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Abstract
Macrobrachium rosenbergii is a typical aquatic organism with reversible gonadal devel-
opment that is regulated by gene expression. The role of transcription factors in gonadal 
in adult shrimps remains unclear in M. rosenbergii. In this study, we sequenced the tran-
scriptomes of adult shrimp testes, ovaries, and androgenic glands using second-generation 
sequencing. In total, 24,007 genes were identified and 9,199 differentially expressed genes 
(DEGs) were identified by pairwise comparison. There were 272 differentially expressed 
transcription factors (TFs); 107, 152, and 13 differentially expressed TFs were identified 
in the testes, ovaries, and androgenic glands by three pairwise comparisons, respectively. 
GO and KEGG analyses of the TFs and DEGs involved in the MAPK signaling and tran-
scriptional regulation pathways and play key roles in the cell cycle of the testes, whereas 
involved in the thyroid hormone signaling pathway and neuroactive ligand–receptor inter-
action play important roles in the ovary. We determined the existence of networks compris-
ing important TFs related to sex development in adult M. rosenbergii gonads. The key TFs 
were Piwi (expressed only in the testes and ovaries) and Argonaute 3 (expressed only in the 
ovaries), which might be involved in the regulation of testes and ovary development.
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Introduction

Sex determination and development of aquatic organisms is a complicated biological pro-
cess. Sex chromosomes were the first sex determination and development associated sys-
tems identified by biologists, and diversified sex chromosome determination mechanisms 
exist for aquatic organisms, including the XY and ZW systems (Cioffi et al. 2012; Mathers 
et al. 2015; Salvadori et al. 2018). The same-sex chromosome system and differentiation 
sex determination and development mechanisms also exist among aquatic organisms. For 
example, Macrobrachium rosenbergii and Triportheus have a ZW sex chromosome sys-
tem, but the underlying sex determination mechanisms are distinct (Aflalo et  al. 2006; 
Diniz et  al. 2008), particularly the sex determination mechanism of M. rosenbergii with 
single gland cells (Levy et al. 2016, 2019) and single genes determines the direction of sex 
development (Tomer et al. 2012). M. rosenbergii, a species characterized by different sex 
types of different sizes (Kuris et al. 1987), has drawn considerable attention in sex deter-
mination and development research. Previously, it was discovered that the expression of 
the insulin-like androgenic gland (IAG) gene in the androgenic gland is a key factor in the 
sex determination and the sex development control mechanism of M. rosenbergii (Ventura 
et al. 2009, 2012; Aflalo et al. 2012); however, it is not yet clear how sex determination 
and development are regulated by different TFs and function genes, and both participate in 
gonadal sex reversal remain unknown.

In most organisms, TFs and DEGs from gonadal perform key functions for decoding 
DNA sequences and controlling cell differentiation, developmental patterning (Lee and 
Young 2013), and specific pathways, such as gonadal differentiation and gonadal sex 
determination (Morohashiet et  al. 2004). The best-understood TF pathway involved in 
sex determination and development is the demethylase KDM6B pathway, which regulates 
temperature-dependent sex determination in turtles (Ge et al., 2018). KDM6B is a histone 
demethylase that can directly promote the expression of Dmrt1, a TF involved in male 
sex determination in turtles. Dmrt1 contains a DNA-binding motif (Matson and Zarkower 
2012) and is the master gene in the genetic sex determination of certain non-mammalian 
species, such as chickens and frogs (Smith et  al. 2009; Yoshimoto et  al. 2008). The 
crustaceans may adopt the Drosophila sex determination and development pathway that 
is ruled by the genetic pathway Sxl-Tra/Tra-2-Dsx/Fru, and the pathway also was reported 
in some shrimp species as Penaeus monodon and Penaeus chinensis (Leelatanawit et  al. 
2008; Li et al. 2012). M. rosenbergii, a non-mammalian species, has been shown to express 
similar TFs and function genes in embryonic tissues and androgenic glands (Amterat Abu 
Abayed et al. 2019); however, the upstream regulatory factor IAG is also associated with 
these TFs. Currently, these two genes are known to be involved in the sex determination 
of M. rosenbergii; however, the regulatory mechanism underlying their activity is unclear.

The decision mechanisms of model organisms and amphibians have been studied sys-
tematically. Because of the large number of chromosomes in shrimps, it is difficult to 
distinguish between autosomes and sex chromosomes, and sex identification by kary-
otype analysis is impossible (Lee et  al. 2004). In particular, the role of TFs and DEGs 
in sex determination and development in M. rosenbergii is poorly understood. Although 
it is known that the testis, ovaries, and androgenic glands are important gonadal tissues 
of M. rosenbergii, they have important role in producing sperm and eggs and regulating 
sex development; whether the DEGs and differential TFs in three gonadal have a role in 
their development and maturity remains unclear. Therefore, further research on this topic 
would broaden our understanding of the sex development system, improve and expand the 
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existing sex development regulation network, and provide new ideas for the study of sex 
development regulation in M. rosenbergii.

Materials and methods

Sample collection and RNA extraction

Six adult M. rosenbergii shrimps, including three males and three females, which were 
separated based on the presence of genital papillae on the fifth walking legs and appendi-
ces masculina on the second pleopods, as previously reported (Ventura et al. 2009), were 
raised in two automated circulating water system tanks with water temperatures maintained 
at 25–28 °C and dissolved oxygen content above 5 mg/L in the Laboratory of Aquatic Biol-
ogy of Zhejiang Academy of Agricultural Sciences, Hangzhou, China. All shrimps were 
aged more than 8  months and matured sexually with clear sexual gonad tissues, deter-
mined by dissection. Each shrimp was placed on ice for 1 min to induce anesthesia. After 
anesthetization, samples of ovaries (Ov) all in pre-ovulated stage from three female, testes 
(Tt) and androgenic glands (Ag) from three males were collected separately and dissected. 
Each fresh sample was washed in phosphate-buffered saline (PBS; Gibco, Fisher Scientific, 
Waltham, MA, USA) and immediately frozen in liquid nitrogen.

Total RNA was extracted from each sample using an RNeasy Plus Micro Kit (QIAGEN 
LLC., Germany). RNA concentration and purity were measured using a spectrophotometer 
to determine the OD260/OD280 value for each sample (NanoVue; GE Healthcare, Piscata-
way, NJ, USA).

Mixed sample sequencing and unique transcript identification

Three male and three female RNA samples were mixed into one sample, respectively; each 
contains 5 µg of total RNA mixed, with one male and one female RNA sample for Iso-Seq 
library construction. The Iso-Seq library was prepared according to the Isoform Sequenc-
ing protocol (Iso-Seq) using the Clontech SMARTer PCR cDNA Synthesis Kit and the 
BluePippin Size Selection System protocol, as described by Pacific Biosciences (PN 
100–092-800–03). Sequencing was performed using the PacBio Sequel platform (Pacific 
Biosciences Co., CA, USA). The raw read data were generated using PacBio Sequel and 
processed using the SMRTlink software (version 7.0; Pacific Biosciences Co.). The clas-
sified reads were processed as full-length and non-full-length reads. Full-length non-chi-
meric (FLNC) read sequences were corrected using the Illumina RNA-Seq data using the 
software LoRDEC, and redundancies were removed using CD-HIT to obtain the final tran-
scripts. The obtained transcripts were subjected to clustering analysis to form a reference 
library for all the unique genes.

Sample sequencing and de novo assembly

Three gonadal tissues, 9 samples, 3 replicates for each gonadal tissue were conducted 
sequencing. A total of 3 μg of RNA per sample was used as the initial material for RNA 
sample preparation. Total RNA was used to generate sequencing libraries with varied 
index labels using a NEBNextUltra™ Directional RNA Library Prep Kit for Illumina (New 
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England BioLabs, Ipswich, MA, USA), according to the manufacturer’s instructions. The 
clustering of index-coded samples was performed on a cBot cluster generation system 
using TruSeq PE Cluster Kit v3-cBot-HS (Illumina, San Diego, CA, USA), according to 
the manufacturer’s instructions. After cluster generation, the libraries were sequenced on 
an Illumina Hiseq 4000 platform (Illumina), and 150 bp paired-end reads were generated. 
All data generated in this study were deposited in the Gene Expression Omnibus (GEO) 
with the accession code GSE171823. Additional nucleotide errors in the consensus reads 
were corrected using Illumina RNA-Seq data with LoRDEC software. The expression lev-
els of all unigenes were analyzed using sequencing data, by calculating the fragments per 
kilobase million (FPKM) value.

Annotation of unigenes and differential expression level analysis

The function of each unique gene was annotated using NR, NT, Pfam, KOG/COG, Swiss-
Prot, KO, and Gene Ontology (GO) and analyzed using BLAST, Diamond BLASTX, and 
Hmmscan, with the e-value set to  1e−10. Differential expression analysis of each gene in 
the two groups was performed using the DESeq R package (1.10.1). The resulting p values 
were adjusted using the Benjamini–Hochberg approach to control the false discovery rate. 
Genes with an adjusted p value < 0.05, identified using DESeq, were categorized as differ-
entially expressed genes (DEGs).

Quantitative reverse transcription PCR (qRT-PCR) was performed using a PowerSYBR-
Green RT-PCR Reagent Kit (Applied Biosystems, Carlsbad, CA, USA) in triplicate for 
each sample and reference gene. Actin was used as a reference gene. The expression of all 
chosen mRNAs was quantified using the comparative CT ratio between each gene and the 
β-Actin gene (primer data are shown in Table 1).

GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses 
of DEGs

GO enrichment analysis of DEGs was performed using the GOseq R package, in which 
gene length bias was corrected. GO terms were considered significantly enriched by DEGs, 
with corrected p values < 0.05.

KEGG (http:// www. kegg. jp/) enrichment of DEGs was performed using the hypergeo-
metric test on the KOBAS software (v.2.0) (Chen et al. 2011) platform to test the statisti-
cal enrichment of DEGs in KEGG pathways, in which p values were adjusted by multiple 
comparisons as q values. KEGG terms with q < 0.05 were considered to be significantly 
enriched.

Table 1  Primers used in the present study

Gene name Forward primer Reverse primer Tm

Piwi ACC ATG CCA GTT TGC TCA TAAA CCA ACT CAC AAA TAC CAC AGA AGG 61.0
IAG GCC GAG ATC AAG TGT GTG TTG AGA CGG AGG CAA GGG TGT T 61.8
Ago3 TGA TTA TGG GAG CGG ATG TG CAT TTC CTT TCG TGA TGT CTGG 61.7
Ankyrin CCT GTT CGT TCT GCG TCT CTGG CAT GGC GAC GAG GAC ACC ATCC 61.0
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TFs identification

Based on the Animal TFDB 2.0 TF database (Zhang et al. 2015), all TFs were predicted 
and identified using the Hmmscan software (v.3.1b2) (Eddy 2011) to analyze the E-value 
of each DEG, with a highly significant E-value threshold of 10 ×  10−5. Tissue-specific TFs 
were scanned from differentially expressed TFs using PKFM values, with only one being 
highly expressed in the tissue.

Results

Summary of RNA‑seq raw data

Two libraries (for a mixed sample of three males and a mixed sample of three females) 
were constructed and sequenced from six adult M. rosenbergii. Based on the mixed sample 
sequencing, 44.42 G base of subreads with length over 50 bp were generated in total, with 
20.79 G and 23.63 G for males and females, respectively (Table 2). In total, 37,751,802 
high-quality subreads with an average length of 1,177  bp were obtained by sequencing. 
After clustering to eliminate redundancy for FLNC read sequences of transcripts, 13,299 
and 35,247 transcripts were obtained for males and females, respectively. A total of 24,007 
genes were identified by removing redundant and similar sequences through sequence 
alignment and clustering.

Analysis of annotation and expression by sequencing

Nine samples from three males and three females were established and sequenced. In 
total, 21,071 unigenes were clustered with the third-generation sequencing results and 
were annotated using seven databases. A total of 11,602 unigenes were annotated in the 
Nr protein database with an e-value <  e−5. The least annotated unigenes were found in the 
National Center for Biotechnology Information (NCBI, http:// www. ncbi. nlm. nih. gov/ Ref-
Seq) database of non-redundant nucleotide and protein sequences, and only 3,127 unigenes 
were involved.

The FPKM values of all the unigenes were calculated for subsequent analysis. The 
results revealed that the unigenes were expressed at different levels in the three tissues 

Table 2  Statistical analysis of 
sequencing for M. rosenbergii 

N50 represents the length of subreads not less than 50% of the total 
length from the longest to the shortest

Sample Male Female Total

Subreads base (G) 20.79 23.63 44.42
Subreads number 16,160,394 21,591,408 37,751,802
Average subreads length (bp) 1,287 1,095 1,177
Min length (bp) 51 51 102
Max length (bp) 7,714 6,400 14,114
Average length (bp) 1,547 1,353 2,900
N50 (bp) 1,864 1,730 3,594
Gene number 7,413 16,594 24,007
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(Fig. 1). The expression levels of unigenes did not differ between the testes and the other 
tissues, but significant differences were observed in the unigene expression between the 
ovary and androgenic glands (p < 0.05, t-test). These results demonstrated that the average 
expression level of unigenes in androgenic glands, testes, and ovaries showed an increas-
ing trend in the order they were mentioned, especially when the expression in androgenic 
glands was compared to that in ovarian tissue.

Analysis of DEGs

In total, 9,199 unique DEGs were detected and identified by pairwise comparison of the 
three M. rosenbergii tissues. Based on the DEG analysis results, the greatest level of dif-
ferential unigene expression was observed between the androgenic glands and ovaries, with 
5,391 unigenes downregulated and 2,113 upregulated in the androgenic gland compared 
to those in the ovary (Fig. 2). The lowest number of DEGs was found in the comparison 
between androgenic glands and testes: 2,246 unigenes were downregulated and 802 were 
upregulated in the androgenic glands compared to those in the testes.

Cluster analysis resolved the unigenes into three categories. A branch showing the uni-
genes at the base of the heatmap displayed a decreasing trend from the ovary to the andro-
genic gland and testis, and the top branch displayed an opposing trend at the top of the 
heatmap (Fig. 2).

Fig. 1  The level of differential expression of unigenes in each sample of M. rosenbergii. Tt, Ag, and Ov 
represent the testicles, androgenic glands, and ovaries, respectively
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Validation of unigene expression using qPCR

We selected four unigenes (Piwi, IAG, Argonaute2 (Ago3), and ankyrin) for qRT-PCR vali-
dation of the FPKM value by RNA sequencing. According to the CT value of each gene 
in each sample analyzed using qPCR, the qPCR results were highly consistent with the 
FPKM values (Fig. 3), and we have conducted the correlation analysis and results show 
that there is a statistical probability value less than 0.001, confirming that the FPKM values 
accurately represented the expression levels in the testes, androgenic glands, and ovaries of 
M. rosenbergii.

Fig. 2  The level of differential expression of unigenes in different tissues of M. rosenbergii. A, B, and C 
present DEG numbers of the results of pairwise comparison in three tissues. D The DEG profiles in three 
comparisons. E The cluster result of all the DEGs in the present study
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Enrichment of DEGs

To further investigate the pattern of divergent expression of sex maintenance- and sex 
determination-related DEGs and their corresponding functions, GO analyses of DEGs 
were conducted in the three comparison groups. We found that 1,347 DEGs in Ag vs Tt 
were significantly enriched in GO terms (Fig. 4). Among these DEGs, the most enriched 
GO term was observed in response to the stimulus of biological processes, which included 
57 upregulated unigenes and 155 downregulated unigenes. The second-most enriched GO 
term was found in DNA binding of molecular functions, including 22 upregulated unigenes 
and 160 downregulated unigenes. In total, 2,719 DEGs from Ag vs Ov were significantly 
enriched in the GO term, and the most enriched GO term was the extracellular region. 
Additionally, 1,590 DEGs from Tt vs Ov were also significantly enriched in the GO term, 
and the most enriched GO term was the extracellular region. However, interestingly, there 
were no DEGs from the testes or ovaries that were enriched in biological processes.

In the KEGG enrichment analysis, 1,281 DEGs, 3,634 DEGs, and 1,641 DEGs from 
Ag vs Tt, Ag vs Ov, and Tt vs Ov, respectively, were significantly enriched in KEGG 
terms. The top 20 KEGG terms in each group of DEGs are shown in Fig. 5. The KEGG 
terms cell cycle, DNA replication, oocyte meiosis, and basal TFs were significantly 
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Fig. 3  Verification of the expression pattern of three tissue unigenes in M. rosenbergii by qRT-PCR. The 
y-axis shows log10 determined by FPKM value and qPCR relative expression level
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enriched in Ag tissue as well as in the other two tissue types (Fig. 5). Most DEGs from 
Tt vs Ov were significantly enriched in terms related to biosynthesis, such as insect hor-
mone biosynthesis.

TF identification and analysis

In total, 284 TFs were identified in the three tissue transcriptomes. After differential 
expression analysis, 272 differentially expressed TFs were detected in all three groups 
(Fig. 6). A total of 135 differentially expressed TFs were identified in the comparison of 
Ag vs Tt, 207 differentially expressed TFs in the comparison of Ag vs Ov, and 89 dif-
ferentially expressed TFs in the comparison of Tt vs Ov. Based on the TF database clas-
sification, the highest number of DEGs was 110 belonging to the zf-C2H2 family, and 
the second-highest was 57 belonging to the ZBTB family.

To further elucidate the functions of the differentially expressed TFs, KEGG enrich-
ment analysis was conducted (Fig. 6). The results of enrichment analysis indicated that 
the MAPK signaling, longevity regulating, and thyroid hormone synthesis pathways 
were significantly enriched in the DEGs of the three groups. The TF MAK in the MAPK 
signaling pathway was upregulated specifically in the M. rosenbergii ovary and was not 
detected in other tissues. Similarly, the TF TRβ1 was upregulated specifically in the tes-
tes of M. rosenbergii. In addition, the expression of the sperm cell-specific TF Piwi was 
also significantly upregulated in the testes.
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Fig. 4  DEGs GO enrichment analysis results. A Statistics for DEGs from androgenic gland vs testicle; B 
statistics for DEGs from androgenic gland vs ovary; C statistics for the DEGs from testicle vs ovary
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Fig. 5  DEGs, KEGG enrich-
ment analysis results. A Statistics 
for the DEGs from Ag vs Tt; B 
statistics for the DEGs from Ag 
vs Ov; C statistics for the DEGs 
from Tt vs Ov
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differentially expressed TFs analysis; B statistics for the differentially expressed TFs from Ag vs Tt using 
KEGG enrichment analysis; C statistics for the differentially expressed TFs from Ag vs Ov using KEGG 
enrichment analysis; D statistics for the differentially expressed TFs from Tt vs Ov using KEGG enrichment 
analysis

2815Aquaculture International (2021) 29:2805–2821



1 3

Discussion

In this study, we conducted transcriptomic and TF identification in adult gonads of male 
and female M. rosenbergii to explore the mechanism of sex determination and gonad main-
tenance. Previous studies on M. rosenbergii have focused on sex-related gene expression 
or gonad-specific genes in male and female pathways (Jiang et al. 2019; Yang et al. 2020). 
TFs play critical roles in tissue differentiation and development (Al-Kurdi 2017); however, 
there is limited information available on their function in sex determination and gonad 
maintenance in M. rosenbergii.

In previous reports, an increasing number of aquatic animal transcriptomes have been 
established using mixed sample sequencing (Suwansa-Ard et al. 2015; Jung et al. 2016). 
While studying M. rosenbergii, transcriptome sequencing technology has also been applied 
to the screening of candidate genes involved in the development, differentiation, and 
gonadal axis regulation of the gonads of M. rosenbergii (Pasookhush et al. 2019). There 
have also been some new reports on the discovery of candidate genes for gonadal develop-
ment and differentiation and associated genetic markers in M. rosenbergii (Jin et al. 2013; 
Patnaik et al. 2016); however, there is limited information about the role of TFs with respect 
to gonadal development and maintenance in M. rosenbergii. In this study, we identified 
272 differentially expressed TFs through transcriptome sequencing analysis of three main 
gonadal tissues (testes, androgenic glands, and ovaries) in M. rosenbergii. Among them, 48 
testis-specific upregulated TFs, with expression levels more than three times higher than 
those in the other two tissues, were identified, whereas 67 TFs were upregulated specifi-
cally in the ovaries, and only one TF was specifically upregulated in the androgenic glands. 
This suggests that the process of ovarian development and differentiation is more compli-
cated than simply by passing the formation of the testes and androgenic glands, particularly 
in the communication between the intercellular and intracellular mature follicles, which is 
related to the requirement for TF participation (Bernabé et al. 2020). Only one androgenic 
gland-specific TF, with a DNA-binding function, was upregulated compared to that in the 
testes and ovaries. This indicates that the androgenic gland-specific genes upregulated in 
M. rosenbergii, such as IAG, may have transcriptional patterns similar to those for which 
transcription and translation are activated by regulatory-specific DNA binding in the early 
embryonic stages in zebrafish (Joseph et al. 2017).

TFs play an important role in the process of gonadal development and maintenance, 
which has been confirmed in a previous study on gonadal organs in humans and other 
animals (Bothun and Woods 2019; Tsoi et  al. 2019; Rai et  al. 2020). In this study, we 
found that the TFs, MAX and TRβ1, specifically expressed in the testis and ovary of M. 
rosenbergii and associated with the DEGs TAB1 and ATPase, may maintain the testicular 
and ovarian cell cycle through the MAPK signaling pathway and thyroid hormone 
signaling pathway to control the maturation of primary spermatocytes and primary 
oocytes, respectively (Fig. 7).

We observed that MAX, a TF that is upregulated in the testis, directly regulates DNA 
replication, thereby controlling the proliferation of primary spermatocytes (Hurlin and 
Huang 2006). TAB1, the primary DEG upregulated in the testes, can indirectly inhibit 
the expression of TCF through the Wnt signaling pathway to control the proliferation of 
primary spermatocytes and maintain the function of sperm development (Shibuya et  al. 
1996). The MAPK signaling pathway is an important biological pathway for cell main-
tenance (Bonni 1999) and plays an important role in the maintenance of gonads and the 
process of apoptosis (Casarini and Crépieux 2019). In a previous study, MAX was shown 
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to play an important role in the sex organs of male rats (Izawa 1993) and was also shown 
to be an important gene in gonadal cell transcription (Hurlin and Huang 2006), which is a 
key process for the maintenance of gonadal cells and the prevention of tumor formation. 
Although the TAB1 gene has been reported to maintain peripheral T cells and sex phero-
mone response (Ohkusu-Tsukada et  al. 2004; Folli et  al. 2008), it has not been reported 
to participate in the testicular cell cycle, and the results of this study support that TAB1 
is a key gene that controls the division and replication of primary spermatocytes in M. 
rosenbergii.

The thyroid hormone signaling pathway plays an important role in female reproduction 
by altering the estrous cycle and anti-oxidative status of the ovary (Wei et al., 2018). TRβ1 
and ATPase, belonging to Na + /K + -ATPase, are key functional genes involved in the thy-
roid hormone signaling pathway (Bhargava et al. 2007). We found that both are specifically 
upregulated in the ovaries of M. rosenbergii, and TRβ1 indirectly regulates glycolysis and 
maintenance of egg cell pluripotency through PI3K and Wnt/β-catenin. In addition, TRβ1 
plays a direct role in regulating DNA replication to control the cell cycle. Some studies 
have reported that during the development and maintenance of primary oocytes, granulosa 
cells supply oocytes through glycolysis (Fontana et al. 2020), indicating that the upregula-
tion of TRβ1expression is involved in the maturation of primary oocytes in M. rosenber-
gii. Wnt/β-catenin is an important factor that regulates and maintains the pluripotency of 
embryonic cells (Fan et al. 2020) and acts as a biologically active molecule, similar to TFs 
and steroid hormones produced by the ovary in the germ line (Edson, et al. al. 2009). TFs 
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can also act as key biologically active molecules that activate the TF, Esrrb, to control the 
morphogenesis of embryonic internal organs and maintain pluripotency (Fan et al. 2020). 
In addition, the upregulation of ATPase expression promoted by TRβ1 can help meet the 
energy requirements of folliculogenesis in the ovary of M. rosenbergii (Dumesic et  al. 
2015).

Owing to the high demand for single-sex feeding of M. rosenbergii, sex determination 
and development have always been a research hotspot in this field. In this study, it was 
found that the two members of the Argonaute family, Ago3 and Piwi, have different expres-
sion patterns in the ovary and testis. Ago3 was significantly upregulated in the ovaries, 
whereas Piwi was significantly upregulated in the testes. Ago3 and Piwi are key factors 
in the sex development of Bombyx mori. They can interact with specific genes expressed 
on the ZW chromosome and regulate the development of sex determination in the silk-
worm through ping-pong partners and dosage compensation (Katsuma et al., 2018). The 
expression patterns of both mature female and male glands of M. rosenbergii are consist-
ent with those of Bombyx mori (shown in Fig. 7), indicating that sex development in M. 
rosenbergii may also be achieved through the ping-pong mechanism. However, Fem, which 
is involved in the sex development mechanism, was not detected in the DEGs, but exist-
ing a tendency to upregulate expression in ovary in our study, which is consistent with the 
time-specific expression of Fem observed in Litopenaeus vannamei, in which Fem is only 
expressed before oocyte maturation (Galindo-Torres et al. 2019). Collectively, it was found 
that Fem expression in female M. rosenbergii can be coordinated with Piwi gene expres-
sion to inhibit Masculinizer (Masc) expression, which in turn causes the normal splicing of 
the sex-determining gene double sex (Dsx) (Suzuki et al. 2008) and leads to the develop-
ment of female individuals. In male individuals, Fem expression is absent and Masc can 
cause alternative splicing of the Dsx gene.

Conclusions

Collectively, our results show that 9,199 DEGs and 272 differentially expressed TFs were 
identified by pairwise comparison; the TFs, MAX and TRβ1, are involved in the MAPK and 
thyroid hormone signaling pathways and play an important role in the maintenance of the 
testis and ovary of M. rosenbergii, respectively. Sex development in M. rosenbergii might 
have a ping-pong partner, similar to that in Bombyx mori. The key TFs Piwi and Ago3 in 
this mechanism were significantly differentially expressed in the testes and ovaries in M. 
rosenbergii.
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