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Abstract
This study was conducted to investigate the effects of diet 7.5 g/kg α-ketoglutarate
(AKG) on the growth performance, antioxidant defense system, digestive enzymes,
and immune response of grass carp (Ctenopharyngodon idellus). A total of 400 grass
carp with an average body weight 10.81 ± 0.68 g was randomly allocated into 2
groups with 4 replicates of 50 fish respectively. The experiment was conducted in
net cages (1.5 m × 1.5 m × 1.5 m) suspended in an indoor cement pool. Fish were fed a
basic diet containing either 0 (control) or 7.5 g/kg AKG (supplemented diet). The
experiment lasted for 8 weeks (56 days). Results indicated that compared with the
control group, the final weight (FW), weight gain rate (WGR), specific growth rate
(SGR), and protein efficiency ratio (PER) in the AKG group were increased signif-
icantly (P < 0.05). However, the feed conversion ratio (FCR) was decreased signifi-
cantly (P < 0.05). The 7.5 g/kg AKG supplementation significantly increased the
activities of glutamine synthetase (GS), glutathione peroxidase (GSH-Px), catalase
(CAT), total superoxide dismutase (T-SOD), and hexokinase (HK), as well as the
concentrations of glutathione (GSH), total antioxidant capacity (T-AOC), and com-
plement 3 (C3) in blood (P < 0.05), while significantly decreased the concentrations
of malondialdehyde (MDA) and hemoglobin (Hb) (P < 0.05). The GS activity and
GSH concentration in hepatopancreas were increased significantly (P < 0.05), where-
as the glycogen concentration in hepatopancreas, and the glycogen concentration and
GS activity in the muscle were significantly decreased (P < 0.05). In addition,
7.5 g/kg AKG supplementation significantly increased the concentration of GSH
and the activities of amylase, protease, and lipase in fore-gut, alkaline phosphates
(ALP) in the mid-gut, and Na-ATP and Ca-ATP in the gill (P < 0.05), as well as γ-
glutamyl transpeptidase (γ-GT) both in fore-gut and mid-gut (P < 0.05), whereas the
activity of acid phosphatase (ACP) in the mid-gut was decreased significantly (P <
0.05). In conclusion, diet 7.5 g/kg AKG supplementation in grass carp may improve
the growth performance and immune response and play crucial roles in regulating the
activities of GS, antioxidant defense system, and digestive enzymes.
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Abbreviations
ROS Reactive oxygen species
ACP Acid phosphatase
ALP Alkaline phosphates
Gln Glutamine
GS Glutamine synthetase
AKG α-Ketoglutarate
TCA Tricarboxylic acid cycle
IW Initial weight
FW Final weight
WGR Weight gain rate
SGR Specific growth rate
FCR Feed conversion ratio
PER Protein efficiency ratio
TP Total protein
ALB Albumin
LSZ Lysozyme
C3 Complement 3
γ-GT γ-Glutamyl transpeptidase
ALT Alanine aminotransferase
AST Aspartate aminotransferase
GSH Glutathione
GST Glutathione-S-transferase
GSH-Px Glutathione peroxidase
SOD Superoxide dismutase
CAT Catalase
T-AOC Total antioxidant capacity
MDA Malondialdehyde
NO Nitric oxide
Hb Hemoglobin
HK Hexokinase
INS Insulin
ADA Adenosine deaminase

Introduction

Current intensive fish farming usually leads to cultured fish in a sub-healthy status (Bondad-
Reantaso et al. 2005; Cock et al. 2009; Mian and Siddiqui 2014). It is now widely accepted
that nutritional approaches are essential to alleviate cultured fish sub-health. A large number of
feed additives (e.g., organic and inorganic acids, feed enzymes, pre and probiotics, and
essential oils) have been used in the aquiculture industry due to the beneficial influences for
stimulating digestive function and improving immune response and physical barrier function
(Lange et al. 2010). Previous studies indicate that fish intestine, because of the high polyun-
saturated fatty acids content (up to 24.9% of total fatty acid composition), is susceptible to be
attacked by reactive oxygen species (ROS) (Deng et al. 2014). ROS may trigger apoptosis in
fish erythrocytes (Li et al. 2017). ROS production also may result to oxidative damage, which
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may be a significant toxicity in aquatic organisms (Livingstone 2003). Oxidative stress has
been associated with the development of pathological conditions in tissue such as inflamma-
tion due to the high consumption of oxygen and high quantities of polyunsaturated fatty acids
in the tissue (Almeida et al. 2008).

α-Ketoglutarate (AKG) is an important intermediate in the citric acid cycle (Krebs cycle)
and a key node in the intracellular carbon–nitrogen metabolism. More importantly, AKG is a
precursor of some important free amino acids (FAAs) in vivo, such as glutamic acid,
glutamine, proline, and arginine. For instance, AKG can be rapidly transaminated to glutamic
acid by glutamate dehydrogenase and then further aminated to glutamine by glutamine
synthetase (Yao et al. 2012; Wang et al. 2016a). AKG is also considered as a crucial molecule
in transmembrane amino acid transport, protein metabolism, and cellular redox regulation
(Wang et al. 2017a, Hou et al. 2011). Study on common carp (Cyprinus carpio) shows that the
fish might be ureagenic or use glutamate to detoxify ammonia (Hoseini et al. 2019). Due to the
important role of AKG as an energy donor, it was assumed that AKG may compensate the
energy consumption in the process of ureogenesis. The intracellular AKG level may be
contributed to the maintenance of cellular identity and play mechanistic roles in the transcrip-
tional and epigenetic status of stem cell (Carey et al. 2015). AKG exerts positive effects on
immunological responses and fillet yield of juvenile red drum fed adequate or low-phosphorus
diets (Xu and Gatlin 2018). And it also indicated that appropriate levels of AKG to the low-P
feed will improve the growth performance of juvenile mirror carp (Cyprinus carpio) and
promote the digestion and absorption of nutrients (Ai et al. 2019). Previous study also finds
that AKG supplementation can promote the growth performance of grass carp, a commercially
important freshwater fish in China, and suggests that 0.75% AKG supplementation in diet will
enhance the antioxidant capacity and non-specific immunity basing on serum biochemical
parameters (Wang et al. 2016a). AKG is also considered as an antioxidant and plays key roles
in the detoxification of ROS (Mailloux et al. 2009). The aim of this study was to reconfirm the
effects of dietary 0.75 % AKG supplementation in grass carp (Ctenopharyngodon idellus) on
the growth performance and investigate the antioxidant capacity in the body including serum,
hepatopancreas, and intestine biochemical index.

Materials and methods

Diet preparation

Two diets were designed in the experiment, that is, the basal diet and 7.5 g/kg AKG-supplemented
diet. The ingredient composition of the basal diet was shown in Table 1 which is in accordance with
the grass carp feed nutrition standard (GBT36205-2018). The diet supplemented with AKG was
prepared by replacing equivalent wheat middling in the basal diet with 0.75% AKG (Shanghai
haiquchem Co. Ltd., with the concentration 99%) according to previous study (Wang et al. 2016a).
All ingredients were crushed, mixed, and pelleted into 2-mm-diameter granules with a laboratory
pellet machine. Diets were air dried and stored in plastic bags at − 20 °C until use.

Fish and experimental conditions

Experiment was carried out in accordance with the ethical guidelines of Hunan Agricultural
University for the care and use of laboratory animals.
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Grass carps were obtained from a fish farm in Xiangyin (Hunan, China). Before the experi-
ment, fish were reared for 2 weeks in indoor cement pool (8 m diameter, 2 m height) and fed the
basal diet to acclimate to experimental conditions. At the beginning of the experiment, the healthy
fish with an average initial weight 10.49 ± 0.58 g were randomly assigned to 8 net cages (1.5 m ×
1.5 m × 1.5 m). The initial stocking density was 50 fish per cage. Cages were suspended in an
indoor cement pool. Each diet was fed to four randomly assigned cages. All groups of fish were
fed their respective diets at a rate of 3.0% body weight per day, divided into equal portions at 9:00
and 17:00. The feeding experiment lasted for 8 weeks with a 12-h light/12-h dark photoperiod
(light: 7:00–19:00).Water was continuously aerated to maintain the dissolved oxygen level above
saturation, and 1/3 water in the pool was exchanged with fresh water every morning before
feeding. During the experiment period, water temperature and pH averaged 28.00 ± 2 °C and 7.0
± 0.3 respectively. Dissolved oxygen concentrations were not less than 5 mg/L. The ammonia-N
concentrations were not in excess of 0.5 mg/L.

Growth performance

At the end of 8 weeks, 56 days of feeding trial, approximately 24 h after the last feeding,
grass carps were individually counted and weighed per replicate at the beginning and end
of the experiment. The fish weights were measured for calculation of the final body
weight. During the experiment, both of two treatments received 100% survival rate. And
the weight gain rates (WGR), specific growth rate (SGR), feed conversion ratio (FCR),
and protein efficiency ratio (PER) were determined as follows:

WGR ¼ final total weight−initial total weight
initial total weight

� 100%;

SGR ¼ Ln final total weightð Þ−Ln initial total weightð Þ
time

� �
� 100%;

Table 1 Composition and nutrient levels of basal diet (%)

Ingredients Content Nutrient levels Content

Corn 2 Crude protein 29.5
Soybean oil 1 Crude fat 4.4
Soybean meal 18 Ash 7.6
Cottonseed meal 20 Gross energy/(MJ/kg) 15.1
Rapeseed meal 20
Rice bran 10
Wheat middling 20
Distiller’s dried grains with soluble 4
Ca (H2PO4)2 1.9
Premix* 3.1
Total 100

*Premix: VA, 2000 IU; VB, 5 mg; VB2, 10 mg; VB6, 10 mg; VB12, 0.02 mg; VD3, 2000 IU; VE, 100 IU; VK3,
10 mg; VC, 300 mg; Biotin, 1 mg; folic acid, 5 mg; calcium pantothenate, 40 mg; nicotinic acid, 100 mg;
antioxidant, 100 mg; Cu (as copper sulfate), 3 mg; Fe (as ferrous sulfate), 150 mg; Mn (as manganese sulfate),
13 mg; Zn (as zinc sulfate), 34 mg; I (as potassium iodide), 5.5 mg; Se (as sodium selenite),0.5 mg
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FCR ¼ dry feed intake gð Þ
wet weight gain gð Þ ;

PER ¼ weight gain gð Þ
protein intake gð Þ � 100%;

Sample collection and analysis

Four fish were randomly selected from each cage to obtain blood samples from the
caudal vein. The separated blood sample from each fish was centrifuged at 3000×g for
10 min at 4 °C and stored at − 80 °C for the subsequent assays respectively. And then the
fish were disserted, and dorsal muscle, hepatopancreas, gill, and intestine were removed,
rinsed in ice-cold saline, and processed respectively. Tissues were homogenized in 10
volumes (w/v) of ice-cold physiological saline and centrifuged at 4000×g for 10 min at
4 °C, and the supernatant was conserved at − 80 °C until analyzed. The glutamine
synthetase (GS) was measured according to the GS kit protocol (No. A047). The
contents of serum total protein (TP), albumin (ALB), and glucose (GLU) were measured
by colorimetric method, using Mindray Auto Biochemical Analyzer (BS-200, Mindray,
P.R. China) and test kit from Mindray Bio Medical Co., Ltd. in China. The glutathione
(GSH), glutathione-S-transferase (GST), glutathione peroxidase (GSH-Px), total super-
oxide dismutase (T-SOD), catalase (CAT) activity, acid phosphatase (ACP), alkaline
phosphates (ALP), lysozyme (LSZ) activity, complement 3 (C3), γ-glutamyl
transpeptidase (γ-GT), alanine aminotransferase (ALT), aspartate aminotransferase
(AST), adenosine deaminase (ADA), hexokinase (HK), insulin (INS), hemoglobin
(Hb), nitric oxide (NO), glycogen, total antioxidant capacity (T-AOC), and
malondialdehyde (MDA) contents were measured by colorimetric method, using the
722 spectrophotometer (Shanghai optical instrument factory, China) and test kit from
Nanjing Jiancheng Bioengineering Institute Nanjing, China (Wang et al. 2016a).

Statistical analyses

Student’s t test was used for evaluation all data. All analyses were performed using SPSS 17.0
software (Chicago, IL, USA), with P < 0.05 considered statistically significant. The least
squares means and standard error mean (SEM) are presented.

Results

Effects of AKG on growth performance of grass carp

During feeding, it was observed that there was no difference when grass carp consumed the
diets in AKG group and the CON group. The effects of dietary 7.5 g/kg AKG on the growth
performance of grass carp are shown in Table 2. Compared with the CON group, the FW,
WGR, SGR, and PER in the AKG group were increased significantly (P < 0.05), while the
FCR was significantly decreased (P < 0.05).
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Effects of AKG on blood biochemical parameters of grass carp

The effects of dietary AKG on the blood biochemical parameters of grass carp are presented in
Table 3. Feeding 7.5 g/kg AKG diet had no effects on the LSZ, NO, ADA, ACP, ALB, TP,
ALT, AST:ALT ratio, GLU, and INS in the blood of grass carp compared with the basal diet
without AKG supplementation (P > 0.05), whereas NO showed a trend of decrease (P =
0.050). The 7.5 g/kg AKG diet increased significantly GS, GSH, GST, GSH-Px, CAT, T-SOD,
T-AOC, AST, C3, and HK in the blood of grass carp (P < 0.05), whereas decreased signifi-
cantly in the MDA and Hb (P < 0.05).

Effects of AKG on muscle physiological and biochemical indices of grass carp

The effects of dietary 7.5 g/kg AKG supplementation on muscle physiological and biochem-
ical indices of grass carp are presented in Table 4. Feeding the 7.5 g/kg AKG diet had no
effects on the activity of GS in the muscle of grass carp compared with the basal diet (P >
0.05). However, the 7.5 g/kg AKG diet decreased significantly the activity of ADA and
concentration of glycogen in the muscle of grass carp (P < 0.05).

Effects of AKG on gill biochemical parameters of grass carp

The effects of dietary 7.5 g/kg AKG on the gill biochemical parameters of grass carp are shown in
Table 5. Feeding the 7.5 g/kg AKG diet had no effects on the activity of T-ATP in the gill of grass
carp compared with the basal diet without AKG supplementation (P > 0.05). However, the 7.5 g/kg
AKG diet increased significantly the activities of Na-ATP and Ca-ATP in the gill (P < 0.05).

Effects of AKG on intestinal biochemical parameters of grass carp

The effects of dietary 7.5 g/kg AKG on the intestinal biochemical parameters of grass carp are
shown in Table 6. Feeding the 7.5 g/kg AKG diet increased significantly the activity of GSH,

Table 2 Effects of AKG supplementation on growth performance of grass carp for 8 weeks (n = 4)

Items CON (0.00) AKG (7.50) SEM1 P value

IW (g)2 11.45 11.08 0.17 0.214
FW (g)3 29.98b 33.95a 0.50 0.031
WGR (%)4 162.14b 206.52a 7.58 0.015
SGR (%)5 1.72b 2.00a 0.05 0.013
FCR6 1.81a 1.42b 0.07 0.015
PER (%)7 1.88b 2.39a 0.09 0.014

Values in the same row with different small letter superscripts indicate significant difference (P < 0.05) while with
no or the same small letter superscripts mean no difference (P > 0.05).
1 SEM, standard error mean; n, no. of observations
2 IW, initial weight
3FW, final weight
4WGR, weight gain rate
5 SGR, specific growth rate
6FCR, feed conversion ratio
7PER, protein efficiency ratio
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amylase, protease, and lipase in the fore-gut of grass, as well as ALP activity in the mid-gut of
grass carp, when compared with the basal diet without AKG supplementation (P < 0.05),
whereas decreased significantly the concentration of NO and the activity of ACP in the mid-
gut (P < 0.05). Additionally, 7.5 g/kg AKG diet increased significantly the γ-GT activity in the
intestine of grass carp including fore-gut and mid-gut (P < 0.05).

Table 3 Effects of AKG on blood biochemical parameters of grass carp for 8 weeks (n = 4)

Items CON (0.00) AKG (7.50) SEM1 P value

GS (U/mgprot) 7.67b 43.17a 0.34 < 0.001
GSH (mg/l) 164.78b 210.56a 1.94 < 0.001
GST (U/ml) 25.07b 26.75a 0.32 0.008
GSH-Px (U) 1062.37b 1434.12a 26.91 < 0.001
CAT (U/ml) 8.50b 9.58a 0.16 0.001
T-SOD (U/ml) 98.74b 107.96a 0.31 < 0.001
MDA (nmol/ml) 10.68a 4.74b 0.29 < 0.001
T-AOC (U/ml) 6.48b 14.98a 0.25 < 0.001
C3 (g/l) 0.69b 0.77a 0.01 0.002
LSZ (U/ml) 150.27 152.97 7.41 0.824
NO (μmol/l) 17.50 15.20 0.69 0.050
Hb (g/l) 55.20b 52.74a 0.51 0.021
HK (U/l) 231.36b 252.14a 2.44 < 0.001
ADA (U/ml) 25.89 25.08 0.80 0.495
ACP (U/100 ml) 19.63 19.59 0.39 0.945
ALB (g/l) 15.85 15.97 1.18 0.944
AST (U/l) 36.20b 76.58a 8.33 0.016
ALT (U/l) 4.96 7.40 1.77 0.377
AST:ALT ratio 7.93 11.84 1.64 0.158
TP (g/l) 25.44 26.47 1.17 0.548
Glucose (mmol/l) 5.25 5.97 0.38 0.215
INS (mIU/l) 2.80 2.79 0.03 0.935

GS, glutamine synthetase; GSH, glutathione; GST, glutathione-S-transferase; GSH-Px, glutathione peroxidase;
CAT, catalase; T-SOD, total-superoxide dismutase; MDA, malondialdehyde; T-AOC, total antioxidant capacity;
C3, complement 3; LSZ, lysozyme; NO, nitric oxide; Hb, hemoglobin; HK, hexokinase; ADA, adenosine
deaminase; ACP, acid phosphatase; ALB, albumin; AST, aspartate aminotransferase; ALT, alanine aminotransfer-
ase; TP, total protein; INS, insulin. Values in the same row with different small letter superscripts indicate
significant difference (P < 0.05) while with no or the same small letter superscripts mean no difference (P > 0.05)
1 SEM, standard error mean; n, no. of observations

Table 4 Effects of AKG on muscle physiological and biochemical indices of grass carp for 8 weeks (n = 4)

Items CON (0.00) AKG (7.50) SEM1 P value

ADA (U/mgprot) 14.56a 7.97b 1.31 0.008
GS (U/mgprot) 9.27 9.47 0.33 0.680
Glycogen (mg/g) 2.28a 2.06b 0.05 0.012

ADA, adenosine deaminase; GS, glutamine synthetase. Values in the same row with different small letter
superscripts indicate significant difference (P < 0.05) while with no or the same small letter superscripts mean
no difference (P > 0.05)
1 SEM, standard error mean; n, no. of observations
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Effects of AKG on hepatopancreas physiological and biochemical parameters of grass
carp

The effects of dietary 7.5 g/kg AKG on the hepatopancreas physiological and biochemical
parameters of grass carp are presented in Table 7. Feeding the 7.5 g/kg AKG diet increased
significantly the GS activity and GSH concentration in the hepatopancreas compared with the
basal diet without AKG supplementation (P < 0.05), whereas decreased significantly the
concentration of glycogen (P < 0.05).

Discussion

In the present study, feeding the 7.5 g/kg AKG diet increased FW, WGR, SGR, and PER of grass
carp and reduced FCR compared with the basal diet without AKG supplementation. This was
consistent with the result observed in previous research (Wang et al. 2016a). Similarly, Wang et al.
(2016b) reported that AKG diet has positive effects on growth performance of juvenile hybrid
sturgeon (Acipenser schrenckii♀×Acipenser baerii♂). However, the present result was contrary to

Table 5 Effects of AKG on gill biochemical parameters of grass carp for 8 weeks (n = 4)

Items CON (0.00) AKG (7.50) SEM1 P value

Na-ATP (U/mgprot) 7.38b 8.45a 0.20 0.006
Ca-ATP (U/mgprot) 19.98b 21.27a 0.38 0.045
T-ATP (U/mgprot) 31.40 32.91 0.58 0.104

T-ATP, total-ATP
1 SEM, standard error mean; n, no. of observations. Values in the same row with different small letter superscripts
indicate significant difference (P < 0.05) while with no or the same small letter superscripts mean no difference
(P > 0.05)

Table 6 Effects of AKG on intestinal biochemical of grass carp for 8 weeks (n = 4)

Items CON (0.00) AKG (7.50) SEM1 P value

NO (μmol/gprot) Fore-gut 70.17 68.86 2.45 0.371
Mid-gut 33.60a 25.61b 1.19 0.002

GSH (mg/gprot) Fore-gut 18.32b 26.04a 0.65 < 0.001
Mid-gut 8.79 8.24 0.85 0.671

ACP (U/mgprot) Fore-gut 2.69 2.96 0.11 0.176
Mid-gut 1.44a 1.27b 0.04 0.026

ALP (U/mgprot) Fore-gut 339.79 349.66 11.31 0.587
Mid-gut 327.97b 456.91a 12.46 < 0.001

Amylase (U/mgprot) Fore-gut 362.06b 447.21a 18.08 0.014
Mid-gut 432.92 456.81 11.02 0.178

Protease (U/mgprot) Fore-gut 1062.71b 1264.08a 25.48 0.001
Mid-gut 1306.60 1338.27 28.37 0.490

Lipase (U/gprot) Fore-gut 241.52b 409.15a 22.04 0.001
Mid-gut 572.40 649.77 28.46 0.099

γ-GT (U/gprot) Fore-gut 39.52b 53.86a 1.39 < 0.001
Mid-gut 52.56b 77.86a 1.84 < 0.001

NO, nitric oxide; GSH, glutathione; ACP, acid phosphatase; ALP, alkaline phosphates; γ-GT, γ-glutamyl
transpeptidase. Values in the same row with different small letter superscripts indicate significant difference (P
< 0.05) while with no or the same small letter superscripts mean no difference (P > 0.05)
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the report that there is no effect of 1.0% AKG diet on the weight gain of juvenile red drum (Xu and
Gatlin 2018). This difference may be caused by different experimental processes including the
different fish species or different dosages. The research shows that 1.0% AKG enhances intestinal
absorption and increases the synthesis of intestinal mucosal proteins in piglets (Hou et al. 2010). The
study has shown that 1.0%AKG also can promote nitrogen (N), calcium (Ca), and phosphorate (P)
utilization efficiency and promote the growth performance of pigs (Chen et al. 2017). Therefore,
optimal diet AKG level may be related to its effect on the growth performance of different animals.
Furthermore, the research also suggests that adding appropriate levels of AKG to the low-P feed can
improve the growth performance of hat juvenile Songpu mirror carp (Cyprinus carpio) (Ai et al.
2019). The present results indicated that the enhancement of grass carp growth may be attributed to
the diet with 7.5 g/kg AKG supplementation. This also reconfirmed that 7.5 g/kg AKG supple-
mentation in grass carp may be an optimal level, which is suggested by previous study (Wang et al.
2016a).

Under usual conditions, the production of ROS in tissues and their elimination are in a dynamic
equilibrium. The excessive levels of ROS lead to the damaged of DNA, lipids, and proteins, finally
resulting in the impaired cellular physical barrier function of fish intestine (Ko et al. 2014). To protect
cells from oxidative damage during the oxygen metabolism, an antioxidative defense system has
presumably evolved in aerobic organisms (Zhang et al. 2010). The antioxidant system of the body
includes a series of antioxidant enzymes and antioxidants. The antioxidant enzymes such as SOD,
CAT, and GSH-Px have a cellular protective action against oxidative stress (Putker and O’Neill
2016; Zhang et al. 2004; Ransberry et al. 2015; Loro et al. 2012; Glasauer and Chandel 2014;
Martínez-Álvarez, Morales, and Sanz 2005). GSH is the major endogenous antioxidant scavenger
that protects cells from oxidative stress (Sies 1999). The GSH level in fish is sensitive to the changes
in external conditions under oxidative stress (Lin et al. 2018). In present study, 7.5 g/kg AKG
supplementation diet increased significantly the activities of GST, GSH-Px, CAT, and T-SOD and
the concentrations of GSH and T-AOC in the blood. It also improved the concentration of GSH in
the fore-gut and hepatopancreas of grass carp, whereas decreased significantly the concentration of
MDA. This was consistent with the previous studies that dietary AKG has a positive effect on the
neutrophil oxidative radical production (Xu and Gatlin 2018). Supplementation with AKG also
enhanced activities of the antioxidant defense system in hybrid sturgeon (Acipenser schrenckii♀ ×
A. baerii ♂) (Wang et al. 2017b). Specially, proline, as conditionally essential amino acids in fish,
can be produced from AKG and plays a key role in protein synthesis, wound healing, and anti-
oxidative reaction (Wu et al. 2011). Glutamine (Gln) plays a protective role against apoptosis and
oxidative damage by preventing against the generation of ROS and the oxidation of lipid (Li et al.
2013), and eliminating free radicals because it acts as a precursor for synthesis of the antioxidant
glutathione (Wang et al. 2016b). This may be contributed to improve the antioxidant defense system
of grass carp in the present study. Previous study has shown that γ-GT help to increase the transport

Table 7 Effects of AKG on hepatopancreas physiological and biochemical parameters of grass carp (n = 4)

Items CON (0.00) AKG (7.50) SEM1 P value

GS (U/mgprot) 12.57b 16.49a 0.12 < 0.001
GSH (mg/gprot) 22.79b 24.38a 0.38 0.022
Glycogen (mg/g) 11.53a 9.18b 0.40 0.004

GS, glutamine synthetase; GSH, glutathione. Values in the same row with different small letter superscripts
indicate significant difference (P < 0.05) while with no or the same small letter superscripts mean no difference (P
> 0.05)
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of glutathione precursors into the cell to maintain the intracellular glutathione (Hegazi et al. 2010a).
As a precursor of glutathione (GSH), glutamate exerts alleviative effects on oxidative stress
(Shaojuan et al. 2018). The increase of γ-GT activity in the intestine of grass carp in the present
study indicated that 7.5 g/kg AKG supplementation diet was beneficial to improving the antioxidant
function of grass carp intestinal tissue. Hb possesses intrinsic peroxidase activity and is used to
transport and store oxygen (Wicher and Fries 2006). Its significant decrease in the present studymay
be beneficial to the improvement in antioxidant defense system in the grass carp. In MDA, as the
final production of lipid peroxidation, the decreasing level is an index of lower lipid peroxidation
(Liu et al. 2015), and the present decreasing level was thought that the response of antioxidant
system is to protect the cell against the oxidative stress. Above results confirmed that dietary
supplementation with 7.5 g/kg AKG contributed to enhance the activities of the antioxidant defense
system enzymes in grass carp. Diet 7.5 g/kg AKG may play beneficial role in maintaining ROS
equilibrium with free radical scavenging. It was speculated that AKG exerted antioxidative defense
by enzymatic systems, while improving the activities of SOD and CAT, and nonenzymatic GSH
level, while reducing the levels of MDA.

In teleost, the increased glutamine content was due to Gln formed from glutamate and NH4
+

generally (Hegazi et al. 2010a, b; Anderson et al. 2002). The reaction of Gln formed is catalyzed by
the enzymeGS, which is a detoxification of ammonia (Wang et al. 2017b; Coutinho et al. 2016; Peh
et al. 2010). This is considered a master enzyme to catalyze ATP-dependent biosynthesis of Gln
from glutamate (Hu et al. 2017). In the present study, the activity of GS in the blood and
hepatopancreas of grass carp increased significantly. This was consistent with previous reported
results that dietary AKG supplementation will increase the concentration of Gln and the activity of
GS in juvenile hybrid sturgeon (Wang et al. 2016b) and improve the GS activity and Gln
concentration in common carp (Dong et al. 2014). Also, it can increase the GS activity in the
fore-gut of mirror carp (Wang et al. 2017a). It was suggested that dietary supplemented with AKG
may increase directly GS activity (Xu and Gatlin 2018).

In addition, the increase of ASTenzyme in the hepatopancreas of grass carp in the present study
may have aided in the entry of glutamate into the TCA cycle and its re-synthesis from TCA cycle
intermediates (Hegazi et al. 2010a, b). Glutamate supplementation improves hepatic glucose
metabolism and facilitates protein replacement by carbohydrates in fish feed (Caballero-Solares
et al. 2015). Digestive amylase localizes in the entire gastrointestinal tract of many fish species, but
less is known about the regulation of amylase activity, secretion, or biosynthesis (Krogdahl et al.
2005). In present study, diet AKG increased significantly the amylase activity in the fore-gut of grass
carp, aswell as protease and lipase activities. The levels of activities of digestive enzymes are used as
comparative indicators of growth rate and digestive capacity of the fish (Suzer et al. 2007). Fishmay
change and adapt their metabolic functions and induction of the enzymes (Abhijith et al. 2016). It
was speculated that AKG, as an intermediate of TCA, also an intermediate of glutamate and Gln,
may contribute to ATP homeostasis in the small intestine (Hou et al. 2011). This may take place
through enhancing the digestive enzymes activities, and dominate effective site may be in the fore-
gut of grass carp.

AKG is also the main source of energy for cells of the gastrointestinal tract (Sliwa
et al. 2006). In the present study, the HK activity in the blood and the Na-ATP and Ca-
ATP activities in the gill increased significantly. Glucose should be phosphorylated to
glucose-6-phosphate by HK to ensure favorable glucose gradients for transport (Moon
2001), and HK play important roles in intermediary metabolism (Enes et al. 2009).
Furthermore, the decrease of liver glycogen of grass carp in current study may be due
to the AKG supplementation directly blocking glucose uptake (Doucette et al. 2011).
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Deficient or excess levels of certain nutrients will influence immune defense mecha-
nisms. Fish largely relies on antibacterial substances such as LSZ, ACP, complement
factors, and antimicrobial peptides to play the immune functions (Xu and Gatlin 2018).
Gln may not only promote growth performance but also have an array of desirable
immunological attributes in different animal species (Pohlenz et al. 2012). In present
study, diet AKG increased significantly the concentration of C3 in the blood and the
activity of ALP in the mid-gut of the grass carp. Normally, ALP activities are involved in
the membrane transport activities (Molina et al. 2005). In brief, the data acquired from
the present study revealed that AKG supplementation may contribute to the production
of antibacterial substances, so as to improve the grass carp’s health. This may be through
enhancing the activities of the antioxidant defense system and digestive enzymes, which
are beneficial to improving the growth performance of grass carp. However, further
studies need to be carried out to investigate the physiology action mechanism in grass
carp.

Conclusion

In conclusion, diet supplemented with 7.5 g/kg AKG in grass carp will improve the growth
performance and immune response and may be through regulating the activities of glutamine
synthetase enzyme, antioxidant defense enzymes, and digestive enzymes.
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