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Abstract
The study aims were to test the effects of partial or total replacement of dietary fish oil 
(FO) by palm oil (PO) on growth, antioxidant capacity, lysozyme activity, muscle fatty 
acid composition, and fillet quality of rohu (Labeo rohita) fingerlings. The rohu fingerlings 
(3.25 ± 0.13 g) were stocked in 18 circular (water volume 55 L) polyvinyl tanks in tripli-
cate groups (30 fish per tank). Six iso-proteic (400 g/kg) and iso-lipidic (97 g/kg) purified 
diets were formulated in which FO was replaced by 0, 20, 40, 60, 80, and 100% PO (0 PO, 
20 PO, 40 PO, 60 PO, 80 PO, and 100 PO). The diets were fed to the fish for 8 weeks, 
with meals being given at 8:00, 12:00, and 16:00 h. There were no significant (P > 0.05) 
treatment effects on growth (19.32–22.58 g gain/fish), feed conversion ratio (1.32–1.68), 
and protein efficiency ratio (1.48–1.89). However, protein retention efficiency was highest 
(33.25–34.99%) in fish fed the 0 PO and 60 PO diets, and lipid retention efficiency was 
highest (53.09%) in the fish fed the 100 PO diet. Muscle eicosapentaenoic acid (EPA) and 
docosahexaenoic acid (DHA) levels and n-3/n-6 ratio were highest in fish fed the 100% FO 
diet and decreased as increasing proportions of FO were replaced by PO. Serum superox-
ide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and lysozyme activ-
ity did not change significantly (P > 0.05) up to 60% replacement of FO with PO. Further 
replacement of FO with PO (80 PO and 100 PO) resulted in decreased serum antioxidant 
capacity and lysozyme activity. Although muscle atherogenicity and thrombogenicity indi-
ces did not change significantly (P > 0.05) among treatments, the highest hypocholester-
olaemic-to-hypercholesterolaemic (H/H) ratio and fillet lipid quality (FLQ) were found in 
fish receiving the 0 PO (with 100% FO and no PO). H/H and FLQ values did not differ sig-
nificantly up to 60% replacement of FO with PO but decreased upon further replacement 
of FO with PO. FO can be replaced by PO to a level of 60% without hampering the growth 
and fillet quality of fingerling rohu provided with such diets for a period of a few weeks, 
but the long-term effects of FO replacement remain to be studied.

Handling editor: Gavin Burnell

 *	 Mukhtar A. Khan 
	 khanmukhtar@yahoo.com

Extended author information available on the last page of the article

Aquaculture International (2023) 31:893–913

Received: 20 May 2022 / Accepted: 18 October 2022 / Published online: 2 November 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10499-022-01005-3&domain=pdf


1 3

Keywords  Feed oils · Nutrient utilization · Proximate chemical composition · Blood 
chemistry · Fingerling · Labeo rohita

Introduction

Lipid is an essential component in the fish diet as it provides metabolic energy and essen-
tial nutrients such as fatty acids. Fish oil (FO) is considered an important lipid source in 
aquaculture feeds due to its high proportions of n-3 LC-PUFA. In comparison to oils of 
terrestrial origin, FO contains an abundance of EPA (eicosapentaenoic acid; 20:5n-3) and 
DHA (docosahexaenoic acid; 22:6n-3) (Turchini et  al. 2011). These fatty acids prevent 
neurodegenerative diseases and arteriosclerosis, and cerebrovascular and cardiovascular 
diseases in humans (Turchini et al. 2012; Golden et al. 2021). Fish must also obtain EPA 
and DHA through their diet (NRC 2011). Both EPA and DHA play essential roles in accel-
erating fish growth and neural development, improving the immunity of the organism, and 
regulating the metabolism. However, with the decline in fish oil production, it cannot meet 
the escalating demand of the aquaculture industry. Also, the shortage of FO production 
due to the decrease in capture fishery has led to an increase in the FO price. Although FO 
is considered the best oil to supply essential fatty acids, it has been reported that PUFAs, 
especially EPA and DHA present in FO, are highly prone to lipid peroxidation, which get 
oxidized easily. Feeding fish with oxidized oil results in oxidative stress and liver damage 
to the organism. Thus, there is a dire need to find economically sustainable alternatives to 
FO in aquaculture feeds. Reducing the inclusion of FO in aquaculture feeds and ensuring 
the appropriate proportion of n-3 LC-PUFA in the final product are still a challenge. Veg-
etable oils (VOs) are the most sustainable alternatives to fish oil due to their wide availabil-
ity, increasing global production, and lower price. However, a common characteristic of all 
VOs is an absence of n-3 and n-6 LC-PUFA. They are rich in C18 PUFA, such as alpha-
linolenic acid (ALA) and linoleic acids (LA), which freshwater fish can convert into C20 
and C22 PUFAs such as arachidonic acid (ARA), EPA, and DHA (Tocher 2003). Biosyn-
thesis includes the desaturation and elongation process of C18 PUFAs (ALA and LA). The 
Elovl5 elongase and Δ6 desaturase are the crucial enzymes involved in this biosynthesis 
(Tocher et al. 2004). The biosynthesis capacity of these enzymes differs among fish species 
(Monroig et al. 2011).

Mostly used VOs in aquaculture feeds are linseed, soybean, rapeseed, palm, olive, and 
sunflower oil. Palm oil (PO) is used in aquaculture due to its wide range of availability and 
low price. It is abundantly available in several Asian countries and is one of the cheap oils 
in India. It contains a high proportion of palmitic acid (C16:0) and oleic (C18:1) and lin-
oleic (C18: 2n-6) fatty acids. Compared to other VOs, PO is extremely rich in beta-carote-
noids, the precursor of vitamin A which gives it its characteristic reddish-orange color. It is 
also rich in vitamin E, and antioxidants such as tocopherol and tocotrienol, which protect 
cell membranes from lipid peroxidation. PO has been used in the replacement of dietary 
FO in several farmed fish species (Ng et al. 2004; Fonseca-Madrigal et al. 2005; Bahurmiz 
and Ng 2007; Komilus et al. 2008; Babalola and Apata 2012; Gao et al. 2012; Duan et al. 
2014; Huang et al. 2016; Ayisi et al. 2016, 2018; Safiin et al. 2021; Alves et al. 2021).

Freshwater aquaculture in India is mainly dominated by Indian major carp (IMC) spe-
cies. IMCs, catla, Catla catla, rohu, Labeo rohita, and mrigal, Cirrhinus mrigala are the 
most important and prime cultivable fish species in India due to high growth rate, taste, 
and public preference. Rohu is one of the top ten aquaculture species cultured worldwide 
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(FAO 2022).  It consists of almost 35% of the total cultured fish production of India. It 
can grow up to 800–1000 g in a year. Due to the higher market value of rohu, the farmers 
in India have moved from three-species to two-species polyculture systems with rohu and 
catla (FAO 2018). Rohu is an important aquaculture species in India, Bangladesh, Paki-
stan, and Myanmar (Burma) (Rasal and Sundaray 2020). The high fecundity (2 lakh eggs/
per kg), external fertilization, and domestication of this species made it easy for intensive 
culture (Rasal and Sundaray 2020). With the increasing market demand for rohu, there is a 
dire need to intensify its culture requiring nutritionally balanced and low-cost aquaculture 
feeds. Although the information on dietary protein, amino acid, and lipid requirements is 
available, no information is available on the substitution of FO with PO for rohu fingerling. 
Therefore, the present experiment was conducted to assess the possibility of replacing fish 
oil with palm oil and its effects on growth performance, fatty acid profiles, fillet quality, 
and immune response of rohu fingerling.

Materials and methods

Preparation of experimental diets

Six experimental, purified, iso-proteic (400  g/kg crude protein) and iso-lipidic (97  g/kg 
crude lipid) diets containing FO and PO were prepared as the main lipid sources. Mechani-
cally extracted unrefined palm oil was obtained from a local factory for the replacement 
trial. The levels of substituting FO in experimental diets were chosen based on results 
obtained in feeding trial conducted earlier (Siddiqua and Khan 2022b). In the 0 PO and 100 
PO diets, FO and PO were the sole lipid sources, respectively. In 20 PO, 40 PO, 60 PO, and 
80 PO diets, the FO was serially replaced by 20%, 40%, 60%, and 80% PO (Table 1). The 
fatty acid profile of diets is depicted in Table 2. Casein and gelatine (fat free) were used 
as a protein source and dextrin as a carbohydrate. Protein in the experimental diets was 
fixed at 400 g/kg, reported optimum for fingerling L. rohita (Swamy and Mohanty 1990; 
Satpathy et al. 2003). The dietary lipid level was fixed at 97 g/kg as per the requirement 
reported for L. rohita fingerling (Siddiqua and Khan 2022a). Mineral and vitamin premixes 
were prepared and added as per Halver (2002). The experimental diets were prepared as 
per the method adopted by Abdel-Hameid et al. (2017). Gelatin was dissolved in distilled 
water by stirring and heating the bowl, followed by the addition of casein at 80 °C. After 
that, oils were added and mixed (Hobart Corporation, Troy, OH, USA) for about 15 min. 
When the mixture cooled down to 40 °C, mineral and vitamin premixes were added with 
continuous mixing. Lastly, carboxymethyl cellulose was added and mixed. The dough thus 
produced was forced through the 2-mm die of an extruder. The moisture content of the 
strands was reduced to 100 g/kg by drying at 40 °C in a hot air oven. The strands were 
then crumbled to the required size (500 µm), packed, and stored at − 4 °C. The proximate 
composition of the test diets and initial and final fish were analyzed using AOAC (2015) 
methods. Moisture content was determined by putting the samples in a hot air oven main-
tained at 102 ± 1 °C (Yorko Instruments, New Delhi, India). Crude protein (N × 6.25) was 
determined using Kjeldahl method in an automatic analyzer (Kjeltec TecatorTM Technol-
ogy 2300, Hoganas, Sweden). Crude fat was assessed by the solvent extraction method 
(Socs Plus SCS 4, Pelican Equipments, Chennai, India), and ash by burning the sample in 
a furnace at 650 °C for 12 h (S.M. Scientific Instrument Pvt. Ltd., Jindal Company, New 
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Delhi, India). Gross energy of the test diets was determined in a Gallenkamp ballistic bomb 
calorimeter (CBB 330 010L, Gallenkamp, Loughborough, UK).

Fatty acid profile assay

Fatty acid profiles were analyzed following the procedures described by Metcalfe et al. (1966) 
with some modifications. About 50–100  mg of freeze-dried experimental diet and muscle 
samples was added into a 20-mL screwed tube with a lid. After that, 1 mL diethyl ether was 
added and mixed. Then, 1 mL 0.5% methanolic potassium hydroxide (1 N) was added, con-
tinuously shaken for 10 min, and placed in a water bath at 75 °C for 20 min. One milliliter 
hydrogen chloride (1 N) was added after cooling and then heated in a water bath at 75 °C 
for another 20 min. After that, 2–3 mL petroleum ether was added, shaken continuously for 
about 1 min, and allowed to get separated into two layers. The upper layer containing fatty 
acid methyl esters was separated and dried in a water bath for about 20 min. Lastly, 0.5 mL 
n-haptane was added to the tube. Finally, FAMEs of all the samples (approximately 1 µL) 
were quantified by a gas chromatograph-mass spectrometer (GC–MS) (Shimadzu QP-2010 
Plus coupled with Thermal Desorption System TD 20 and capillary column DB-5MS, and 
helium as carrier gas). The injection temperature was 250 °C and the total sampling time was 
1 min. For the identification of fatty acids detected here, the retention times of the fatty acid 

Table 1   Composition of experimental diets

a Crude protein (760 g/kg; Loba chemie, India). bCrude protein (960 g/kg; Loba chemie, India). cMineral 
mixture (g/kg): calcium biphosphate 135.7; calcium lactate 326.9; ferric citrate 29.7; magnesium sulfate 
132.0; potassium phosphate (dibasic) 239.8; sodium biphosphate 87.2; sodium chloride 43.5; aluminum 
chloride. 6H2O 0.154; potassium iodide 0.15; cuprous chloride 0.10; manganous sulfate. H2O 0.80; cobalt 
chloride. 6H2O 1.00; zinc sulfate. 7H2O 4.0; Loba chemie, India. dHalver (2002). eVitamin mixture (30 g/kg 
of diet; 10 g vitamin mix + 20 g α-cellulose): choline chloride 5.00; inositol 2.00; ascorbic acid 1.00; niacin 
0.75; calcium pantothenate 0.5; riboflavin 0.2; menadione 0.04; pyridoxine hydrochloride 0.05; thiamine 
hydrochloride 0.05; folic acid 0.015; biotin 0.005; alpha-tocopherol 0.4; vitamin B12 0.0001; Loba chemie, 
India. fEstimated value of the basal diet on Gallenkamp ballistic bomb calorimeter

Fish oil replacement level (%)

0 PO 20 PO 40 PO 60 PO 80 PO 100 PO

Casein (fat free)a 400 400 400 400 400 400
Gelatinb 100 100 100 100 100 100
Dextrin 179.8 179.8 179.8 179.8 179.8 179.8
Fish oil 97 77.6 58.2 38.8 19.4 0
Palm oil 0 19.4 38.8 58.2 77.6 97
Mineral mixc,d 40 40 40 40 40 40
Vitamin mixd,e 30 30 30 30 30 30
α-Cellulose 113.2 113.2 113.2 113.2 113.2 113.2
Carboxymethyl cellulose 40 40 40 40 40 40
Total 1000 1000 1000 1000 1000 1000
Analyzed crude protein 39.9 39.7 39.89 39.87 39.98 40
Analyzed crude lipid 9.71 9.74 9.71 9.72 9.72 9.73
Estimated gross energy (kJ/g)f 17.91 17.79 17.9 17.89 17.87 17.86
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were compared with the internal standard (methyl heneicosanoate, C21:0; Sigma-Aldrich). 
The percent of each fatty acid was calculated as the proportion of the area under the peak in 
question to the total area of all peaks.

Fish maintenance

For this experiment, induced bred Labeo rohita fingerling were procured from the hatchery 
of College of Fisheries, G. B. Pant University of Agriculture and Technology, Pantnagar, and 
shifted to a feeding trial laboratory. After giving prophylactic treatment to the fish by dipping 
in KMnO4 (1:3000) solution, they were stocked in cylindrical (water volume 600 L; 1.22 m 
diameter, 0.91 m height) tanks and acclimatized by feeding H440 dry diet (Halver 2002) for 
2 weeks before the start of the feeding trial.

Table 2   Fatty acid composition of experimental diets (% total fatty acids)

Some fatty acids, of which the contents are minor, trace amount, or not detected, were denoted as nd in 
Table 2; aSFA, saturated fatty acids; bMUFA, mono-unsaturated fatty acids; cLA, linoleic acid; dARA​, arachi-
donic acid; en-6 PUFA, n-6 polyunsaturated fatty acids; fALA, alpha-linolenic acid; gEPA, eicosapentaenoic 
acid; hDHA, docosahexaenoic acid; in-3 PUFA, n-3 polyunsaturated fatty acids; jn3/n6 PUFA, n-3 polyun-
saturated fatty acids:n-6 polyunsaturated fatty acids; kPIn, peroxidation index

Parameters Fish oil replacement level (%)

FO PO 0 PO 20 PO 40 PO 60 PO 80 PO 100 PO

14:0 4.05 1.98 3.9 3.15 2.26 2.15 2.17 1.81
16:0 14.9 40.7 14.2 16.41 21.19 27.64 34.08 38.56
18:0 2.6 5.68 2.1 2.91 3.39 3.98 4.95 5.51
∑SFAa 21.55 48.36 20.2 22.47 26.84 33.77 41.2 45.88
16:1n-7 9.58 0.65 9.41 8.12 6.19 4.71 2.24 0.56
18:1n-9 24.88 35.8 23.48 26.38 28.01 30.78 32.19 34.78
20:1n-9 6.91 0.09 6.89 5.02 4.21 3.21 1.45 0.08
22:1n-9 5.65 0 5.51 4.78 3.98 2.75 1.41 nd
∑MUFAb 47.02 36.54 45.29 44.3 42.39 41.45 37.29 35.42
18:2n-6 LAc 4.18 11.58 3.89 4.98 5.42 7.45 9.79 10.41
18:3n-6 0.15 0 0.11 0.12 0.02 0.04 0.01 nd
20:4n-6 ARA​d 2.96 0 2.78 2.64 2.45 2.12 1.08 0.34
∑n-6 PUFAe 7.29 11.58 6.78 7.74 7.89 9.61 10.88 10.75
18:3n-3 ALAf 0.81 2.18 0.71 0.98 1.01 1.71 1.97 2.05
18:4n-3 1.05 0.25 1.01 0.91 0.78 0.68 0.45 0.12
20:5n-3 EPAg 11.81 0 11.67 10.01 8.98 4.98 2.75 nd
22:5n-3 1.45 0 1.31 1.25 1.15 1.04 0.98 nd
22:6n-3 DHAh 13.15 0 12.98 11.1 10.67 6.09 3.91 nd
∑n-3 PUFAi 28.27 2.43 27.68 24.25 22.59 14.5 10.06 2.17
n-3/n-6 PUFAj 3.87 0.20 4.08 3.13 2.86 1.50 0.92 0.20
PInk 195.17 16.85 191.64 167.70 157.57 99.06 66.78 16.75
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Experimental design and feeding trial

Fifty fish were taken at random from the acclimated stock, and their lengths and weights 
were recorded (6.41 ± 0.21 cm; 3.25 ± 0.13 g) for calculation of condition factor (CF). The 
liver and viscera were dissected from 10 fish following anesthetizing the fish in tricaine 
methane sulfonate solution (MS-222; 200 mg/L; Sigma, St Louis, MO, USA). Livers and 
viscera were weighed, and the data used for calculating the hepatosomatic index (HSI) and 
viscero-somatic index (VSI). Thirty fish were taken, weighed, and then stored for the anal-
ysis of initial proximate chemical composition. For conducting the feeding trial, 540 fish 
were randomly distributed (30 fish per tank, triplicate group per treatment) to 18 circular 
(water volume 55 L) polyvinyl tanks, with the fish being weighed to obtain information 
about initial weights, and the biomass of fish present in each tank at the start of the trial. 
The tanks were supplied with water at the rate of 1–1.5 L/min and were run as a flow-
through system. The fish were fed their allotted diet to apparent satiation at 8:00, 12:00, 
and 16:00 h for 8 weeks. A 12-h light and 12-h dark photoperiod was maintained. Follow-
ing anesthetization in MS-222 (100 mg/L), the fish were weighed at 2-week intervals (Pre-
cisa 120A; 0.1 mg sensitivity; Oerlikon AG, Zurich, Switzerland) to monitor weight gain. 
The fish were not fed on the sampling day to avoid stress.

Water quality parameter analysis

Water quality parameters were measured weekly following methods mentioned in APHA 
(1992). Water temperature and dissolved oxygen ranged from 25.6 to 28.7 °C and 6.84 to 
7.67  mg/L, respectively. Total ammonia nitrogen, alkalinity, free carbon dioxide, and pH 
ranged between 0.22–0.31 mg/L, 65.4–78.1 mg/L, 6.4–10.5 mg/L, and 7.2–7.5, respectively.

Sample collection and chemical analyses

On the day of the termination of the feeding trial, all fish were anesthetized with MS-222 
(100 mg/L) and their mass weight was recorded for calculating their growth metrics. The 
length and weight of 10 fish from each replicate of the groups were recorded for calculating 
the CF. After that, their blood samples were rapidly collected from the caudal vein using 
2-mL plastic syringes (with 0.6-mm-diameter needles) without anticoagulant in the dried 
Eppendorf tubes. To collect serum, blood samples were let to settle for about 10 min in a 
slanted position for clotting at room temperature. The samples were centrifuged (3000 × g, 
4 °C, 10 min), and serum was collected and stored at − 20 °C for further biochemical analy-
ses. After that, 5 fish from each replicate were weighed; liver and viscera were dissected to 
calculate HSI and VSI. After that, muscle from another 5 fish was immediately harvested 
and stored at − 20 °C for analyzing the fatty acid composition. The final body composition 
of the remaining fish from each replicate (n = 3 × 5) group was analyzed.

Serum oxidation and antioxidant parameters assay

Five subsamples (n = 3 × 5) from the stored serum samples were subjected to biochemical 
analyses of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), 
and malondialdehyde (MDA). The method adopted by Buege and Aust (1978) was used 
to determine the MDA concentration. SOD was assayed by following the method of Misra 
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and Fridovich (1972), and CAT activity was determined by the method of Takahara et al. 
(1960) and GPx by Rotruck et  al. (1973). Serum SOD, CAT, and GPx activities were 
expressed in U/mL, whereas MDA concentration was expressed in nmol/mL.

Lysozyme activity analysis

Lysozyme activity of serum was assessed following the turbidimetric method (Hultmark 
et al. 1980), adopted by Wang et al. (2015). A serum sample (20 μL) with 0.1 M sodium 
phosphate buffer (pH 6.4) was added to the suspension of 1.2 mL Micrococcus lysodeikticus. 
The absorbance was read in a spectrophotometer after 0.5 and 4.5 min at 530 nm. One unit 
of lysozyme activity is the sample quantity resulting in a decline in absorbance at 530 nm of 
0.001/min compared with the control. The lysozyme activities were expressed in U/mL.

Calculation of growth parameters, biometric indices, and diet peroxidation index

PIn (Peroxidation index) = 0.025 × (% of monoenoics) + 1 × (% of dienoics)

+ 2 × (% of trienoics) + 4 × (% of tetraenoics) + 6 × (% of pentaenoics) + 8 × (% of hexaenoics) 
(Witting and Horwitt 1964; Betancor et al. 2016)

Indices of nutritional quality of fish fillet

The fatty acid composition of muscle was used to determine the nutritional parameters of 
lipids. The following equations were used to calculate the fillet nutritional quality indices. 
The n3/n6, n6/n3, PUFA/SFA, and EPA/ARA ratios were also calculated.

AI(atherogenicity) = [12:0 + (4 × 14:0) + 16 ∶ 0]∕[
∑

MUFA +
∑

n − 6 +
∑

n − 3] 
(Ulbricht and Southgate 1991; Siddik et al. 2019)

Absolute weight gain (g∕f ish) = Final body weight (g∕f ish) − Initial body weight (g∕f ish)

Specific growth rate (SGR;%∕day) = ln final body weight (g) − ln initial body weight (g)

∕ No. of days of the experiment × 100

Feed conversion ratio (FCR) = Dry feed fed (g)∕Wet weight gain (g)

Protein eff iciency ratio (PER) = Weight gain (g)∕Protein fed (g)

Protein retention eff iciency (PRE%) = Protein gain (g)∕Protein intake × 100

Lipid retention eff iciency (LRE%) = Lipid gain (g)∕Lipid intake × 100

Hepatosomatic index (HSI%) = Liver weight (g)∕Body weight (g) × 100

Viscerosomatic index (VSI%) = Viscera weight (g)∕Body weight (g) × 100

Condition factor (CF) = Body weight (g)∕Body length (cm)3 × 100
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TI (thrombogenicity) = (14:0 + 16:0 + 18:0)∕[0.5 × (
∑

MUFA +
∑

n-6) + (3 ×
∑

n-3) + (
∑

n-3/
∑

n-6)] 
(Ulbricht and Southgate 1991; Chen and Liu 2020)

H∕H index (hypocholesterolaemic ∕ hypercholesterolaemic FA ratio)

= (18:1n-9 + 18:2n-6 + 18:3n-3 + 20:4n-6 + 20:5n-3 + 22:5n-3 + 22:6n-3) / (14:0 + 16:0)  
(Santos-Silva et al. 2002)

Fillet lipid quality (FLQ) = (20 ∶ 5n − 3 + 22 ∶ 6n − 3)∕
∑

total FA  
(Abrami et al. 1992)

Statistical analyses

To analyze all the data, a one-way analysis of variance (Sokal and Rohlf 1981) at a level of 
P < 0.05 significance was done. The normality of the data was confirmed using the Shap-
iro–Wilk test before analysis, and the homogeneity of variance was tested using Levene’s 
test. Tukey’s honest significant difference test was performed for multiple mean compari-
sons at a level of significance of P < 0.05. All the analyses were carried out using SPSS 
20.0 (SPSS, USA). Principal component analysis (Wold et al. 1987) was done as an unsu-
pervised pattern for a statistical procedure that converts a set of observations of possibly 
correlated variables into a set of values of linearly uncorrelated variables using orthogonal 
transformation. The main information in the variables is expressed by a lower number of 
variables called principal components (PC1, PC2). PCA was carried out on the data matrix 
of the fatty acid composition of the muscle of fish fed experimental diets using statistical 
software (Origin version 9.1; Origin Software, San Clemente, CA).

Results

Growth response, conversion efficiency, proximate composition, and biometric 
indices

The effects of dietary FO replacement with PO on the growth performance of rohu fin-
gerling are summed up in Table 3. Inclusion of PO in the diets did not show any negative 
impact (P > 0.05) on growth in L. rohita fingerling. Absolute weight gain (AWG), specific 
growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER) ranged 
between 19.32–22.58  g/fish, 3.36–3.75%/day, 1.32–1.68, and 1.48–1.89, respectively. 
However, protein retention efficiency was recorded highest (33.25–34.99%) in fish fed 
100% FO diet (0 PO) and 60% replacement of FO in diet (60 PO). Lipid retention effi-
ciency was found highest (53.09%) in fish fed 100% FO replaced diet (100 PO) and lowest 
(27.89%) in fish fed 20% FO replaced diet (20 PO). No mortality was noted in fish receiv-
ing all the diets. Carcass protein was recorded significantly (P < 0.05) higher (179.13  g/
kg, wet basis) in fish receiving 100% FO diet (0 PO), followed by 20% (20 PO), 40% (40 
PO), and 60% (60 PO) replacement of FO in diets. The lowest carcass protein (156.51 and 
144.64 g/kg) was evident in the fish receiving diets with 80% (80 PO) and 100% (100 PO) 
replacement of FO. Carcass fat content showed the reverse trend (Table 4). HSI (3.98%) 
and VSI (6.98%) were recorded highest (P < 0.05) in fish receiving a 100% FO replaced 
diet (100 PO) followed by a diet containing 80% replacement of FO (80 PO). The lowest 
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values for HSI (2.21%) and VSI (4.96%) were recorded in fish fed 100% FO diet (0 PO), 
followed by 20% (20 PO), 40% (40 PO), and 60% (60 PO) replacement of FO diets. How-
ever, the condition factor (1.39–1.64 g/cm3) remained significantly unchanged (P > 0.05) in 
fish receiving all the diets.

Serum antioxidant and non‑specific immune status

Serum antioxidant activities of rohu fingerling are depicted in Table 5. Serum SOD, CAT, 
and GPx values did not change significantly (P > 0.05) up to 60% replacement of FO (60 
PO) in diet and then declined with the lowest activity noted in fish fed 100% PO diet (100 
PO). Highest (P < 0.05) MDA activity (15.76 nmol/mL) was recorded in fish receiving a 
diet containing 100% FO (0 PO), whereas the activity decreased upon further replacement 
of FO with PO in diet. The highest (P < 0.05) serum lysozyme activity (256.89 U/mL) was 
recorded in fish receiving diet with 60% replacement of FO (60 PO), followed by 40% (40 
PO) and 0% (0 PO) FO replacement diets. The lowest lysozyme activity (240.79 U/mL) 
was recorded in fish receiving a 100% PO containing diet (100 PO).

Muscle fatty acid composition

The muscle fatty acid profile of rohu fingerling fed test diets is depicted in Table 6. Signifi-
cantly (P < 0.05) highest proportion of SFA in muscle (38.91%) was noted in fish receiving 
a 100% PO diet (100 PO). The highest proportion of MUFA (30.76%) was noted in fish 
receiving a 100% FO diet (0 PO) compared to other diets (P < 0.05). No significant differ-
ence (P > 0.05) was recorded in the percentage of ALA (1.09–1.99%) in the muscle of fish 
fed all the diets. Muscle EPA and DHA did not differ significantly (P > 0.05) in fish fed 
diets up to 60% replacement of FO (60 PO). However, further replacement of FO with PO 
in the diets (80 PO and 100 PO) led to a decline in muscle EPA and DHA content. Signifi-
cantly higher (P < 0.05) muscle n-3/n-6 ratio (4.12) was recorded in fish receiving 100% 
FO diet (0 PO) and no significant change (P > 0.05) in n-3/n-6 ratio was recorded up to fish 

Table 5   Serum antioxidant capacity and lysozyme activity of fingerling Labeo rohita fed different experi-
mental diets1,2

1 Mean values of 3 replicates ± SEM. 2Mean values sharing the different superscripts in the same row are 
significantly different (P < 0.05). MDA, malondialdehyde; SOD, superoxide dismutase; CAT​, catalase; GPx, 
glutathione peroxidase

Fish oil replacement level (%)

0 PO 20 PO 40 PO 60 PO 80 PO 100 PO

MDA 
(nmol/
mL)

15.76 ± 0.07a 14.95 ± 0.45ab 13.08 ± 0.43b 12.14 ± 0.35c 12.59 ± 0.61c 12.94 ± 0.52c

SOD (U/
mL)

64.75 ± 0.34a 64.51 ± 0.47a 63.99 ± 0.23a 63.75 ± 0.32a 62.74 ± 0.45a 59.61 ± 0.34b

CAT (U/
mL)

38.51 ± 0.17a 38.24 ± 0.25a 37.88 ± 0.27a 37.41 ± 0.31a 36.14 ± 0.06a 34.84 ± 0.05b

GPx (U/mL) 258.94 ± 0.09a 258.41 ± 0.07a 256.45 ± 0.06a 245.71 ± 0.08ab 240.94 ± 0.05b 237.24 ± 0.03c

Lysozyme 
(U/mL)

255.68 ± 8.79a 252.75 ± 7.51a 254.97 ± 7.01a 256.89 ± 8.92a 245.97 ± 7.91b 240.79 ± 8.19b
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fed diet with 60% replacement of FO (60 PO). Further replacement of FO with PO in diets 
(80 PO and 100 PO) resulted in a significant decline in the n-3/n-6 ratio (1.06 and 0.51, 
respectively). Data of the fatty acid composition of fish fed different experimental diets 

Table 6   Muscle fatty acid compositions of fingerling Labeo rohita fed different experimental diets (% total 
fatty acids)1,2

a SFA, saturated fatty acids; bMUFA, mono-unsaturated fatty acids; cLA, linoleic acid; dARA​, arachidonic 
acid; en-6 PUFA, n-6 polyunsaturated fatty acids; fALA, alpha-linolenic acid; gEPA, eicosapentaenoic acid; 
hDHA, docosahexaenoic acid; in-3 PUFA, n-3 polyunsaturated fatty acids; jAI, atherogenicity index; kTI, 
thrombogenicity index; lH/H, hypocholesterolaemic and hypercholesterolaemic fatty acid ratio; mFLQ, fillet 
lipid quality
1 Mean values of 3 replicates ± SEM. 2Mean values sharing the different superscripts in the same row are 
significantly different (P < 0.05)

Parameters Fish oil replacement level (%)

0 PO 20 PO 40 PO 60 PO 80 PO 100 PO

14:0 2.49 ± 0.04a 2.46 ± 0.21a 1.97 ± 0.08a 1.89 ± 0.12a 1.25 ± 0.14ab 1.04 ± 0.06ab

16:0 12.99 ± 0.1c 17.57 ± 0.19b 19.89 ± 0.09ab 20.04 ± 0.21ab 26.09 ± 0.23ab 32.89 ± 0.08a

18:0 6.45 ± 0.12a 5.45 ± 0.14a 5.81 ± 0.11a 5.65 ± 0.14a 4.7 ± 0.21ab 4.98 ± 0.19ab

∑SFAa 21.93 ± 0.14c 25.48 ± 0.21b 27.67 ± 0.12b 27.58 ± 0.08b 32.04 ± 0.09ab 38.91 ± 0.21a

16:1n-7 6.59 ± 0.22a 5.12 ± 0.21a 4.34 ± 0.23b 3.87 ± 0.24b 2.84 ± 0.32bc 1.04 ± 0.31c

18:1n-9 14.54 ± 0.22b 16.79 ± 0.23ab 17.65 ± 0.24ab 18.76 ± 0.24a 18.89 ± 0.26a 19.98 ± 0.25a

20:1n-9 3.02 ± 0.34a 2.02 ± 0.31a 2.25 ± 0.33a 1.96 ± 0.24ab 0.98 ± 0.21ab 0.54 ± 0.27ab

22:1n-9 6.61 ± 0.34a 5.78 ± 0.35ab 4.19 ± 0.45c 3.18 ± 0.24c 1.45 ± 0.42d 0.64 ± 0.21d

∑MUFAb 30.76 ± 0.64a 29.71 ± 0.78a 28.43 ± 0.89a 27.77 ± 0.56ab 24.16 ± 0.67b 22.2 ± 0.82c

18:2n-6 LAc 5.58 ± 0.34c 6.62 ± 0.45c 7.59 ± 0.36c 7.99 ± 0.43c 17.52 ± 0.26b 23.67 ± 0.41a

18:3n-6 0.21 ± 0.42a 1.98 ± 0.45a 1.07 ± 0.43a 1.44 ± 0.45a 2.37 ± 0.41a 3.98 ± 0.54a

20:4n-6 
ARA​d

2.58 ± 0.54a 2.05 ± 0.53a 1.74 ± 0.56a 1.04 ± 0.52a 1.01 ± 0.42a 0.98 ± 0.43a

∑n-6 
PUFAe

8.37 ± 0.82d 10.65 ± 0.89c 10.4 ± 0.97c 10.47 ± 0.97c 20.9 ± 0.78b 28.63 ± 0.76a

18:3n-3 
ALAf

1.09 ± 0.02a 1.57 ± 0.09a 1.89 ± 0.08a 1.99 ± 0.06a 1.24 ± 0.07a 1.21 ± 0.06a

18:4n-3 0.14 ± 0.02a 0.32 ± 0.04a 0.06 ± 0.03a 0.67 ± 0.04a 0.98 ± 0.01a 0.41 ± 0.04a

20:5n-3 
EPAg

14.98 ± 0.45a 13.78 ± 0.65a 13.98 ± 0.55a 13.64 ± 0.43a 9.18 ± 0.46b 5.94 ± 0.49c

22:5n-3 2.01 ± 0.27a 0.98 ± 0.14b 0.49 ± 0.02b 0.02 ± 0.35b 0.58 ± 0.45b 0.45 ± 0.35b

22:6n-3 
DHAh

16.27 ± 0.39a 15.82 ± 0.35a 15.61 ± 0.25a 15.45 ± 0.35a 10.26 ± 0.35b 6.79 ± 0.45c

∑n-3 
PUFAi

34.49 ± 1.02a 32.47 ± 1.01a 32.03 ± 0.99a 31.77 ± 0.98ab 22.24 ± 1.01b 14.8 ± 1.04c

n-3/n-6 
PUFA

4.12 ± 0.98a 3.04 ± 0.87b 3.07 ± 0.79b 3.03 ± 0.89b 1.06 ± 0.74c 0.51 ± 0.89c

EPA/ARA​ 5.80 ± 0.34c 6.72 ± 0.25c 8.03 ± 0.45b 13.11 ± 0.24a 9.08 ± 0.25b 6.06 ± 0.35c

AIj 0.31 ± 0.21a 0.37 ± 0.24a 0.39 ± 0.25a 0.39 ± 0.35a 0.46 ± 0.45a 0.56 ± 0.35a

TIk 0.17 ± 0.31a 0.21 ± 0.41a 0.23 ± 0.15a 0.23 ± 0.24a 0.35 ± 0.25a 0.55 ± 0.45a

H/Hl 3.55 ± 0.24a 2.82 ± 0.35a 2.67 ± 0.41ab 2.68 ± 0.26ab 2.12 ± 0.45b 1.72 ± 0.24b

FLQm 32.70 ± 0.41a 30.10 ± 0.54a 30.03 ± 0.42a 29.80 ± 0.35a 19.56 ± 0.45b 12.17 ± 0.42c

n-6/n-3 
PUFA

0.24 ± 0.02a 0.32 ± 0.03b 0.32 ± 0.04b 0.32 ± 0.04b 0.93 ± 0.03ab 1.93 ± 0.04a

PUFA/SFA 1.95 ± 0.06a 1.69 ± 0.05a 1.53 ± 0.04a 1.53 ± 0.05a 1.34 ± 0.06a 1.11 ± 0.05a
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were subjected to principal component analysis (PCA) and the result is shown in Fig. 1. 
The bi-plot of the first two principal components accounted for 99.52% of total variance 
with PC1 (main axis 1) of 88.71% and PC2 (main axis 2) of 10.81%, respectively.

Nutritional quality indices of fish fillet

The nutritional quality indices of fatty acids in fish fillet fed test diets are shown in Table 6 
and Fig. 2. AI and TI indices in the muscle of rohu fingerling did not differ among treat-
ments (P > 0.05). However, highest (P < 0.05) H/H (3.55) and FLQ (32.70) values were 
noted in fish fed 100% FO diet (0 PO). H/H and FLQ values did not differ significantly up 
to 60% replacement of FO with PO in diet (60 PO). Further replacement FO with PO in 
diets (80 PO and 100 PO) resulted in decreased H/H ratio and FLQ value. EPA/ARA ratio 
increased (13.11) up to 60% replacement of FO in diet (60 PO). Further replacement of FO 
with PO in diets led to a significant decrease (P < 0.05) in EPA/ARA ratio. PUFA/SFA and 
n-6/n-3 ratio did not significantly differ (P > 0.05) among all the treatments.

Fig. 1   Principal component 
analysis of muscle fatty acids 
of rohu fingerling fed different 
experimental diets

Fig. 2   Radar plot of the indices 
of nutrition quality of fillet fatty 
acids of rohu fingerling fed dif-
ferent experimental diets. Values 
are the mean of triplicate groups 
of fish
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Discussion

Due to the limited availability and escalating cost of fish oil (FO), the search for alternative 
lipid sources is a priority of the aqua-feed industry. The effectiveness of dietary lipids in 
promoting growth relies upon the quality and quantity of fatty acids present in the dietary 
lipid rather than the amount of lipid used in the diet. Herbivorous or omnivorous freshwa-
ter fish can convert ALA and LA into ARA, EPA, and DHA (Sargent et al. 2002), but this 
activity can vary among fish species due to the variation in the ability to desaturate and 
elongate the fatty acid chains. Growth performances are used to evaluate the effect of the 
nutrient in the diet (NRC 2011). In this study, replacement of FO with PO in a fish diet did 
not show any adverse effect on growth performance in L. rohita fingerling, indicating that 
PO can replace FO in diets of L. rohita fingerling. However, significant differences in fillet 
lipid quality of fish fed different diets were recorded. This observation was in accordance 
with the studies reported on other freshwater fish species (Priya et al. 2005; Karanth et al. 
2009; Ren et al. 2012; Babalola and Apata 2012; Kowalska et al. 2010; Jiang et al. 2013; 
Demir et al. 2014; Zhou et al. 2016; Ayisi et al. 2018; Sankian et al. 2019), where substitu-
tion of dietary FO by VOs did not affect fish growth. Once the EFA requirement is satis-
fied, a considerable quantity of dietary FO may be replaced by other oils without hamper-
ing the growth performance, feed intake, and feed efficiency. However, Alves et al. (2021) 
reported that the inclusion of PO in diet improved growth performances in Nile tilapia, 
Oreochromis niloticus. In the present study, FCR did not differ significantly in all the treat-
ments. Similar observations were also reported by Ayisi et al. (2018) in O. niloticus. In the 
present study, protein retention efficiency (PRE) was found to be highest (33.25–34.99%) 
in fish fed 100% FO diet (0 PO) and 60% replacement of FO in diet (60 PO). The lowest 
PRE (24.56%) was recorded in fish fed 100% FO replaced diet (100 PO). Lipid retention 
efficiency was found highest (53.09%) in fish fed 100% FO replaced diet (100 PO) and 
lowest (27.89%) in fish fed 20% FO replaced diet (20 PO). This might be due to the imbal-
ance of fatty acids in diets as dietary saturated fatty acid (SFA) increased with increasing 
dietary PO levels. Increased SFA has been reported to promote lipid deposition (Leamy 
et al. 2013; Li et al. 2019), resulting in a further increase in carcass lipid content.

The carcass crude lipid and crude protein are important parameters used to evaluate the 
nutritional quality of fish. In this study, fish fed diets with 80% (80 PO) and 100% (100 
PO) replacement of FO exhibited higher carcass lipid than fish fed other diets, whereas 
carcass crude protein exhibited a reverse pattern. The observations were similar to those of 
the results of nutrient retention efficiencies. Similarly, the highest HSI and VSI were also 
recorded in fish fed above-mentioned diets. The higher levels of dietary SFA might have 
resulted in increased lipid deposition in the hepatic and visceral regions of fish. Similar 
findings were also reported in rainbow trout, Oncorhynchus mykiss (Caballero et al. 2002), 
gilthead sea bream, Sparus aurata (Fountoulaki et al. 2009), African catfish, Heterobran-
chus longifilis (Babalola and Apata 2012), and large yellow croaker, Larimichthys crocea 
(Li et al. 2019).

During normal cellular metabolism, sequential reduction in molecular oxygen gener-
ates reactive oxygen species (ROS) in animals causing cell and tissue damage (Nordberg 
and Arnér 2001; Nayak et  al. 2021). A balance between the production and removal of 
ROS is maintained under normal physiological conditions. However, when an imbalance 
in ROS production and removal happens, the antioxidant defense mechanism gets stimu-
lated to cope with oxidative stress (Kohen and Nyska 2002; Guillou et al. 2010). This anti-
oxidant defense system includes SOD which accelerates the dismutation rate of superoxide 
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radicals such as O2
− into oxygen and hydrogen peroxide (H2O2). CAT catalyzes the reduc-

tion of H2O2 and lipid peroxides into molecular oxygen and water, thus, completing the 
detoxification process initiated by SOD. GPx, along with glutathione as a hydrogen donor, 
reduces all the organic lipid peroxides (Jin et al. 2017). Oxidation and breakdown of the 
fatty acids of membrane lipids that contain more than two methylene-interrupted double 
bonds result in the production of MDA, an important metabolite used to indicate oxida-
tive damage caused by ROS (Yuan et al. 2019). In the current experiment, the lowest GPx 
activity was observed in fish fed diet containing 100% palm oil (100 PO), whereas the 
highest activity was noted in fish receiving 100% fish oil diet (0 PO), followed by a 60% 
FO replacement diet (60 PO). This signifies that feeding rohu fingerling with palm oil up to 
60% replacement can decrease the peroxidative damage by removing excess ROS. In this 
study, a significant decrease in CAT and SOD activities was noted in the serum of rohu fin-
gerling fed with 80% (80 PO) and 100% (100 PO) fish oil replacement diets. Highest MDA 
was recorded in fish receiving a 100% FO diet (0 PO). A significant decrease in MDA level 
with the increase in PO in all the diets was noted, indicating a reduced susceptibility of fish 
to fatty acid peroxidation. Moreover, in the current study, the PIn (peroxidation index) of 
the diets was related to the percentage of dietary LC-PUFA and MDA to PIn. High die-
tary LC-PUFAs present in 100% FO diet (0 PO) caused lipid peroxidation resulting in an 
increase in MDA level. This signifies that the replacement of FO with PO prevents MDA 
accumulation by suppressing lipid peroxidation.

Lysozyme plays a vital role in non-specific immunity (Zhang et al. 2017) which in fish 
is considered to be more important than specific immunity because the latter requires a 
longer time in specific cellular activations to produce antibodies. It is distributed widely in 
the mucus, serum, gill, and intestinal tract of the fish body. Lysozyme has antiviral, anti-
inflammatory, and antibacterial activities. Fish immunity is regulated by dietary fatty acid 
composition and serum lysozyme activity (Yu et al. 2020). In this study, lysozyme activity 
did not change significantly up to 60% replacement of FO with PO (60 PO). However, the 
activity declined upon further replacement of FO in diet (80 PO and 100 PO). A simi-
lar response was recorded where FO substitution with VOs up to a certain level did not 
affect lysozyme activity as reported in earlier studies, including gilthead sea bream, Sparus 
aurata (Montero and Izquierdo 2010), Eurasian perch, Perca fluviatilis (Geay et al. 2015), 
and Nile tilapia, O. niloticus (Ayisi et al. 2018).

The fatty acid profile of cultured fish is directly influenced by the nutrient composition 
of the diet (Barriviera et al. 2021; Zhu et al. 2022). Muscle fatty acid composition of rohu 
fingerling was significantly affected by the replacement of FO with PO in the diet. Fish 
receiving a 100% fish oil diet (0 PO) resulted in the highest EPA and DHA levels in fish 
muscle, followed by diet containing 20% (20 PO), 40% (40 PO), and 60% (60 PO) replace-
ment of FO. A significantly higher muscle n-3/n-6 ratio was noted in fish receiving 100% 
fish oil diet (0 PO). Although replacement of FO with PO lowered the muscle n-3/n-6 ratio, 
it is much higher than their corresponding levels in diets. The content of n-6/n-3 PUFA 
ratio, PUFA/SFA and H/H ratios, and AI and TI values are used as tools to evaluate the 
nutritional quality of meat (Chen and Liu 2020). The consumption of a balanced n-6/n-3 
ratio is important. High levels of n-6 fatty acid lead to health problems such as coronary 
artery diseases, obesity, and type 2 diabetes. In contrast, n-3 fatty acids have health benefits 
in reducing the risk of cardiovascular disease and preventing Alzheimer’s disease. N-6/n-3 
PUFA ratio lower than 4 and PUFA/SFA ratio higher than 0.45 are recommended for the 
human diet (Department of Health and Social Security 1984). A PUFA/SFA ratio below 
0.45 has been considered undesirable for the human diet as it might increase cholesterol 
level in blood. In this study, the n-6/n-3 ratios were lower than 4 and PUFA/SFA ratios 
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were higher than 0.45 in all the muscle samples, indicating that the muscle of rohu finger-
ling met the requirements for healthy human nutrition. The H/H ratio reflects the influence 
of fatty acids on the metabolism of cholesterol. Fish flesh with higher H/H values is rec-
ommended for human consumption (Santos-Silva et al. 2002; Cortegano et al. 2017; Gon-
çalves et al. 2021). Also, the larger the fillet lipid quality (FLQ) value, the better it is. In the 
present study, fish fed 100% FO diet (0 PO) resulted in the highest H/H ratio (3.55 ± 0.24) 
and FLQ value (32.70 ± 0.41) in fish muscle (Table 5) which did not differ significantly up 
to 60% replacement of FO with PO in diet (60 PO). However, further replacement FO with 
PO in diets (80 PO and 100 PO) resulted in a decrease in H/H ratio and FLQ value in the 
fish muscle.

AI represents arteriosclerosis, a tendency for clot formation in blood vessels (Ulbricht 
and Southgate 1991). TI characterizes the thrombogenic potential of fatty acids (Ulbricht 
and Southgate 1991). It is the relation between pro-thrombogenic fatty acids (C12:0, 
C14:0, and C16:0 acids) and anti-thrombogenic fatty acids (MUFAs, n-3 and n-6 fatty 
acids). Therefore, lower indices positively affect coronary artery disease prevention (Cor-
tegano et  al. 2017). No significant changes (P > 0.05) in AI and TI indices were noted 
among L. rohita fingerling fed diets with different experimental diets (Fig. 2) and their val-
ues ranged between 0.31–0.56 and 0.17–0.55, respectively. These values are similar to the 
values obtained by Linhartová et al. (2018) in some freshwater carp species. In the present 
experiment, all the AI and TI values were below 1 and H/H index was above 1, indicating 
significant benefit to human health in terms of cardiovascular diseases.

The desaturation and elongation processes of ALA and LA to EPA and ARA, respec-
tively, are mediated by desaturase and elongase enzymes with a preference over the sub-
strate availability (Tocher et  al. 2004). Thus, EPA/ARA ratio is a vital fillet nutritional 
indicator. Moreover, EPA and ARA are the precursors of bioactive mediators such as 
eicosanoids which are the indicators of inflammatory processes (Gonçalves et  al. 2021). 
In the present experiment, muscle EPA/ARA ratio increased up to 60% replacement of FO 
in diet (60 PO). However, further replacement of FO with PO in diet (80 PO and 100 PO) 
resulted in a significant decrease in EPA/ARA ratio, indicating that 60% replacement of 
FO with PO (60 PO) is optimum for rohu fingerling.

PCA was used to observe the clustering trends of the muscle fatty acid profiles in rohu 
fingerling fed with different experimental diets. The bi-plot indicated that 16:0, 18:1n-9, 
18:2n-6, 20:5n-3, and 22:6 n-3 fatty acids were responsible to cause differences among 
samples. Diets containing the replacement of FO with PO at 20% (20 PO), 40% (40 PO), 
and 60% (60 PO) levels are positively correlated and clustered together with diet contain-
ing 100% FO (0 PO). However, diets containing the replacement of FO with PO at 80% 
(80 PO) and 100% (100 PO) levels are negatively correlated with the diet containing 100% 
FO (0 PO). Also, the bi-plot showed that 16:00 and 18:2n-6 fatty acids in the muscle of 
fish fed 80% (80 PO) and 100% (100 PO) FO replacement diets resulted in increased lipid 
deposition. Therefore, it can be concluded that FO can be replaced for up to 60% of the diet 
without changing the fatty acid composition in fish muscle.

Conclusion

In summary, the current experiment demonstrated that PO can replace FO without hamper-
ing growth performance in rohu fingerling. However, health and nutritional benefits were 
reduced in L. rohita fed diets with higher levels of PO (80% and 100% replacement of FO) 
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due to the decrease in muscle EPA and DHA levels. Antioxidant capacity and lysozyme 
activity remained unchanged up to 60% replacement of FO with PO in the diet. Although 
the AI and TI values and PUFA/SFA and n6/n3 ratios did not change among all the muscle 
samples, the highest H/H and FLQ values were evident in fish receiving a 100% FO (0 PO) 
diet. H/H and FLQ values did not differ significantly up to 60% replacement of FO with 
PO in diet (60 PO). Replacing FO with PO at a higher level had negative consequences on 
the nutritional quality of rohu fingerling. Therefore, FO can be replaced by PO at a moder-
ate level (60%) to avoid the degradation of nutritional quality of the fillet and to formulate 
cost-effective commercial feeds.
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