. 2). At this age, amh expres-
sion showed two groups at 31 oC, one with higher transcription than the other, while 

Table 2   Physical-chemical parameters of water during the temperature experiment

Data are presented as means and ± SD. Different letters on the same line indicate significant difference by 
Tukey’s 5% test (p < 0.05)

Water parameters 26 °C 28 °C 31 °C

Temperature (ºC) 26.4 ± 0.30a 28.1 ± 0.94b 31.3 ± 0.29c

Dissolved oxygen (mg L− 1) 6.19 ± 1.07a 6.38 ± 1.20b 5.38 ± 0.98c

pH 6.2 ± 0.60 6.2 ± 0.60 6.3 ± 0.47
Ammonia (mg L− 1) 0.63 ± 0.29 0.63 ± 0.21 0.98 ± 0.51
Nitrite (mg L− 1) 0.32 ± 0.47 0.14 ± 0.21 0.15 ± 0.21
Alkalinity (mg L− 1CaCO3) 2.57 ± 0.72 2.29 ± 0.73 2.50 ± 0.71
Hardness (mg L− 1 CaCO3) 19.67 ± 7.55 15 ± 6.41 16.45 ± 8.69

Fig. 1   Body standard length (a) and relative expression of vasa (b) of tambaqui Colossoma macropomum 
reared in different water temperatures during the phase of early gonad development. Dotted line points the 
beginning of sex differentiation in tambaqui. Results are shown as mean ± SD (n = 6/group). Different let-
ters indicate different mean values of the same group at different ages
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foxl2 expression decreased along with elevating temperatures. With further growth of 
the fish, and entering differentiation, amh maintained the expression pattern of two 
clusters in all the temperatures, with exception that after differentiation (95 dph) the 
expression was very low in the fish (already immature juveniles) reared at 31 oC, with 
exception of one sample (Fig. 2). In contrast, foxl2 did not display temperature or age 
regulation from 35 to 95 dph, except for one fish, in which it was upregulated at 28 oC 
at 95 dph. The same individual also displayed high amh expression and low wt1b and 
ar transcriptions, i.e., mostly likely it was a developing female.

The expression of the genes involved in the male development displayed a later 
regulation. wt1b and ar mRNA were detected at baseline levels in all larvae with no 
changes related to temperature up to 35 dph, when at 28 °C two out of six fish showed 
upregulation of wt1b and at 31 oC half of the group presented ar upregulated. Soon 
after the morphological gonad differentiation (65 dph), the expression of wt1b and ar 
were divided into two groups at 31 °C, probably biased in favour of the males. wt1b 
and ar mRNAs were regulated in immature juveniles (95 dph) as different individuals 
presented different relative expression values, without any temperature effect on these 
transcriptional levels (Fig. 2).

Fig. 2   Expression patterns of amh, foxl2, wt1b, and ar during growth and early gonadal development of 
tambaqui Colossoma macropomum. Results are presented as mean ± SD (n = 6)
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Survival, sex ratio and gonad morphology

The survival ratio at the end of the study was similar in all groups and ranged from 75.7 
to 81.6%. The sex of 271 (86 to 93/treatment) juveniles was histologically identified at 11 
months old, and the sex ratio was similar in all groups. Table 3 shows the number and per-
centage of males and females in each group.

No relevant difference was observed in the gonadal parenchyma of fish at 11 months of 
age in all groups. The females presented immature ovaries (Fig. 3a and b). Some ovaries 

Table 3   Sex ratio of tambaqui 
Colossoma macropomum in the 
experiment

Temperature Male Female p value
(x2 con-
sidering 
1:1)

N % N %

26 °C 43 46.7 49 53.3 0.620
28 °C 43 50.0 43 50.0 1.000
31 °C 41 44.1 52 55.9 0.300
Total 127 - 144 - -

Fig. 3   Section (5 μm) of Colossoma macropomum gonads. a and b) immature ovary; c) immature testis; d) 
testis in initial maturation; Black asterisk shows nest of oogonia. White asterisk shows spermatozoa. CT: 
connective tissue; GE: germinal epithelium; PFC: prefollicular cell; Oo: ovogonia; PvO: pre-vitellogenic 
oocytes; FC: follicular cell; Aund: type A undifferentiated spermatogonia; Adiff: type A differentiated sper-
matogonia; SC: Sertoli cell; Sc: spermatocyte; St: spermatid. The scale bar represents 25 μm
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were characterized by the presence of nests of oogonia surrounded by pre-follicular cells 
in the germinal epithelium; the majority (74%) were characterized by the onset of meiosis 
with the individualization of pre-vitellogenic oocytes surrounded by follicular cells. Males 
had testis in two stages, immature or at the beginning of maturation (Fig. 3c and d); a small 
number of males had testes with germinal epithelium containing cysts of undifferentiated 
and differentiated type A spermatogonia. Most males (72%) had maturing testis, character-
ized by the presence of cysts of spermatocytes, spermatids and some free spermatozoa in 
the lumen of the tubules.

Discussion

Tambaqui is traditionally the main source of animal protein in the north of Brazil and 
northern-neighbouring countries. Additionally, it is farmed as pure or in the formation of 
interspecific hybrids, being important for the native aquaculture industry (Hilsdorf et  al. 
2022). A possible sex ratio susceptibility of this species to different water temperatures rep-
resents a risk in the face of global climate changes. Besides, knowing the forces that drive 
sex differentiation in a farmed species is always fundamental for the development of new 
technologies based on sex manipulation to increase production at harvest. The sensitivity 
of tambaqui to thermal variations, particularly in its reproduction, growth, metabolism, and 
physiology was reviewed by Amanajás and Val (2022), and shows that the species grows 
and seems to regulate its metabolism more effectively between 25 and 32 °C. In an effort 
to fully characterize the system of sex determination of tambaqui, in this study we raised 
undifferentiated larvae at three different temperatures, two of them being the extremes 
tolerated by the species at larval stage, during sex differentiation, i.e., up to 3 months of 
age. As Colossoma macropomum forms a single large panmictic population over the broad 
range in the Amazon basin of Brazil, Bolivia, and Peru (Farias et al. 2010) and the breed-
ing stocks and wild populations display similar genetic diversity (Aguiar et al. 2013), we 
performed our study using a single population, assuming that there are no subpopulations 
nor family differences on the sex determination or sex sensitivity to temperature in tam-
baqui, as seen in other worldwide distributed species such as tilapia (Baroiller et al. 2009) 
and zebrafish (Valdivieso et al. 2022). The results show that water temperature does not 
influence tambaqui sex ratio, which exhibited the proportion of 1:1 at all temperatures ana-
lysed, which is also similar to that found in wild populations (Villacorta-Correa and Saint-
Paul 1999). Hence a possible gene dose effect for environmentally induced sex reversal 
(Quinn et al. 2007) can be ruled out since the larvae would not survive at higher tempera-
tures. Furthermore, they are within the temperature range of thermal comfort and the natu-
ral environment of the species. Similarly, tambaqui sex ratio is not changed by water pH 
(Morais et al. 2020). A possible environmental susceptibility could lead to changes in the 
gene pathway culminating in switches on the phenotypic sex of the fish (Fernandino et al. 
2013). Instead, our results reinforce the monofactorial sex determination system hypothesis 
in tambaqui, where the single or strongly (inter)linked genetic factors located on a sin-
gle chromosome overlap the environmental factor temperature in gonadal differentiation 
and consequently indicates a genetic sex termination (GSD; Devlin and Nagahama 2002). 
Although chromosomal dimorphism between tambaqui males and females has not been 
identified by karyotype (Nakayama et al. 2012), there is still the possibility of the presence 
of homomorphic sex chromosomes similar to autosomes.
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In tambaqui foxl2 and amh are upregulated in pre-differentiating females, while wt1b 
and ar are more expressed by the future males (Lobo et al. 2020). Hence, we analysed 
the expression of these genes in the present study to investigate a possible transcription 
regulation by water temperature. foxl2, amh, ar and wt1b were detected from undiffer-
entiated larvae to immature juvenile tambaqui (from 20 to 95 dph). Surprisingly, only 
foxl2 showed a thermo-sensitive expression before sex differentiation (20 dph), when 
transcription decreased from the lowest to the highest temperature before the onset 
of tambaqui morphological sex differentiation. The foxl2 gene belongs to the female 
pathway and promotes ovarian development by upregulating cyp19a1a expression, the 
key enzyme involved in the synthesis of estrogens, increasing germ cell number, and 
repressing male pathway gene expression (Zhang et  al. 2017). In teleosts, foxl2 tran-
scription can be thermosensitive and downregulated at high temperatures, such as in 
olive sole GSD/TE Paralichthys olivaceus, whose expression of foxl2 is repressed dur-
ing masculinization at high temperature (Fan et  al. 2019) and bluegill Lepomis mac-
rochirus that prior to sexual differentiation the expression of foxl2 was also repressed 
at higher temperature, however there was no significant difference in sex ratio (Shen 
et  al. 2018). Recently, it was discovered that high water temperature also decreases 
foxl2 expression in Yesso scallop Patinopecten yessoensis (Liu et  al. 2022). However, 
the effects on sex change are controversial and species-specific (Yamaguchi et al. 2010; 
Yamaguchi and  Kitano  2012; Shen et  al. 2018). In this study, the effect of tempera-
ture on foxl2 expression follows that observed in other teleosts, i.e., downregulation at 
higher temperatures. However, this effect was not sufficient to affect ovary differentia-
tion, as the sex ratio was not altered. A similar response was recently observed in juve-
nile tambaqui treated with anti-estradiol compounds; the treatments influenced gene 
expression (including cyp19a1a) and reduced E2 plasma levels without changing the 
sex ratio (Paixão et al. 2022). This result strengthens the hypothesis of a strict genetic 
sex determination of the species. On the other hand, it must be further investigated if the 
role of foxl2 does not involve TSD in tambaqui as it does in other species. Furthermore, 
in contrast to the most species studied to date, foxl2 transcription profile seems not to 
be positively correlated with cyp19a1a in tambaqui, as its transcription was identified 
by real-time quantitative PCR (qPCR) during the early stages of sex development that 
increased in fishes with 2 to 4 cm with an important inter-individual variability (Paixão 
et al. 2022). The unexpected expression of genes related to ovarian differentiation have 
been reported, especially in characids, such as Astyanax mexicanus in which none of 
the ovarian differentiation genes, i.e., foxl2a, cyp19a1a, and wnt4b displayed an early 
sexually dimorphic expression (Imarazene et  al. 2021). Controversial findings have 
also been reported in cyprinids, such as in Acrossocheilus fasciatus where the level of 
foxl2 expression was significantly lower in females during the sex determination period, 
which in this species is very long and late from 4 to 12 months (Ren et al. 2023).

All four genes analysed here presented a bimodal expression either before (mostly the 
female-bias amh and foxl2), during, or after sex differentiation (only male-bias genes wt1b 
and ar). At 20 dph the expression of amh was high and displayed into two clusters. This 
was more pronounced in the group with the longest body length (mean of 23 mm) reared 
at 31 oC). On the other hand, at 65 dph when mean fish length was from 45 to 48 mm, both 
wt1b and ar were highly expressed in average, but with some individuals showing high 
other low transcription, which can be interpreted as sex-biased expression favouring the 
males. This is in agreement with the length of sex differentiation of the species, as ovaries 
differentiate earlier at approximately 40 mm of total length, while testis remains as undif-
ferentiated gonads until later on (Lobo et al. 2020).
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In three months, old immature juveniles, only wt1b and ar showed bimodal expression 
profiles. amh and foxl2 transcriptions were almost null, except for one fish that presented 
very high relative expression of both genes. The fact that only testis-supporting genes 
remained upregulated in these juveniles suggests that their role is not restricted during 
male differentiation, but also crucial for testis maintenance. Similarly, during sex differen-
tiation of the Amur sturgeon Acipenser schrenckii ar expression was relatively late (Zhang 
et  al. 2022). In mammals wt1 is essential for the development of the urogenital system 
(Gao et al. 2014). In teleost fish two paralogs have been identified, namely wt1a and wt1b, 
as being involved in the maintenance of primordial germ cells, regulatory mechanisms at 
differentiation and maintenance of the gonads, but not in sex determination (Perner et al. 
2007; Jiang et al. 2017). The expression of wt1b in tambaqui juvenile trunks was marked 
by high values in fish of 45 to 48 mm standard length, i.e., just after the beginning of sex 
differentiation. Similar results were found for trunks of juveniles and adult males of the 
African cichlid Astatotilapia burtoni (Böhne et al. 2013; Heule et al. 2014) and in males of 
yellow croaker Larimichthys crocea (Xiao et al. 2019), suggesting that wt1b is an impor-
tant gene not only for the testis development, but also maintenance.

The present study revealed a peculiar expression profile of vasa in trunks of juveniles 
before and after the window of gonadal differentiation. In all four samplings, there were 
always individuals with low vasa expression while others presented high relative transcrip-
tion values. From 20 to 35 dph, coinciding with the period of gonadal differentiation in 
the species, that starts at 40 mm standard length (Lobo et al. 2020), the vasa expression 
increased up to three fold in some fish, while it remained low in others. After this period, 
the expression persisted increasing in some and low in others, even when differentiation 
was completed (95 dph). In teleost, the female differentiation occurs first than that in 
males, and ovarian differentiation is generally marked by a higher number of germ cells 
(Kobayashi et al. 2000; Xu et al. 2005; Imarazene et al. 2021). Hence, the clear variability 
on vasa expression among individuals can be associated with the sex dimorphic number of 
germ cells in tambaqui. Vasa is essential for the development of the germline in vertebrates 
and invertebrates (Begum et al. 2022), and vasa expression is restricted to gonads (Vas-
concelos et al. 2019). Although temperature did not produce any significant effect on vasa 
transcript abundance, the increase from 20 to 95 dph was more accentuated in fish reared 
at 31  °C compared to 26 and 28  °C. This result disagrees from those obtained for tila-
pia Oreochromis niloticus and pufferfish Takifugu rubripes in which higher temperatures 
induced germ cell degeneration and masculinization of ovarian somatic cells (Lee et  al. 
2009; Pandit et al. 2015). However, in turtle Mauremys mutica the level of vasa mRNA in 
female-producing temperature (FPT) embryos at 33 °C was significantly higher than that 
of male-producing temperature (MPT) embryos at 25 °C (Liu et al. 2021). In the bluegill 
Lepomis macrochirus, thermal stress delayed proliferation and reduced numbers of germ 
cells in the low-temperature treatment (17 °C) and morphological sex differentiation had 
not been detected up to 97 dph (Shen et al. 2018). In this study, the expression of vasa at 
the lowest temperature treatment (26 °C) exhibited a similar pattern to 28 and 31 °C from 
20 to 65 dph, but with a decrease at 95 dph.

In conclusion, our results showed that tambaqui sexual development was not sensi-
tive to temperature, in spite of an early disturbance in foxl2 transcription (downregulated 
by higher temperature). Although some regulation can be observed in the expression of 
amh, wt1, foxl2 and ar in all treated groups, this seems to be more related to the genetic 
sex of each individual than to temperature. While the female-bias genes are expressed 
earlier (before morphological sex differentiation), the male-bias genes are upregulated 
later and seems to be required for testis maintenance. As TSD species can be threatened 
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by scenarios of climate change, our results strongly reinforce the idea that tambaqui pre-
sent a strict genetic sex determination system, which, on the other hand, can facilitate 
the development of efficient techniques to produce monosex population of the species.
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