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Abstract
The present study investigated the protective effects of dietary Allium cepa against Sapro-
legnia parasitica infections and the amelioration of cadmium-induced immunosuppression 
in Oreochromis niloticus. Saprolegnia isolates were recovered during an outbreak of sapro-
legniasis in farmed O. niloticus raised in a poor aquatic environment. Isolates were identi-
fied phenotypically as S. parasitica. Results were confirmed further by ITS gene sequenc-
ing. Four fish groups were kept in water with cadmium (1.5 mg/L) and fed for 30 days on 
a diet supplemented with crude or alcoholic extracts of A. cepa using two concentrations 
(0.5% or 1%). Positive (with Cd) and negative (without Cd) control fish groups were given 
the basal diet. The 96  h LC50 value of Cd in tilapia was (15.1  mg/L Cd). Fish exposed 
to Cd showed poor growth performance parameters, abnormal biochemical measurements, 
impaired immunological responses, and high oxidative stress indicators. Feeding tilapia on 
A. cepa-supplemented diets enhanced their growth performance (WG, SGR) and improved 
the nonspecific immune responses (WBCs, total protein, globulins, lysozyme, myeloperox-
idase, and antiproteases). The inclusion of A. cepa in the diets reduced the oxidative stress 
(GST, SOD) and significantly decreased fish mortality after the challenge with S. para-
sitica. Dietary supplementation with A. cepa reduced cadmium accumulation in fish organs 
and up-regulated IL-1β and IFNɣ levels. The most favorable benefits were obtained by the 
addition of 0.5% A. cepa extract. Our results highlight the immunostimulatory properties 
of A. cepa dietary supplementation for farmed tilapia and recommend its use prophylacti-
cally to control saprolegniasis and mitigate cadmium adverse effects.
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Introduction

Saprolegniasis is a serious disease in the aquaculture industry that causes massive fish mor-
tality and colossal economic losses, particularly in winter (Nam et al., 2022). Saprolegnia 
parasitica (family, Saprolegniaceae) is one of the main causative agents of saprolegniasis 
and can cause massive mortality in fish and their eggs (Zahran et al. 2017; Ali et al. 2019). 
Members of the Saprolegniaceae family are ubiquitous in freshwater ecosystems and act 
as saprophytes, although some are detrimental fish pathogens (Sakaguchi et al., 2019). The 
emergence of saprolegniasis outbreaks in aquaculture is commonly linked to inferior water 
quality parameters and environmental stressors (Ali et al.2020).

Affected fish commonly exhibit cottony white to grey, brown masses on the skin and 
gills (Yanong 2003). Mechanical injuries, abrupt environmental changes, poor water qual-
ity, and aquatic pollution are the most predisposing factors of saprolegniasis in fish farms 
(Roberge et al. 2007).

Control of saprolegniasis requires adopting good management practices and adequate 
water quality parameters (Ali et al. 2019). Some disinfectants (e.g., formalin and hydrogen 
peroxide), sodium chloride, and boric acid have been proposed to keep the disease under 
control (Waterstrat and Marking 1995; Schreier et  al. 1996; Ali et  al. 2019). However, 
some of these chemicals may impact the aquatic environment, and their residues can accu-
mulate in fish-derived products (Thanikachalam et  al. 2010; Özçelik et  al. 2020). Previ-
ously, Malachite green was considered one of the most effective treatments for the disease; 
however, it was banned in edible fish due to its carcinogenic and toxicological properties 
(Srivastava et al. 2004). Vaccination is a new proposed strategy for controlling saproleg-
niasis; nevertheless, its application in aquaculture is costly and impractical (Earle & Hintz 
2014; Minor et al. 2014).

Medicinal plants and their extracts have long been considered competitive alternatives 
to chemotherapeutics in aquaculture as these plants contain significant amounts of biologi-
cally active compounds with immunostimulatory, antifungal, antibacterial, antioxidant, and 
anti-inflammatory effects (Milutinović et al. 2021; Shah et al. 2021). Extracts from pome-
granate, clove, and Thymus linearis have been proposed as potential therapies for sapro-
legniasis in aquaculture (Shah et al. 2021; Mostafa & Yassin 2022). The essential oils of 
Cuminum cyminum, Eryngium campestre, and Mentha piperita have also shown antifungal 
activity against S. parasitica under in vitro conditions (Adel et al. 2020).

Enhancing fish immunity through medicinal herbs is an effective strategy for control-
ling aquatic animal diseases (Elgendy et al. 2016, 2021; 2022a; Ali et al. 2021). Numerous 
herbs have been utilized in their crud or extracted forms to stimulate fish’s immune sys-
tems. Onion (Allium cepa L.) has been used medicinally since ancient times (Özçelik et al. 
2020). A. cepa contains numerous bioactive compounds such as organosulfur, flavonols, 
ascorbic acids, carbohydrate prebiotics, and its by-products. These compounds have mul-
tiple health benefits, including anti-inflammatory, antimicrobial, antioxidative, antistress, 
antidiabetic, anticancer, and immunomodulatory effects, along with other nutritional ben-
efits (Sagar et al. 2022). The health promotion outcomes relevant to feeding fish on onion-
enriched diets and their resistance to some bacterial infections have been emphasized in 
earlier reports (Younes et al. 2021).

Recently, Egypt’s Nile tilapia (Oreochromis niloticus) industry encountered huge eco-
nomic losses due to infectious disease outbreaks (Ali et al. 2020; Abdelsalam et al. 2021; 
Eissa et al. 2021; Elgendy et al. 2022b). Fish reared in farms with polluted water sources 
are more vulnerable to numerous infections, including fungal diseases (Zahran et al. 2017; 
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Ibrahim 2020). Cadmium is among the toxic pollutants released into the aquatic systems 
and seriously threatens aquatic animal health (Bayomy et al. 2015; Elgendy et al. 2015a,b). 
Even trace amounts of cadmium in the aquatic environment can be toxic to cohabitant fish 
as it accumulates in the sediments and may subsequently be absorbed by fish (McGeer 
et al. 2012). Fish can uptake cadmium either directly by absorption through their gills or 
via food intake (Komjarova & Bury 2014). Exposure of fish to toxic levels of waterborne 
cadmium can enhance the production of reactive oxygen species (ROS) and cause cellular 
and DNA damage (Kovacik et al. 2019). Additionally, cadmium can replace other metals 
in proteins and enzymes, thus impairing their ability to maintain vital cell functions (Wang 
et al. 2021). Cadmium also disturbs thyroid hormone production, and the hypothalamus-
pituitary-interrenal (HPI) axis eventually disrupts the fish’s metabolism, reproductive and 
immune systems functions (Garcia-Santos et al. 2013). Cadmium also negatively impacts 
osmoregulation, growth, and fish survival (Paul and Small 2021). Cadmium can accu-
mulate in fish tissues and may lead to organ dysfunction following the chronic exposure 
(Abbas et al. 2019b).

The study aimed to identify Saprolegnia spp. obtained from farmed Nile tilapia during 
an outbreak of saprolegniasis using phenotypic and genotypic characterization methods. 
Further, the study investigated the effectiveness of feeding tilapia on A. cepa-supplemented 
diets to alleviate the immunosuppressive effects of waterborne Cadmium and increase tila-
pia resistance to experimental infection with S. parasitica.

Material and methods

Phenotypic and molecular characterization of S. parasitica affecting naturally 
infected fish

Saprolegnia spp. were isolated during an outbreak of saprolegniasis (70% mortality) in 
Nile tilapia, farmed within a fish farm in ElManzala, Dakahlia Governorate, Egypt, dur-
ing winter 2021. The most prominent clinical signs were visible cottony white to gray 
masses on the skin, fins, and gills of affected fish. Analysis of the water samples showed 
higher levels of cadmium, averaging about (9.89 μg/l), which exceeds the permissible lim-
its (USEPA 1988). The other heavy metals were within permissible limits. The average 
oxygen and unionized ammonia levels recorded at the sampling time were 3.6 mg/L and 
0.65 mg/L, respectively.

Wet mounts prepared from white masses collected from skin and gills were examined 
microscopically. Affected tissues from tilapia showing signs of fungal infection were asep-
tically excised, inoculated on Sabouraud Dextrose agar (SDA) supplemented with ampi-
cillin (500  mg/L), and vancomycin (100  mg/L) to reduce microbial contamination as 
described by Ali et  al. (2014) and Beckmann et  al. (2020). Inoculated plates were incu-
bated at 20  °C for 24  h in the hydrobiology department laboratory, Veterinary research 
institute, National Research Centre. A small plaque of the agar with an emerging hyphal 
tip was excised and re-inoculated onto a new SDA medium for culture purification. The 
purified fungal strains were identified microscopically with the methods described by Shin 
et al. (2017).

Purified isolates (n = 6) were genotypically characterized by amplifying the internal tran-
scribed spacer (ITS) region using the universal fungal primers ITS1-ITS4 (White et al. 1990). 
The extraction of genomic DNA from Saprolegnia isolates was performed using the DNeasy 
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Plant Mini Kit (Qiagen, Hilden, Germany), following the manufacturer’s protocol. The purity 
and concentration of extracted DNA were analyzed using the Nanodrop ND-1000 spectropho-
tometer (Thermo Fisher Scientific, Wilmington, USA), then adjusted to 50 ng/μl, and finally 
stored at − 20 °C until used. PCR amplification of the internal transcribed spacer (ITS) genes 
was performed using the universal ITS gene primers, ITS1: 5′-TCC​GTA​GGT​GAA​CCT​GCG​
G-3′, and ITS4: 5′-TCC​TCC​GCT​TAT​TGA​TAT​GC-3′ as designed by White et al. (1990). PCR 
conditions for the ITS gene were as follows: preheating for 5 min at 94 °C followed by 35 
cycles of denaturation (94 °C, 45 s), annealing (50 °C, 30 s), extension (72 °C, 1 min), and 
final elongation step at 72 °C for 7 min. The amplicons were purified from the gel using the 
QIAquick gel extraction kit (Qiagen, Tokyo, Japan). The amplified ITS genes were subjected 
to bi-directional Sanger sequencing with primer pairs (ITS1 and ITS4) using the Big Dye ter-
minator Chemistry v3.1 kit (Applied Biosystems™, CA, USA). Sequencing reactions were 
visualized on an ABI 3730xl DNA sequencer (Applied Biosystems™, CA, USA). The editing 
and contig assembly of sequences were performed by BioEdit v. 7.2.5 (Hall 1999). Finally, 
the assembled sequences were identified using the BLAST in the GenBank database with a 
minimum BLAST cut-off of > 99% identity for a top match. The accession numbers were gen-
erated for six isolates after submission to the GenBank database.

The phylogenetic tree was conducted to match the ITS genes sequencing from the cur-
rent six isolates of Saprolegnia spp. with the typing strains of both S. parasitica and S. 
declina and different isolates of S. ferax, S. hypogyna, S. litoralis, S. anomalies, S. oliviae, 
S. bulbosa, S. australis, S. aenigmatica, S. furcate, S. terrestris, and S. monilifera retrieved 
from the GenBank database using MEGA X (Kumar et  al. 2018). The neighbor-joining 
tree was rooted on Aphanomyces euteiches strain ATCC 201,684 (AY683887), which was 
used as an outgroup. These factors were applied during tree construction: pattern among 
lineages: homogeneous; substitutions: transversions and transitions; 95% cut-off partial 
deletion principal; and bootstrapping with 1,000 replicates.

Assessing the 96 h LC50 acute toxicity assays of Cd

Healthy O. niloticus (n = 84) about (50–65 g) obtained from a fish farm in Giza governo-
rate, Egypt, were transferred alive to the laboratory and distributed in experimental glass 
aquaria (50 L each) with dechlorinated tab water with aeration using aquarium air pumps, 
acclimatized for seven days. The temperature was kept at 26 ± 1 °C, and fish were starved 
for 48 h before and throughout the experiments. Fish were exposed to different CdCl2 nom-
inal cadmium concentrations of 0 (control), 10, 15, 20, 25, 30, and 35 mg/L, respectively, 
following the same methods described by Garcia-Santos et  al. (2006). Twelve fish were 
equally distributed in two 50 L tanks for each tested Cd concentration. Water samples were 
taken at the experiments’ beginning and end for Cd analysis. The experimental aquaria 
were observed, and dead fish were removed and recorded every 12 h. The LC50 value of 
cadmium chloride was calculated using Probit analysis following the methods described by 
Finney (1971).

Experimental design and samples

Diets preparation

The green onion (A. cepa) was bought from a local market in Cairo. The green parts of A. 
cepa were collected, washed, and left to dry in the open air. The dried onion was crushed 
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and ground. The alcoholic extract of A. cepa was prepared by soaking the crude onion pow-
der (about 500 g) in a double volume of absolute ethyl alcohol for 5 days with shaking. The 
mixture was filtered, evaporated in a rotary evaporator, dried, and weighed as described by 
Azwanida (2015). A commercial floating fish diet (35% crude protein, 5.8% fat, 3.5% crude 
fibers, and 4100 kcal digestible energy) (Skretting, Egypt) was ground, mixed with 0.5 and 
1% of either crude onion powder or its alcoholic extract according to Akrami et al. (2015) 
and Younes et al. (2021). Diets were reformed, pelleted and kept sorted at 4 °C. Diets were 
offered twice daily at 2% of the fish’s body weight for 30 days.

Fish rearing and management

Healthy tilapia fish (n = 360) with an average body weight of 60–70 g were collected from 
a private fish farm in Giza governorate, Egypt, and left to acclimatize to the laboratory 
conditions for two weeks in glass aquaria (50 L each) aerated with aquarium air pumps. 
The average water quality parameters were examined and maintained throughout the whole 
experimental period as the following: 26 ± 1 °C for water temperature, 7.88 ± 0.34 mg L−1 
for dissolved oxygen, 7.15 ± 0.01 for the pH value, and 0.012 ± 0.02 mg L−1 for un-ionized 
ammonia. Half of the aquarium’s water was siphoned every other day to remove wastes and 
replenished with new well-aerated water from the stock tank. During the acclimatization 
period, fish were fed on a commercial basal diet with 35% protein (Skretting, Egypt).

Experimental set‑up

After the acclimatization period, fish were distributed randomly in the glass aquaria into 
six groups, each containing sixty fish (20 × three replicates) as shown in supplementary 
Fig. 1. Fish were fed the experimental diets for 30 days at 2% of their body weight. The 
first four groups (G1, G2, G3, and G4) were fed on a diet supplemented with different con-
centrations of crude or extracted A. cepa as the following: crude onion 0.5% (G1), crude 
onion 1% (G2), onion extract 0.5% (G3), and onion extract 1% (G4). On the other hand, 
fish in groups 5 (positive control) and 6 (negative control) were fed on the basal diet sup-
plemented with 0% onion. Waterborne CdCl2 at the concentration of (1.51 mg Cd/ L) (1/10 
of LC50) was added to experimental groups (1, 2, 3, 4, and 5). Fish in group 6 were reared 
in normal water without cadmium (0 mg Cd/ L).

Growth performance

Fish were anaesthetized with tricaine methanesulfonate (MS-222) (Sigma). Growth perfor-
mance parameters, such as weight gain (WG), specific growth rate (SGR), hepato-somatic 
index (HSI), gonado-somatic index (GSI), and the condition factor (CF), were calculated at 
the end of the experimental period following Tukmechi et al. (2011).

Blood sampling

Blood samples were collected, after anaesthetizing fish, from the caudal vein of ten fish 
taken randomly from each replicate. Samples for hematological analysis were obtained in 
tubes with ethylenediaminetetraacetic acid (EDTA). Blood samples for other analytical 
assays were obtained without EDTA, left to clot, and centrifuged at 1500 g for 15 min. 
Collected sera were kept frozen at − 20 °C for further assays.
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Hematological analysis

The white blood cell counts (WBCs) were determined following the methods of Natt and 
Herrick (1952) using an improved Neubauer hemocytometer. The differential leukocytic 
count was assessed using the Giemsa stain.

Biochemical assays

The following biochemical assays were estimated using commercial kits (Spectrumdiag-
nostics, Egypt): Alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspar-
tate aminotransferase (AST) were used to assess liver function, kidney function (uric acid, 
and creatinine), lipid profile (triglycerides, and total cholesterol), and carbohydrate metab-
olism (glucose).

Non‑specific immune parameters

Serum proteins  Total protein and albumin levels (g/dl) were calorimetrically analyzed in 
fish sera using commercial kits (Spectrumdiagnostics, Egypt), and then globulin was esti-
mated. The procedures were performed following the standard methods described by Wu 
(2006).

Myeloperoxidase content  The total myeloperoxidase content in collected sera was meas-
ured according to Quade and Roth (1997). Briefly, 50 μl serum was diluted with 135 μl of 
Ca + 2 and Mg + 2 free HBSS (Sigma-Aldrich) in flat-bottomed 96-well microtiter plates. 
Then, 50 μl of 20 mM 3,3′,5,5´-tetramethylbenzidine hydrochloride (TMB, Sigma-Aldrich) 
and 5 mM H2O2 (Sigma-Aldrich) were added (both substrates of peroxidase). The reaction 
(color change) was stopped by adding 50 μl of 4 M sulphuric acid (H2SO4) after 2 min. The 
absorbance was read at 450 nm in a fluorimeter. Standard samples without serum were also 
analyzed.

Antiproteases activity  Serum antiproteases were studied following methods described by 
Lange et al. (2001) as the percentage of trypsin inhibition (antitrypsin activity).

Lysozyme activity  Lysozymes were estimated in different fish sera according to Parry 
et al. (1965) via the turbidimetric assay of Micrococcus lysodeikticus suspension (Sigma-
Aldrich, 0.2 mg/ml).\

Phagocytic activity (in vitro carbon clearance assay)  The phagocytic activity was deter-
mined following the methods of Spinu and Degen (1993). Blood was collected on heparin 
(50  IU/ml) from each fish and mixed with 6  μl of the supernatant fraction of India ink 
(Pelikan AG D-3000, Hanover, Germany). Samples were divided into three equal aliquots 
and incubated at 37 °C for 20 and 40 min, then the mixture (150 μl) was added to 2 ml 
saline. Samples were centrifuged at 2500  rpm for 5  min, and the supernatant was read 
spectrophotometrically at 535 nm, with the background taken as zero. Optical density read-
ings were converted to a log2 scale, and the phagocytic index was taken as the negative 
slope of the regression of optical density (log2) on time (h).
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Antioxidant activities  Liver specimens collected from fish were dissected and dropped 
into liquid nitrogen, homogenized, and centrifuged at 9000 g for 30 min at 4 °C. The pro-
tein concentration was measured in the supernatant using bovine serum albumin (BSA) 
and utilized in the determination of different antioxidants: Superoxide dismutase activ-
ity (SOD) was measured according to Villa-Cruz et al. (2009) as the amount of enzyme 
required to inhibit 50% of Nitro Blue Tetrazolium (NBT) oxidation. Catalase (CAT) 
was assayed as the decomposition of hydrogen peroxide, as described by Aebi (1984). 
Peroxidase activity was observed by guaiacol oxidation, according to Gulcin and Yildi-
rim (2005). The glutathione-S-transferase activity (GST) was estimated by conjugating 
1-chloro-2, 4-dinitrobenzene (Sigma-Aldric) in ethanol with reduced glutathione (Sigma-
Aldrich) in phosphate buffer, and the absorbance of the formed conjugate was read kineti-
cally at 340 nm. The GST activity was calculated using a molar extinction coefficient of 
9.6 mM−1 cm−1 and expressed as μmole/min/mg protein (Habig et al., 1974).

Cd accumulation analysis  Liver, muscles, gonads, and gills tissues were collected from 
experimental fish. All samples were snap-frozen in liquid nitrogen and stored at – 80 °C 
until further analysis. The obtained tissues were assayed for Cd residues following Wang 
et al. (2020) using an AA-6300 atomic absorption spectrometer (Shimadzu, Japan). Briefly, 
the tissue samples were incubated in a digestion vessel overnight with 10  mL of mixed 
acids (HNO3: HClO4 = 4:1). The samples were dissolved completely by keeping them in 
a sand bath at 180 °C, placed into a volumetric flask, and subjected to atomic absorption 
spectrometry analysis.

Challenge experiment with S. parasitica

S. parasitica isolate (ON7973024) obtained from naturally infected tilapia was used in 
the challenge experiment. The zoospores of S. parasitica were produced according to 
the method described by Stueland et al. (2005). Briefly, bundles of growing S. parasitica 
hyphae were washed twice in autoclaved pond water (APW). They were then transferred 
to a glass bottle containing APW and incubated at 21 °C for 24 h for zoospores induction. 
Zoospore encystment was induced, and cysts were counted using a hemocytometer (Bürk-
ertürk chamber). A total number of (n = 30) fish collected from each experimental group 
were utilized in the challenge experiment. Fish were subjected to “ami-momi treatment” 
(Hatai & Hoshiai 1993) before exposing them to S. parasitica spores at a concentration of 
1.0 × 104 L−1. Fish were observed daily for the clinical signs of saprolegniasis for 10 days. 
A total of 3 fish were taken and sacrificed from each experimental group at different time 
points, first day and the tenth day following the exposure to S. parasitica spores. Livers 
were collected in RNAlater to evaluate the expression of two immune-related genes, IL-1β 
and IFNɣ.

Expression of IL‑1β and IFNɣ genes

The total RNA was extracted from fish liver samples utilizing the RNeasy mini kit (Qiagen, 
Germany) following the manufacturer’s instructions. The Quantinova SYBR Green RT-
PCR kit (Qiagen, Germany) and specific primers (Table. 1) were used for relative quan-
tification of IL-1β and IFNɣ that were normalized to β-actin as a housekeeping gene. The 
RT-PCR analysis was done in a Stepone plus instrument (Applied Biosystems) under the 
following thermocycler condition: 50 °C for 30 min followed by 95 °C for 5 min. The PCR 
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cycling was performed in 40 cycles of denaturation at 95 °C for 15 s, annealing, and exten-
sion at 60 °C for 45 s. The relative mRNA expression pattern for each gene was calculated 
using the comparative 2−ΔΔCt method approved by Livak and Schmittgen (2001).

Statistical analysis

The one-way ANOVA analysis was used to determine the significant differences in the 
measured values (Duncan, 1955). SPSS (version 17.0 for Windows) software (SPSS Inc.) 
was used in statistical analyses at p < 0.05. In the challenge experiments, we compared the 
resulting survival curves among the fish groups fed on the A. cepa and positive controls 
with Kaplan–Meier survival plot using log rank (Mantel-Cox test) (Kaplan & Meier 1958). 
Pair-wise comparison differences between each group was considered to be significant at 
a P value of < 0.05. Statistical analyses were performed with GraphPad Prism 9 (GraphPad 
Software, Inc., San Diego, CA).

Results

Phenotypic and molecular characterization of S. parasitica

Diseased fish collected during the natural outbreak of saprolegniasis showed cotton-wool-
like masses on the external body surfaces (Fig.  1a). The microscopical examination of 
wet mounts prepared from the skin lesions revealed the presence of non-septate hyphae 
with characteristic zoosporangia (Fig. 1b). After purification, white cottony growths were 
observed on the sabouraud dextrose agar medium (Fig. 1c).

The Basic Local Alignment Search Tool (BLAST) analysis of the ITS gene sequences 
confirmed that the six isolates were deeply embedded in the genus Saprolegnia group. The 
accession numbers of the ITS gene sequenced from the six isolates ranged from ON797302 
to ON797307. The alignment of these sequences unveiled 100–99.72% similarity to S. 
parasitica strains (AY455771T; FJ545238T; KX494868; AB727993; KT807577; and 
OM275427). The intraspecies similarity was 99.57–100% for the six S. parasitica isolates 
recovered from Nile tilapia, with nucleotide differences ranging from 2 to 3 bp. The phylo-
genetic analysis of amplified sequences of the six S. parasitica isolates grouped them with 
known sequences of S. parasitica and separated from other groups belonging to S. declina, 
S. ferax, S. hypogyna, S. litoralis, S. anomalies, S. oliviae, S. bulbosa, S. australis, S. aenig-
matica, S. furcate, S. terrestris, and S. monilifera (Fig. 2).

Table 1   Primers used in the study

Gene Primer sequence Reference

β-actin F: CCA​CAC​AGT​GCC​CAT​CTA​CGA​
R: CCA​CGC​TCT​GTC​AGG​ATC​TTCA​

Qiang et al. (2014)

IL-1β F: CAA​GGA​TGA​CGA​CAA​GCC​AACC​
R: AGC​GGA​CAG​ACA​TGA​GAG​TGC​

Dawood et al. (2020)

IFNɣ F: AAG​AAT​CGC​AGC​TCT​GCA​CCAT​
R: GTG​TCG​TAT​TGC​TGT​GGC​TTCC​
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96 h LC50 of Cd

The 96 h LC50 value for Cd in O. niloticus was (15.1 mg/l Cd). The highest fish mortality 
rate (91.7%) was seen in fish group exposed to the concentration of 35 mg/L Cd. Tilapia 
subjected to Cd at concentrations of 30, 25, 20, 15, 10, and 5 mg/L Cd showed mortality 
rates of 75%, 66.7%, 58.3%, 41.7%, 25%, and 16.7%, respectively.

Growth performance

Fish exposed to waterborne cadmium and fed on the basal diet (G5) displayed a significant 
decrease (P < 0.05) in WG and SGR values compared to fish not exposed to cadmium (G6). 
Tilapia exposure to cadmium also caused a significant reduction (P < 0.05) in their HSI 
and GSI values compared to fish which had not been exposed to waterborne cadmium, as 
shown in Table 2.

Tilapia fed on diets supplemented with A. cepa either in its crude or extracted from 
showed a significant increase (P < 0.05) in WG and SGR values compared to the posi-
tive control group without A. cepa treatments while still having significantly lower values 
(P < 0.05) than control negative fish not exposed to cadmium. The highest WG and SGR 
values were recorded in fish fed on diets with 1% crude A. cepa. There were no significant 
changes (P > 0.05) in HIS, GSI, and CF values in fish groups fed on A. cepa dietary inclu-
sions, as shown in table.2.

White blood cells counts (WBCs) and biochemical assays

Fish exposed to waterborne Cd and fed on the basal diet showed a non-significant 
(P > 0.05) decrease in the total WBCs, granulocytes %, and lymphocytes values compared 
to control fish without cadmium exposure. On the other hand, monocytes % was signifi-
cantly decreased (P < 0.05) in tilapia exposed to waterborne Cd and fed on the basal diet 
compared to control fish not exposed to waterborne cadmium.

Fish treated with A. cepa exhibited a significant increase (P < 0.05) in the total WBCs, 
with the highest increase noticed with feeding on 1% A. cepa extract, as shown in Table 3. 
Fish fed on diets with A. cepa extracts dietary inclusions (1% and 0.5%) displayed a signifi-
cant increase (P < 0.05) in lymphocytes (Table 3). Treatment with A. cepa extracts induced 
a significant decrease (P < 0.05) in both granulocytes % and monocytes % compared to 
control groups, as demonstrated in Table 3.

Fig. 1   a Naturally infected tilapia fish showing the clinical signs of saprolegniasis, white to grey patches on 
the external body surfaces and tail. b Microscopic examination of wet mount preparation of Saprolegnia 
showing characteristic aseptate hyphae and zoosporangia (arrows). c Purified Saprolegnia isolate on sab-
ouraud dextrose agar (SDA)
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Tilapia exposure to waterborne cadmium caused a significant increase (P < 0.05) in 
biochemical parameters (glucose, cholesterol, triglycerides, ALP, ALT, AST, creatinine, 
and uric acid). On the other hand, tilapia treated with A. cepa had lower levels of glu-
cose, cholesterol, triglycerides, ALP, ALT, AST, creatinine, and uric acid values than 
those without A. cepa treatments, as shown in the Table 3

Nonspecific immune parameters

Tilapia exposure to waterborne cadmium caused a significant decrease (P < 0.05) in 
most assays, including serum protein, albumin, globulin, lysozyme activity, myelop-
eroxidase, and antiprotease activity, with a non-significant decrease (P > 0.05) in the 
phagocytic index in comparison to fish without Cd exposure. Fish fed on diets supple-
mented with A. cepa showed an increase in serum total protein, albumin, and globulin 
values over those without A. cepa treatments. The uppermost measurements of protein 
and globulin were noticed in tilapia that received dietary inclusions with 0.5% A. cepa 
extract, as shown in Table.3.

 Saprolegnia parasitica (ON797306)-this study
 Saprolegnia parasitica strain ATCC 200233 (FJ545238)
 Saprolegnia parasitica (KX494868)
 Saprolegnia parasitica (OM275427)
 Saprolegnia parasitica (KT807577)
 Saprolegnia parasitica (ON797307)-this study
 Saprolegnia parasitica (ON797303)-this study
 Saprolegnia parasitica strain ATCC 90213 (AY455771)
 Saprolegnia parasitica (ON797304)-this study
 Saprolegnia parasitica (ON797305)-this study
 Saprolegnia parasitica (ON797302)-this study
 Saprolegnia parasitica (AB727993)
 Saprolegnia hypogyna (KF420214)

 Saprolegnia litoralis (AY310503)
 Saprolegnia anomalies (DQ322632)
 Saprolegnia ferax voucher NTF-2A-16 (MH899094)
 Saprolegnia oliviae (AY270031)
 Saprolegnia bulbosa (AY267011)

 Saprolegnia australis (AY647195)
 Saprolegnia diclina strain ATCC 90215 (AY455775)
 Saprolegnia diclina strain ATCC 36144 (GU319994)

 Saprolegnia aenigmatica voucher CCIBt 3998 (KT336498)
 Saprolegnia furcata (AB219388)

 Saprolegnia terrestris (AB219396)
 Saprolegnia monilifera voucher CBS55867 (HQ643996)

 Aphanomyces euteiches strain ATCC 201684 (AY683887)

0.05

Fig. 2   The neighbor-joining phylogenetic tree showing the comparative analysis of the ITS gene sequenc-
ing of S. parasitica strains recovered from naturally infected O. niloticus and other related Saprolegnia spp
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Treatment with A. cepa enhanced lysozyme activity, myeloperoxidase, antiproteases, 
and phagocytic index values. Most measurements showed the greatest values with feeding 
on diets with 0.5% A. cepa extract, as shown in Table 3.

Antioxidant activity

Fish exposed to cadmium displayed a significant increase (P < 0.05) in hepatic antioxidant 
values (peroxidase, catalase, GST, and SOD) compared to fish not exposed to cadmium. 
Treatment with A. cepa enhanced the hepatic antioxidant activities with the highest per-
oxidase, and catalase activities noticed in fish fed on A. cepa extracts, as shown in Table 3.

Accumulation of Cd in tissues

Feeding fish with A. cepa dietary inclusions reduced cadmium accumulation in the liver, 
muscles, and gonads. The best results were achieved by feeding on a diet with A. cepa 
extracts compared to fish without A. cepa treatments. Cadmium levels in fish gills were not 
significantly affected by A. cepa treatments, as shown in the Table 4

Challenge experiment

Significant differences in fish survival rates were observed among all challenged groups 
(G1, G2, G3, and G4) compared to the positive control group (G5). The highest survival 
rate (77%) was recorded in fish group fed on a diet supplemented with 0.5% A. cepa extract 
followed by tilapia received a diet supplemented with 1% extract (66%). The lowest sur-
vival rate (40%) was reported in fish group received 0.5% crude A. cepa (Fig. 3). Experi-
mentally infected tilapia showed clinical signs of saprolegniasis similar to those of natu-
rally infected fish. Infections were confirmed by isolating and characterizing S. parasitica 
from succumbed fish following the same procedures performed in naturally infected tilapia.

Expression of IL‑1β and IFNɣ genes

IL-1β and IFNɣ genes were upregulated at the beginning of the challenge experiment in all 
fish groups that received A. cepa dietary inclusions compared to fish fed on the basal diets 
and then decreased at the end of the experimental trials. The IL-1β and IFNɣ were upregu-
lated at maximum with feeding 0.5% A. cepa extract dietary inclusions, while the lowest 

Table 4   Cadmium accumulation (ppm/wet weight) in different tissues of O. niloticus 

Data are expressed as mean ± standard error
Means with the same letter within the same raw are not significantly different (P > 0.05)

Tissue Control -ve Control + ve Crude 1% Crude 0.5% Extract 1% Extract 0.5% F value

Muscle 0.230 ± 0.02d 0.600 ± 0.03a 0.430 ± 0.01b 0.440 ± 0.01b 0.370 ± 0.01c 0.130 ± 0.02e 85.24
Liver 0.550 ± 0.16d 21.00 ± 0.43a 15.310 ± 0.82b 20.290 ± 0.42a 10.620 ± 1.48c 17.110 ± 0.30b 91.78
Gills 0.170 ± 0.02c 2.760 ± 0.31b 3.500 ± 0.26a 3.900 ± 0.15a 3.330 ± 0.12ab 3.740 ± 0.18a 45.78
Gonads 0.100 ± 0.01e 3.770 ± 0.23a 0.870 ± 0.07d 1.420 ± 0.09c 0.330 ± 0.06e 1.880 ± 0.14b 136.69
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rate was observed in fish exposed to waterborne Cd without A. cepa treatments as shown 
in Fig. 4.

Discussion

Saprolegnia spp. are ubiquitous in freshwater environments and cause disease outbreaks 
when the conditions are optimal for their pathogenesis (Nam et al. 2022). Different envi-
ronmental stressors in the studied farm rendered tilapia more susceptible to S. parasitica 
infections. Stressful situations can compromise the host’s immune system and enhance its 
vulnerability to saprolegniasis (Pavić et al. 2022). Saprolegniasis outbreaks were reported 
in numerous Egyptian tilapia farms (El-Ashram et al. 2007; Zahran et al. 2017). The clini-
cal examination of naturally infected Nile tilapia revealed typical signs of saprolegniasis 
comparable to those described in earlier studies (Ali et al. 2014; Beckmann et al. 2020). 
The recovered S. parasitica isolates revealed phenotypic characteristics similar to those 
reported by Mostafa and Yassin (2022).

The BLAST and phylogenetic analysis of the ITS gene sequences confirmed the identi-
ties of the recovered Saprolegnia isolates. Earlier studies reported that the ITS genes and 
the 5.8S rDNA regions are highly conserved and are very suitable for the intraspecies anal-
ysis of Saprolegnia spp. (Diéguez-Uribeondo et al. 2007; Zahran et al. 2017). Alignments 
of the ITS rDNA sequences displayed a 100–99.72% identity with the major S. parasitica 

Fig. 3   Kaplan–Meier survival curves of Nile tilapia fish fed on different concentrations of A. cepa sup-
plemented diets; (G1) crude 0.5%, (G2) crude 1%, (G3) extract 0.5%, and (G4) extract 1% following the 
experimental infection with S. parasitica compared to the positive control group. The results correspond 
to the survival percentage during 9 days post-infection (dpi). Kaplan–Meier survival data was analyzed by 
log-rank (Mantel-Cox) test. Pairwise comparison between each experimental group fed on A. cepa against 
the positive control group showed significant differences in survival curves (P < 0.05)
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typing strains (AY455771T; FJ545238T; and OM275427). The ManS22 strain seemed to be 
the most diverse; in fact, the percentage of identity with the other Saprolegnia phylogenetic 
tree supported the identity of the recovered S. parasitica isolates.

Saprolegniasis necessitates efficient control strategies to reduce losses. Fungicides and 
disinfectants, including malachite green, hydrogen peroxide, and formalin, were commonly 
used to treat saprolegniasis in aquaculture (Ali et al. 2019). These fungicides have carci-
nogenic and teratogenic effects posing a concern to fish and human (Mostafa & Yassin 
2022). Immunostimulation is a competitive prophylactic strategy for controlling numer-
ous infectious diseases in aquaculture (Elgendy et al. 2016, 2021; Ali et al. 2021; Abbas 
et al. 2019b, c; Younes et al. 2021). The antifungal and immunostimulatory effects of onion 
were confirmed in many earlier studies (Khallil 2001; Kocić-Tanackov et al. 2012; Akrami 
et al. 2015; Younes et al. 2021). In light of these reports, the present study investigated the 
immunostimulatory and protective effects of A. cepa dietary inclusions against S. para-
sitica infection in tilapia and the amelioration of immunosuppression induced by fish expo-
sure to waterborne Cd under the in vivo conditions.

Previous studies suggested that O. niloticus can tolerate high levels of waterborne Cd 
(Tsay & Yu 1981). The Cd 96-h LC50 determined in this study (15.1 mg/L Cd) was nearly 
similar to that reported by Garcia-Santos et  al. (2006), who recorded Cd 96-h LC50 at 
(14.8 mg/l Cd). The present study confirmed that exposure of Nile tilapia to waterborne 
Cd significantly reduces their growth performance, which is in agreement with (Mohsen 
& Wafeek 2009). The lower fish WG and SGR values were restored by feeding fish on A. 
cepa–based diets.

Results demonstrated that A. cepa, in its crude or extracted from, has growth-promoting 
properties. The exact mechanisms involved in this action might be explained by the immu-
nostimulatory and antioxidant properties of A. cepa bioactive compounds.

Our results are in accordance with findings reported by Younes et al. (2021), authors 
reported a significant increase in growth performance indicators (WG and SGR) following 
feeding tilapia on diets supplemented with onion. Similarly, Bello et  al. (2012) reported 
enhancement of the WG and SGR indicators of Clarias gariepinus fed on diets supple-
mented with onion (0.5%, 1.0%, 1.5%, and 2.0%). The same authors observed a clear 
correlation between the quantity of added onion and the degree of growth enhancement. 
Akrami et  al. (2015) discovered that feeding beluga juveniles, Huso huso, on diets sup-
plemented with 1% onion enhanced their growth performance parameters (WG and SGR). 

Fig. 4   Expression of IL-1β and IFNɣ genes
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Additionally, Saleh et  al. (2015) noticed that feeding sea bass fry on onion-based diets 
at 10  g/kg enhanced their growth performance, feed utilization efficiency, and fish sur-
vival. On the contrary, Cho and Lee (2012) noticed no improvement in the growth per-
formance of olive flounder, Paralichthys olivaceus, with feeding onion-based diets. The 
growth-promoting outcomes of onions are attributed to their bioactive compounds, such 
as sulfur-containing compounds, cysteine sulphoxide (CSO), and S-propenyl-CSO, which 
have numerous health benefits (Ostrowska et al. 2004; Apines-Amar et al. 2012). A. cepa 
also stimulates beneficial microorganisms in the digestive system, such as bifidobacteria 
and lactobacilli, which have many health benefits (Gibson 1998). The benefits also include 
accelerating digestion and shortening the time needed for food to pass through the gastroin-
testinal tract (Platel & Srinivasan 2001).

The decrease in WBCs and lymphocytes caused by tilapia exposure to waterborne cad-
mium was restored by feeding fish on A. cepa-based diets, indicating the health-promoting 
outcomes of this plant. Fish that received A. cepa dietary inclusions displayed a significant 
increase (P > 0.05) in the total WBCs and lymphocyte counts, reflecting its immunostim-
ulating effects, with the highest outcomes observed with feeding the A. cepa extracts. 
Results were consistent with Younes et al. (2021), who observed that the inclusion of 1% 
A. cepa extract in tilapia diets induced a non-significant increase in WBCs and lympho-
cytes. Results also agreed with Soliman et al. (2017), who observed a significant enhance-
ment in WBCs and lymphocytes with feeding fish on diets enriched with onion green 
leaves’ extracts at concentrations of 0.5 mg and 1 mg. Similar enhancement in WBCs was 
noticed in fish fed on diets supplemented with numerous medicinal herbs, including Mor-
inga (Elgendy et al. 2021); curcumin (Elgendy et al. 2016); and fenugreek (Abbas et  al. 
2019a, b).

The prophylactic benefits of A. cepa were highlighted by the decrease in the indicators 
of metabolic indices, liver, and kidney functions upon feeding fish exposed to waterborne 
cadmium on A. cepa based-diets compared to fish exposed to waterborne cadmium with-
out A. cepa treatment. Results were consistent with Akrami et al. (2015), who noticed a 
significant decrease in blood glucose and triglycerides levels in Huso huso fish fed on diets 
supplemented with 1% onion. However, the same authors disagreed with some of our study 
findings, as they reported that that ALT and ALP levels were unaffected (P > 0.05). Moreo-
ver, Younes et al. (2021) noticed insignificant increases in triglycerides levels in Nile tila-
pia fed on A. cepa-supplemented diets. The same authors have also reported a significant 
decrease in ALT and AST levels with feeding fish the dietary A. cepa inclusions. Cho and 
Lee (2012) noticed that dietary inclusions of onion caused non-significant changes in tri-
glycerides levels in cultured Paralichthys olivaceus and attributed that to the wide variation 
of values within the same treatment. The decrease in these indicators may be relevant to the 
bioactive compounds of A. cepa (Sagar et al. 2022). On the other hand, higher AST, ALT, 
and ALP enzymes and creatinine in fish exposed to Cd without A. cepa treatments indicate 
liver and kidney dysfunction. The results highlighted the immunostimulatory effects of 
feeding tilapia on A. cepa-based diets and their potential to restore the immunosuppression 
driven by exposing fish to waterborne Cd. The total protein, globulin, lysozyme activity, 
myeloperoxidase, antiprotease, and phagocytic index values were improved with feeding 
fish exposed to Cd on the A. cepa dietary inclusions compared to those without A. cepa 
treatment. These indicators were significantly reduced with waterborne Cd exposure, sug-
gesting impaired immune defense mechanisms. The greatest immunostimulatory effects of 
A. cepa were discovered when fish were fed 0.5% A. cepa extract. Results are supported 
by Younes et al. (2021), who noticed that feeding fish with A. cepa-enriched diets signifi-
cantly improved their innate immune responses. Cho and Lee (2012) reported that feeding 
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P. olivaceus with dietary inclusion of 0.5% A. cepa boosted the lysozyme activity and low-
ered fish mortality after a challenge with Edwardsiella tarda. Apines-Amar et  al.  (2012) 
demonstrated that feeding grouper, Epinephelus fuscoguttatus, on onions and ginger-based 
diets enhanced the innate immune responses and protected fish against experimental infec-
tion with Vibrio harveyi. Similar enhancement of nonspecific immune responses was noticed 
in tilapia fed numerous medicinal herbs such as Brassica nigra (Abbas et  al.  2016), Mor-
inga oleifera (Elgendy et al. 2021), curcumin (Elgendy et al. 2016), fenugreek (Abbas et al., 
2019a, b), garlic (Alam et al. 2019), and Nigella sativa (Elkamel and Mosaad 2012). Pro-
tease, antiprotease, and peroxidase are essential antibacterial components in fish immune-
defense mechanisms that play critical roles in protection against invading pathogens (Elgendy 
et al. 2021). Increased blood protein and globulin levels in fish are linked to a greater innate 
immunological response (Al-Salahy 2002). Lysozymes stimulate phagocytosis and hinder 
pathogens’ attachments and colonization (Magnadóttir 2006). Antiproteases also have a sig-
nificant bactericidal effect against bacterial infections (Esteban 2012). The high total protein 
levels noticed in fish treated with A. cepa may be related to improved protein synthesis by the 
liver, as supported by Younes et al. (2021). The improvement of the immune capacity could 
be attributed to the bioactive compounds of A. cepa, such as ascorbic acids, carbohydrate 
prebiotics, organosulfur substances, and flavonols (Sagar et al. 2022). The reduction in the 
immune performance of fish exposed to Cd without A. cepa treatment may be linked to the 
damaging effects of Cd on the immune system (Chang et al. 2021).

Tilapia that received the A. cepa dietary inclusions also showed increased hepatic anti-
oxidant enzymes, which may be interpreted as an attempt to overcome the resultant oxida-
tive stress in tilapia. The enhanced antioxidant activities seen in fish treated with A. cepa 
based-diets can be attributed to the bioactive compounds of A. cepa (Sagar et al. 2022). 
The antioxidant enzymes (CAT, GSH-Px, and SOD) are the first defense against heavy 
metal-induced oxidative damage (Coelho et al. 2011). Similar improvement in antioxidant 
activities was seen earlier in fish fed on diets supplemented with onion (Akrami et al. 2015; 
Younes et al. 2021). Results agreed with Wang et al. (2020), where they reported that die-
tary supplementation with Bacillus cereus reversed the oxidative stress in Carassius aura-
tus induced by Cd by increasing CAT and SOD antioxidant enzymes. Several studies have 
shown that medicinal herbs can ameliorate heavy metals’ harmful effects and oxidative 
stress. These herbs include Egyptian leek (Authman et al. 2021), fenugreek seeds (Abbas 
et al. 2019a, b), and curcumin (Abbas et al. 2019c).

Fish can take up Cd from the aquatic environment through their gills or intestine, and 
then Cd is transferred to different tissues via the circulation (Yesilbudak & Erdem 2014). 
Our findings showed that feeding O. niloticus during the experimental exposure to water-
borne Cd on diets supplemented with A. cepa, especially in its alcoholic extract form, can 
reduce Cd accumulation in fish tissues. Fish exposure to waterborne Cd increased its level 
in all examined organs; however, feeding fish with A. cepa dietary inclusions decreased Cd 
levels in the liver, muscles, and gonads. The decrease in Cd accumulation in fish tissues 
observed after feeding on A. cepa-based diets could be attributed to its high flavonoid con-
tent, such as quercetin, which can increase the production of metallothioneins (Weng et al. 
2011; Sagar et  al. 2022). These proteins have substantial protective roles in detoxifying 
metals in aquatic animals (Habjanič et al. 2020).

Flavonoids of A. cepa are powerful scavengers for harmful reactive oxygen species, 
free radical reaction terminators, and metal ion chelators (Rice-Evans 2001; Fang et  al. 
2002). The comparatively higher Cd levels seen in gills could be attributed to their constant 
exposure to waterborne Cd, or it could be explained as an effort by fish gills to excrete 
it (Langston et  al. 1998). The findings are consistent with those of Abbas et  al. (2021)’ 
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they found that dietary inclusions of natural zeolite in Nile tilapia reduced the negative 
effects of lead acetate toxicity and decreased Pb residues in fish muscles while increasing 
its level in the kidneys. Chang et al. (2021) discovered that supplementing Bacillus coagu-
lans SCC-19 probiotics to Cyprinus carpio lowered Cd residues in their tissues by remov-
ing it before it could be absorbed by the gills or intestines. Wang et  al. (2020) reported 
that dietary inclusions with Bacillus cereus decreased Cd concentrations in the internal 
organs of Carassius auratus gibelio. Similarly, Yin et al. (2018) showed that dietary sup-
plementations of Carassius auratus gibelio with probiotics Bacillus subtilis could protect 
fish against lead toxicity by decreasing its accumulation in fish organs.

The health-promoting and immunostimulant outcomes of A. cepa in the present study 
were evidenced by improved tilapia resistance against S. parasitica experimental infections 
in fish fed on onion-based diets compared with the non-treated fish group. High survival 
rates were recorded in all experimental fish groups received A. cepa in their diets compared 
to the positive control group fed on the basal diet (0% A. cepa). The enhanced fish resist-
ance to S. parasitica infection could be attributed to the plant’s bioactive compounds with 
their antioxidant and immunostimulatory properties, such as polyphenols, flavonoids, and 
quercetin (Akrami et al. 2015). Fish fed on onions enriched diets showed similar enhance-
ments in resistance to several infections, such as A. hydrophila (Younes et al. 2021) and 
Vibrio harveyi (Apines-Amar  et al. 2012). The high mortality rate that was observed in 
fish exposed to waterborne Cd without A. cepa supplementation may be relevant to the 
adverse effects of Cd on the fish immune system, as reported in previous studies (Chang 
et al. 2021).

In the present study, the immunostimulatory outcomes of A. cepa dietary inclusions in 
Nile tilapia were reflected by the upregulation of IL-1β and IFNɣ immune-related genes 
following the challenge of tilapia with S. parasitica. Fish cytokines modulate important 
immunological responses in aquatic organisms, including chemotaxis, complement 
activation, and phagocytosis (Secombes et  al. 2001; Yin et  al. 2018). Interleukin-1 has 
humoral immune activity, modifies many host immunological responses, and regulates 
the production of other cytokines (Wang et al. 2006; Jiang et al. 2008). The present study 
findings also showed an upregulation of the IL-1β gene in the group exposed to waterborne 
cadmium without A. cepa treatments. Similarly, earlier studies reported significant 
upregulation of IL-1β, IL-6, and TNF-α genes in fish exposed to heavy metals pollution 
(Yildirim & Danabas 2014; Hossain et al. (2021). This increase can be interpreted as a body 
response of injured tissues to alleviate Cd-induced stress (Schoenborn & Wilson 2007; Ma 
et al. 2018). The upregulation of IL-1β and IFNɣ in response to the S. parasitica challenge 
was the highest in fish fed 0.5% A. cepa extract based-diets, indicating a strong immune 
response to protect against S. parasitica infections. Similar upregulation of IFNɣ and IL-10 
genes was noticed in Nile tilapia fed on diets supplemented with fenugreek seeds (Moustafa 
et al. 2020) and Quinoa after challenge with aeromonads (Ahmed et al. 2020). IFNɣ plays 
a key role in the innate and adaptive immune responses against invading pathogens. It also 
regulates other pro-inflammatory cytokines and stimulates phagocytosis (Rosenzweig and 
Holland 2005; Prabu et al. 2016). Younes et al. (2021) reported a significant downregulation 
of IL-1β and an up-regulation of TGF-β1 in the kidney of tilapia fed on onion-based diets. 
The changes in the expression of the studied immune genes may be relevant to onion’s 
bioactive ingredients, such as flavonoids that have pronounced anti-inflammatory and 
immunomodulatory effects (Sagar et al. 2022). Cd exposure caused a significant increase in 
all antioxidant indicators in tilapia. Results are consistent with earlier reports indicating that 
Cd is a major contributor to the production of reactive oxygen species and oxidative stress in 
fish (Abbas et al. 2019a, b, c b; Chang et al. 2021).
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Conclusion

The emergence of infectious diseases, like saprolegniasis, in aquaculture is linked to envi-
ronmental stressors, bad hygiene, and pollutants in the aquatic environment. Prophylactic 
measures are needed to control saprolegniasis in aquaculture. Feeding tilapia on diets sup-
plemented with some medicinal plant products such as A. cepa can improve the growth 
performance, physiological status, and antioxidative capabilities of fish and restore their 
immune defense mechanisms following exposure to waterborne Cd. Additionally, A. cepa 
supplementation in the fish diets reduced Cd accumulation in fish tissues. Feeding fish on 
dietary A. cepa inclusions enhanced their resistance to S. parasitica experimental infection 
and increased the expression of immune-related genes. Our study highlights the role of 
A. cepa as a feed additive to ameliorate the adverse effects of toxic metals in farmed fish 
while increasing their resistance to some infectious diseases.
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