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Abstract
The worldwide decrease in fishery stocks in recent years is related to the
degradation of coastal environments and to the increases in capture effort and
extreme natural events. Restocking dilapidated populations with artificial
hatchery-reared larvae has arisen in recent years as a viable technique for the
reparation and maintenance of stocks of commercially exploited species. One of
the first steps in larvae cultivation is the evaluation of an appropriate diet for
rearing. We aimed to test viable diets for feeding zoea larvae of the crab Menippe
nodifrons and the swimming crab Callinectes danae. We tested five live food
treatments, three microalgae (Tetraselmis gracilis, Chaetoceros calcitrans, and
Thalassiosira weissflogii), the rotifer Brachionus plicatilis, and Artemia sp.
nauplii. The most suitable feeding protocol for rearing M. nodifrons larvae was
a combined diet of enriched B. plicatilis up to the zoea III instar with the
introduction of hatched Artemia sp. nauplii onwards to the megalopa stage.
Larvae of C. danae showed high mortality rates and none achieved the zoea III
phase on any of the diets tested. Although our results for C. danae rearing were
not conclusive, the data provide additional information on improper rearing diets
for this species for future research. Future studies testing other food sources are
necessary to improve larvae production.
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Introduction

Globally, crab fishery is a vast industry, with ~ 180 million tons of global capture production
in 2017 (FAO Fisheries and Aquaculture 2020). However, there is little information related to
the real impact caused by industrial fishing on the stocks of exploited species (Da Nóbrega
Alves and Nishida 2003; Becker 2008; Castilho-Westphal et al. 2008). Rodrigues et al. (2000)
related the decline in the capture of the mangrove crab Ucides cordatus (Linnaeus, 1763) on
the coast of São Paulo and Paraná states to a possible decrease of stocks. The same
phenomenon is observed throughout the Brazilian coast, in the states of Pará, Paraíba, Bahia,
and Santa Catarina (Da Nóbrega Alves and Nishida 2003; Souto 2007; Wunderlich et al. 2008;
Freitas et al. 2015). As observed forU. cordatus, a decrease in the stock of many commercially
exploited species is expected due to the rise in capture effort from market demand, together
with habitat damage and extreme climate events in future decades (Da Nóbrega Alves and
Nishida 2003; Bell et al. 2005; Becker 2008; Bell et al. 2008). The captive production of
Brachyura can be rather scarce, due to difficulties throughout the species’ life span. The low
rate of larval survival is associated with a high predation rate combined with poor environ-
mental tolerance (Silva 2002; Agh and Sorgeloos 2005).

Most marine Brachyuran species exhibit planktotrophic larvae (Pechenik 1999; Anger
2001; Vieira 2006). These species produce a greater number of offspring able to reproduce
per unit energy invested, besides increased cannibalism, territorialism, and slow growth
(Pechenik 1999). These characteristics can hinder the species’ aquaculture economically and
technically. The most common way of exploitation is direct gathering or fishing of wild
individuals (Anger 2001; Carvalho 2010).

Due to decreases in the world’s stocks, measures to enhance and conserve the populations of
depleted species have been developed. Restocking by artificial hatchery-reared larvae has been
emerging as a viable technology of population recovery and conservation of different coastal
areas (Silva 2002; Silva 2007; Becker 2008; Bell et al. 2008). Stock recomposition is based on
obtaining larvae from ovigerous females from the wild and growing cultures of zoea larvae to
megalopa stage. The strong positive geotaxis of megalopa increases the success of larval
recruitment, it being the suitable stage for the release of larvae (Silva 2007; Becker 2008).
Additionally, release of juveniles and later stages can enhance restocking (Bell et al. 2005).

The first step is the evaluation of an appropriate larval diet for rearing. The size of food in
relation to larval feeding appendages (maxillipeds) is a key factor in proper feeding of larvae.
Possible disproportionality can lead to a nutritional deficit, prolonged development time, and
increased mortality rate (Harms and Seeger 1989; Anger 2001). Due to the absence of
predators and steady conditions, larval survival reaches higher rates than those in nature. Food
availability, which fluctuates seasonally in the environment, regulates larval hatching and
growth. Decapod larvae hatch as lecithotrophs, although with a limited reserve. As such
reserve ends, the now planktotrophic larvae must reach their optimum biomass. Although
larvae can withstand periods of food deprivation, at a low feeding rate, larval development can
be delayed, and growth and survival are reduced (Stanton and Sulkin 1991; Anger 2001).
Low-cost larval production allied to a viable survival rate is the utmost intention (Bell et al.
2005; Becker 2008). This method will assert the supply of larvae to reach full potential, by
attaining optimal stocking density of the species in later larval mass rearing.

Although larval culture already shows positive outcomes, there is no consolidation of its
techniques, mainly in terms of successful feeding and breeding protocols of a range of species.
The design of technically viable diets that provide the necessary nutritional requirements for
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each species is a key factor in establishing successful population recovery methods (Becker
2008). Through established larval breeding protocols, restocking of estuarine/marine species
with larval development may be possible. We aimed to evaluate the effect of different diets on
the survival rate and development time of the stone crab Menippe nodifrons Stimpson, 1859
and the swimming crab Callinectes danae Smith, 1869, from zoea I to megalopa stage,
clarifying which diet is the most suitable. We used three microalgae species, Tetraselmis
gracilis (Kylin) Butcher, 1959; Chaetoceros calcitrans (Paulsen) Takano, 1968; and
Thalassiosira weissflogii Hustedt, 1926; the rotifer Brachionus plicatilis (Müller, 1786)
(enriched with T. gracilis); and nauplii of Artemia sp. Leach, 1819 as a food source. We
hypothesised that larval survival rate and time to develop in both species is directly linked to
the most suitable diet. A microalgal and/or rotifer diet could be the most suitable for rearing
both species, as similar results were found for closely related species (Sulkin 1975; Sorgeloos
and Léger 1992; Abrunhosa et al. 2002; Brown 2002; Ruscoe et al. 2004; Waiho et al. 2018).

Menippe nodifrons inhabits rocky shores and banks of Phragmatopoma sp. and possesses great
potential for exploitation due to its relatively large size and developed cheliped musculature (Melo
1996; Oshiro 1999; Fransozo et al. 2000; Rodrigues-Alves et al. 2013). The species is widely
distributed and has potential economic importance. Menippe nodifrons exhibits five zoea phases
(uncommonly six phases) and one megalopa stage (Scotto 1979; Anger 2001). Callinectes danae
inhabits estuarine waters near mangroves and open sea regions near sandy beaches (Sforza et al.
2010). The species displays a contiguous geographic distribution from Florida to the Brazilian state
of Rio Grande do Sul (Melo 1996; Marochi et al. 2013). Actively exploited by artisanal fishery, the
species is commonly captured as a bycatch of shrimp fishing (Costa and Negreiros-Fransozo 1998;
Severino-Rodrigues et al. 2001; Marochi et al. 2013). The general larval development lasts six to
eight zoea instars with a megalopa stage, with an optimal survival rate at salinity near 30 PSU
(Costlow and Bookhout 1968; Sankarankutty et al. 1999).

Materials and methods

Collection area and conditioning of females

Seven ovigerous M. nodifrons females, mean carapace width 51.66 ± 3.78 mm, were manually
sampled on a rocky shore in Itanhaém, São Paulo, Brazil (24° 12′ 06.9″ S 46° 48′ 41.3″W), and
two ovigerous C. danae females, mean carapace width 89.5 ± 7.77 mm, were collected by
trawling (23 mm fishnet mesh size) in São Vicente, São Paulo, Brazil (23° 58′ 28.6″ S 46° 22′
57.1″ W). We sampled only females with eggs in an advanced stage of embryo development,
indicated by their greyish colour (Costa and Negreiros-Fransozo 1998; Oshiro 1999). The
advanced period is preferred to avoid the interference of laboratory conditions on embryo
development. The females were conditioned in glass aquariums (290 × 120 × 185 mm) with
500 ml of artificial marine water (salinity 30 PSU and 25 ± 1 °C) and a photoperiod of 12:12 h
(light :dark). The artificial marine water was obtained by dissolving artificial refined sea salt (Blue
Treasure Reef Sea Salt, Qingdao Sea-Salt Aquarium Technology Co., Ltd) in deionized water.

Diet cultivation

The food source for Brachyuran larvae should meet specific criteria to be an appropriate diet,
such as being of suitable size to be easily captured and digested, having a satisfactory
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concentration (to supply enough food and avoiding excess feeding) and containing enough
nutrients (Sui et al. 2008). The microalgae species strains were inoculated in culture medium
(filtered seawater with nutrients) at 24 ± 1 °C, photoperiod 24:0 h (light :dark), and constant
aeration, based on Guillard’s F/2 protocols (for more detail, see Duerr et al. 1998). The chosen
culture medium is the one most used in marine algae culture (Derner et al. 2006). The three
microalgae species were chosen based on their previous application in the larval diet of closely
related species and their widespread usage in aquaculture (Brown 2002; Becker 2008; Lober
and Zeng 2009).

The rotifers were cultivated at the same temperature and photoperiod as the microalgae and
were fed on T. gracilis. Microalgae, as prey, exhibit a positive influence on the reproduction
and nutritional value of B. plicatilis and are considered a source of the rotifer enrichment
(Duerr et al. 1998; Lubzens et al. 2001; Becker 2008). Although the rotifer B. plicatilis is not a
natural prey for Brachyura larvae, it is commonly used in crustacean larvae culture (Shields
and Lupatsch 2012). It exhibits slow swimming activity, an accelerated reproduction rate, and
tolerance of a high culture density (Suantika et al. 2000). Artemia sp. has been used almost
universally as a key zooplanktonic live prey since the 1960s in aquaculture hatchery, even that
it is not a natural prey for Brachyura larvae (Abrunhosa et al. 2002; Shields and Lupatsch
2012). Dormant Artemia sp. eggs can be stored for long periods and then used, requiring only
24 to 48 h of incubation, which makes them the least labour-intensive live diet accessible for
larval cultures (Shields and Lupatsch 2012).

Experimental design

After hatching, zoea I larvae from all females of each species were mixed in 500 ml of water in
the same conditions as mentioned before (salinity 30 PSU and 25 ± 1 °C). This procedure was
used to avoid the effect of maternal origin on the results (Simith et al. 2014). The zoea I larvae
were transferred individually to 12-well cellular culture plates (Kasvi®) with 5 ml of water
(salinity 30 PSU and 25 ± 1 °C). Hatchery in individual experimental units decreases canni-
balism and competition between recently metamorphosed megalopae on other larvae still at
zoea stage. At these controlled conditions, even larvae with developmental delay and slow
growth can succeed in reaching further phases (Becker 2008). Five different diets were used as
treatments: the microalgae Tetraselmis gracilis [T], Chaetoceros calcitrans [C], and
Thalassiosira weissflogii [W]; the rotifer Brachionus plicatilis (enriched with T. gracilis)
[R]; and freshly hatched Artemia sp. nauplii [A]. For each treatment, 96 zoea I (replica) larvae
were used, totalling 480 M. nodifrons and C. danae larvae. After positive initial results in the
M. nodifrons hatchery, a diet of B. plicatilis was tested on the first three zoea phases followed
by the addition of Artemia sp. from then on [RA] using 96 zoea I larvae. The cellular culture
plates with larvae were stocked in a germination chamber (model 347 CDG, FANEM Ltd.®)
with temperature (25 ± 1 °C) and photoperiod (12 :12 h light :dark) controlled. Every 24 h, the
live larvae were relocated to a new well containing fresh saltwater and new food was provided.
For feeding, we used the following concentrations: 400,000 ind/ml of microalgae, 40 ind/ml of
rotifers, and 0.6 ind/ml of Artemia sp. nauplii (Becker 2008; Cottens et al. 2014). The contents
of the old wells were then analysed in the search for ecdysis. Survival data and instar
development were obtained daily, indicating the progress of larval development and the larval
mortality rate. The experiment ended when all larvae died or reached the megalopa stage. To
facilitate data analysis and discussion, the results are shown at two moments of development:
from zoea I to zoea III and from zoea I to megalopa stage.
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Statistical analysis

Normality (Shapiro–Wilk) and variance homogeneity (Bartlett) tests were performed. The
effects of diet on the survival rate and development duration were evaluated through a
permutational analysis of variance (PERMANOVA) with a pairwise post hoc PERMANOVA
test. The rate of larval survival (number of larvae alive), time for metamorphosis, and
maximum time for mortality were used as response variables, and the diet treatments as
explanatory variables. Survival curves were obtained using the Kaplan–Meier test. For all
analysis, data were analysed at two different moments of development: from zoea I to zoea III
and from zoea I to megalopa stage. Analyses were performed in the R environment (R
Development Core Team 2018) using the ‘survival’ (Therneau 2017) and ‘vegan’ (Oksanen
2018) packages. The PERMANOVA post hoc test was performed using PRIMER (Anderson
et al. 2008).

Results

Diet affected M. nodifrons larvae survival and development time from zoea I to zoea III
(p < 0.05), except for [T] × [C] (p = 0.43). Only larvae fed [R], [A], and [RA] diets developed
to zoea III. Forty-one larvae on the [R] diet reached this phase, with a survival rate of 40% and
development time of 10 ± 2.64 days. Five larvae on the [A] diet survived to ZIII, with a
survival rate of 4.8% and development time of 14.75 ± 3.70 days. The [RA] treatment showed
a 55.2% larval survival rate and development time of 12.65 ± 1.18 days (Fig. 1 and Table 1).
The longevity of larvae fed a microalgae diet was short. Only [T] treatment larvae advanced to
ZII. Survival rate dropped 45% on the third day and all larvae died on the eighth day. The [W]
and [C] treatments ended on the seventh and sixth days, respectively. The survival rate of
larvae on both diets dropped on the fifth (45.84%) and fourth (52.08%) days. Metamorphosis
from ZI to ZII started on the fourth day for all diets.

Diet also affected M. nodifrons larval survival and development time from zoea I to
megalopa stage (p < 0.05) (Fig. 2 and Table 1). Only larvae on the [A] and [RA] diets reached
the megalopa stage. On the [A] diet, two larvae (2.08%) moulted to megalopa, in an average
time of 29.5 ± 0.70 days (Fig. 2 and Table 1). On the [RA] diet, three larvae (5.88%) reached
the megalopa stage, in an average time of 34.33 ± 8.39 days and with a mean survival rate of
15.33% (Fig. 2 and Table 1).

Diet also affected the survival of C. danae (p < 0.05). No larvae reached the zoea III stage.
On the [T], [C], [W], and [A] diets, the mean larval survival time was 3.56 ± 1.22 days overall,
without any larvae reaching ZII. Only two larvae fed the [R] diet reached the ZII phase, with a
mean survival time of 6.59 ± 2.69 days (Fig. 3 and Table 2).

Discussion

The survival and duration of development from zoea I to megalopa stage of M. nodifrons and
C. danae are affected by diet. Our results with M. nodifrons suggest that diets using different
organisms at different life stages are ideal for larval development. We accept our initial
hypothesis for M. nodifrons that the most suitable diet for larval development also shows a
similar development time. On the other hand, none of the diets tested was effective for
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C. danae larvae. The most suitable feeding protocol for rearing M. nodifrons larvae is a
combined diet of B. plicatilis up to the zoea III instar, with the introduction of hatched Artemia
sp. nauplii onwards to the megalopa stage. The [RA] diet should be also tested for mass culture
rearing of M. nodifrons. Although our results for rearing C. danae were not conclusive, the
data provide additional information on improper diets for rearing the species for future
research.

The most suitable diet for larval development until zoea III of M. nodifrons is the enriched
B. plicatilis [R] diet. The nutritional needs of larvae alter at each stage as a function of their
development (Souza and Costa 2006). An inadequate food source can generate disturbances in

Fig. 1 Survival curves for Menippe nodifrons zoea I to zoea III. Survival percentage of 576 larvae until ZIII
metamorphosis or death on six diets. Lighter-toned areas denote confidence intervals. Circles with numbers
denote the number of events (metamorphosis to ZIII)

Table 1 Number of zoea III and megalopa larvae, survival rate, and development time of Menippe nodifrons
obtained for six diet treatments

Species Treatment Number
of zoea
III

Survival
rate

Development
time (in days)

Number of
megalopae

Survival
rate

Development
time (in days)

Menippe
nodifrons

Tetraselmis gracilis - - - - - -
Chaetoceros
calcitrans

- - - - - -

Thalassiosira
weissflogii

- - - - - -

Brachionus plicatilis 41 40% 10 ± 2.64 - - -
Artemia sp. 5 4.8% 14.75 ± 3.70 2 2.08% 29.50 ± 0.70
B. plicatilis and
Artemia sp.

51 55.20% 12.65 ± 1.18 3 5.88% 34.33 ± 8.39
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Fig. 2 Survival curves for Menippe nodifrons zoea I to megalopa stage. Survival percentage of 576 larvae until
megalopa metamorphosis or death on six diets. Lighter-toned areas denote confidence intervals. Circles with
numbers denote the number of events (metamorphosis to megalopa)

Fig. 3 Survival curves for Callinectes danae larvae. Survival percentage of 480 larvae on five diets. Lighter-
toned areas denote confidence intervals
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both larval development time and survival (Carvalho 2010). For the [R] diet, the minor
mortality rate in the first days was related to fast development until the zoea III stage. The
rotifer’s size (~ 250 to 300 μm) compared with the size of zoea I–zoea III M. nodifrons larvae
(~ 0.55 to 0.80 mm) and easy laboratory culture makes it a fit diet for pre-zoea III larvae
(Scotto 1979; Harvey and Epifanio 1997; Waiho et al. 2018). The rotifer diets were not
suitable for feeding C. danae larvae. While other factors are also significant, the disparity in
size between larvae and prey is also likely the key factor in this case. Sulkin (1975)
suggested that Callinectes sapidus first-stage larvae are not able to ingest rotifers (>
120 μm) due to the difficulty in breaking down the prey into pieces. The same can be
inferred for small C. danae larvae.

We chose an enriched rotifer diet to improve the overall larval survival rate. Rotifer
enrichment maintains the general health and development of Brachyuran larvae (Ben-Amotz
et al. 1987; Baylon 2009; Waiho et al. 2018). Brachionus plicatilis are non-selective filter
feeders, ingesting any particle up to 12–15 μm, ideal for the bioencapsulation of any fatty acid-
rich algae (Becker 2008). The alga used to enrich our [R] treatment (T. gracilis) showed a high
level of essential fatty acids (EFAs). EFAs such as highly unsaturated fatty acids (HUFAs) or
polyunsaturated fatty acids (PUFAs) are crucial to the growth and survival of marine fish and
crustacean larvae (Lourenço et al. 1997; Selvakumar and Umadevi 2014). The use of EFA
enrichment in a high-density rotifer diet at initial stages minimizes metamorphosis time,
reduces larval development time, and standardizes the larval growth rate (Becker 2008).

The mixed rotifer plus Artemia sp. diet [RA] (400–500 μm) was the most suitable for
rearing M. nodifrons from zoea III onwards to megalopa stage. Although Artemia nauplii are
an extremely convenient source of food, they are naturally low in EFAs. Thus, larval survival
is likely enhanced on an Artemia diet combined with other fatty acid-enriched food sources
(Agh and Sorgeloos 2005; Beder et al. 2018). Ruscoe et al. (2004) suggested that larvae fed an
Artemia mono-diet take longer to reach megalopa and endure higher levels of mortality. The
diet is also not suitable for rearing C. danae. In previous studies on the rearing of Callinectes
sapidus and Callinectes similis, early-stage larvae were able to consume only parts of the
Artemia nauplii and individuals no larger than 110 μm (Sulkin and Epifanio 1975; Bookhout
and Costlow 1977). Therefore, Artemia nauplii are only appropriate live food in terms of size
and swimming speed for post-ZIII instars of M. nodifrons larval development.

Our data suggest a non-exclusive microalgae diet for both M. nodifrons and C. danae
larvae. Both species suffered a high larval mortality rate allied to a lack of development for all
microalgae treatments. Our main hypothesis is related to the disproportion of the size of
microalgae and larval feeding appendages. Tetraselmis gracilis, C. calcitrans, and
T. weissflogii are small (~ 9.59 μm, ~ 7 μm, and 4–32 μm, respectively; Olenina et al.
2006; Da Silva Gorgônio et al. 2013) in comparison to M. nodifrons (~ 0.55 mm) and

Table 2 Number of zoea II larvae, survival rate, and development time of Callinectes danae obtained for five
diet treatments

Species Treatment Number of zoea II Survival Rate Development time (in days)

Callinectes danae Tetraselmis gracilis - - -
Chaetoceros calcitrans - - -
Thalassiosira weissflogii - - -
Brachionus plicatilis 2 1.92% 6.59 ± 2.69
Artemia sp. - - -
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C. danae (~ 0.40 mm) zoea I larvae. Likely, the larvae were not able to feed on the [W] and [C]
diets, dying by the end of their reserves, at ZI. It is unlikely that the food quantity was
insufficient because we used a high concentration commonly used in larvae aquaculture
(Becker 2008; Cottens et al. 2014). The [T] treatment was the only one under which larvae
developed into the ZII phase. The genus Tetraselmis exhibits increased mobility due to its
flagellated morphology and was the largest microalga used (Bicudo and Menezes 2006). The
predatory behaviour of larvae and their preference for mobile food (Anger 2001) may
stimulate them to feed, leading to ZII development under this treatment. Prior research showed
only improved outcomes in treatments with a combination of an algal and non-algal diet
(Sulkin 1975). Brown mono-microalgal diets may also cause a deficiency of some essential
nutrients, decreasing growth and general survival (Harms and Seeger 1989; Seixas 2016). Our
survey brings new information about a combination of a non-algal diet.

The most suitable feeding protocol for rearing M. nodifrons larvae is a combined diet of
B. plicatilis up to the zoea III instar with the introduction of hatched Artemia sp. nauplii
onwards to the megalopa stage. The [RA] diet can be also tested for mass culture rearing of
M. nodifrons. Although our results on C. danae rearing were not conclusive, the data provide
additional information on unsuitable diets for rearing the species for future research. Based on
widespread species production, different microalga genera with a high concentration of fatty
acids can be tested, such as Pavlova, Skeletonema, Chlorella, Isochrysis, and Porphyridium
(Muller-Feuga 2000; Brown 2002), or other holoplanktonic and meroplanktonic organisms.
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