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Abstract Satisfying nutrient requirement of corals is still a major constraint for

maintaining corals in marine aquariums. Corals are polytrophic in nature. Heterotrophic

feeding on zooplankton is one of the corals’ strategies to overcome nutrient deficiency.

Artemia salina nauplii are commonly used as biocarriers for many fish larvae in

aquaculture and can also serve as a biocarrier for coral in aquariums, provided coral

acceptability, optimal feeding rate, and digestibility of the nauplii are well understood.

Feeding rate and digestibility of coral fed on A. salina nauplii at 100, 2,000, 4,000,

6,000, and 10,000 ind. l-1 under light and dark conditions was assessed in this study.

The maximum feeding rates of Galaxea fascicularis under light and dark conditions was

113.6 ind. polyp-1 h-1 and 76.9 ind. polyp-1 h-1, respectively. The daily feeding rates

of G. fascicularis varies and depends on nauplii density. Light plays an important role

in coral feeding. Nevertheless, the quantity of A. salina nauplii consumed by the coral

under light and dark conditions was not significantly different (P [ 0.05). A. salina
nauplii are well accepted by G. fascicularis. Complete nauplii digestion was observed

after 180 min. Digestibility of A. salina nauplii by G. fascicularis was positively cor-

related with digestion time.
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Abbreviations
ind. l-1 Individual of Artemia salina nauplii per liter

ind. polyp-1 h-1 Individual of Artemia salina nauplii per polyp per hour

Introduction

Marine ornamental industry is a multimillion dollar business (US $200–330 million year-1)

(Wabnitz et al. 2003). Live coral is one of the most favorite marine organisms in the industry

(Green 2003). Based on importers’ data (1997–2001) from the Convention on International

Trade in Endangered Species of Wild Fauna and Flora (CITES), 99.7% of the total global

trade in live corals is harvested from the wild, and only 0.3% is captive bred. Mortality rate

of corals in the marine aquarium is high. Wabnitz et al. (2003) reported high mortality of

Plerogyra spp. (54% mortality), Catalaphyllia spp. (60% mortality), Heliofungia spp.

(100% mortality), Goniopora spp. (95% mortality), and Tubastrea spp. (100% mortality) in

the aquarium. Harvesting coral from the wild is not a sustainable business because when

corals are difficult to maintain in the aquarium, they must be replaced regularly (Arvedlund

et al. 2003). Strong market demands imply a heavy harvesting pressure on coral reefs, and

coral aquaculture is increasingly mentioned as a priority solution to reduce this pressure

(Parks et al. 2003). Attempts to culture live coral in captivity have been carried out over the

decades. However, reports of successful ex-situ cultivation of coral are sparse (Arvedlund

et al. 2003). Satisfying the nutrient requirement of corals remains one of the major tasks in

maintaining and reproducing the organisms under captivity.

Corals are notable for their symbiosis with the unicellular dinoflagellate algae zooxan-

thellae (Davies 1984). Corals protect zooxanthellae, which are enclosed in their endodermal

cells. In return, zooxanthellae supply organic carbon to the host. Therefore, lighting is an

essential component in marine aquariums. Corals are polytrophic in nature (Goreau et al.

1971). Heterotrophic feeding is essential for overcoming nutrient deficiency. Corals exhibit

several modes of feeding and energy acquirement from multiple sources. Corals feed on

plankton (Lewis 1992; Ferrier-Pages et al. 2003; Picciano and Ferrier-Pages 2007), bacteria

(Ferrier-Pages et al. 1998), and particulate organic matter (Lasker 1981; Anthony 1999;

Anthony and Fabricius 2000; Mills et al. 2004), and they even absorb dissolved nutrients from

the water (Titlyanov et al. 2000; Ferrier 1991; Ferrier-Pages et al. 2003). Heterotrophic

feeding of corals is one of the strategies to overcome nutrient deficiency. Heterotrophic

feeding enhances coral growth, calcification rate, and photosynthesis rate and even affects the

symbiotic zooxanthellae (Miller 1995; Titlyanov et al. 2001; Grottoli 2002; Ferrier-Pages

et al. 2000, 2003; Houlbreque et al. 2003, 2004; Davy et al. 2006).

Corals in captivity should be fed with zooplankton to complete their nutrient require-

ments. However, harvesting zooplankton from the sea to feed corals in marine aquariums is

neither sustainable nor economically viable. Brine shrimp, Artemia salina nauplii, may be

the right candidate for feeding corals in captivity. A. salina is widely used as life food for

culturing fish larvae in aquaculture (Lavens and Sorgeloos 2000). Dormant cysts of artemia

can be stored for long periods, and it is commercially available. A. salina nauplii can also

be enriched with different nutrients to meet the specific nutrient requirements of many

organisms (Dhert et al. 1990; Olsen et al. 1999; Hanaee et al. 2005; Monroig et al. 2006;

Olivotto et al. 2006). A. salina nauplii can be used as a biocarrier and life food for corals in

captivity provided that acceptability, optimal feeding rate, and digestibility are well

understood.
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Materials and methods

Coral specimens and A. salina nauplii

About 30 colonies of the scleractinian zooxanthellate coral Galaxea fascicularis were

collected from Pulau Bidong, Malaysia. The corals were maintained in a 150-l aquarium

supplied with running seawater and illuminated with white fluorescent light at

870.0 ± 82.8 lux on a 12-h light/12-h dark cycle. The experiment was conducted under a

constant environment at parameters 28�C, salinity 30 ppt, and pH 8, with dissolved oxygen

maintained at 5–7 mg l-1. Coral colonies were then broken into similar-sized coral pieces

using a hammer and screw driver. Each coral piece had about 30 polyps. The pieces were

allowed to acclimatization for 5 days before the experiment. Pieces from the coral colonies

were mixed and pooled and randomly selected from the pool for the experiments. A. salina
nauplii (Royal Artemia, 99% hatching) were prepared 24 h prior to the experiments.

Preparation of A. salina nauplii was based on the procedure described by Dhont and

Stappen (2003).

Determination of optimal feeding rate

Feeding experiments were conducted based on the method described by Leversee (1976)

and Dai and Lin (1993). The coral pieces were fed different densities of A. salina nauplii at

100, 2,000, 4,000, 6,000, and 10,000 ind. l-1. Three pieces used in each treatment were

randomly selected from the pool. Each piece was transferred from the aquarium into a 2-l

clear glass beaker 1 h before the experiment. The experiment was conducted in three

replicates and started when most of the polyps were fully extended. The feeding experi-

ments were conducted in the morning and repeated every 24 h up to 6 days. A. salina
nauplii at the mentioned densities were added to the beaker, and the volume of seawater in

the beaker was made up to 1 l to yield the desired nauplii density in each treatment. The

coral colonies were allowed to feed for 1 h before they were carefully transferred back into

the aquarium. Densities of the remaining A. salina nauplii were determined by counting

10-ml samples (five replicates) from each beaker. This gives the average number of nauplii

in each beaker. The total number of A. salina nauplii consumed by the corals was deter-

mined by the difference of initial and final density of the nauplii. G. fascicularis feeding

rate was determined as the number of A. salina nauplii ingested per coral polyp per hour:

Feeding rate ¼ Densityi � Densityr

Number of polyps� Time

where, densityi = initial number of A. salina nauplii, densityr = remaining A. salina
nauplii after 1 h.

Effects of light on G. fascicularis feeding

To determine the effect of light provision on G. fascicularis feeding, the feeding rate of

G. fascicularis was determined under light and dark conditions. Under light conditions,

coral colonies were illuminated with white fluorescent light at 870 ± 82.8 lux, and under

dark conditions, the colonies were fed in the dark. G. fascicularis feeding rates with and

without light were determined, as described previously.
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Digestion rate of A. salina nauplii by G. fascicularis

To determine the digestion rate of A. salina nauplii by G. fascicularis, coral specimens

were fed with A. salina nauplii at 10,000 ind. l-1. After feeding A. salina nauplii to the

coral, the gastrovascular cavity contents of five polyps were withdrawn using a 1-ml

syringe (0.36 mm Ø; Micro-Fine�) at intervals of 10, 30, 60, 90, 120, 180, and 420 min.

The gastrovascular cavity contents were then examined using a compound microscope

(Motic) under 409 magnification. The experiment was conducted in three replicates.

Gastrovascular content of starved coral were used as controls. A few drops of 10% for-

malin were added to the gastrovascular cavity contents for preservation. A scale from one

to five [0–20% digested scale (1), 20–40% digested scale (2), 40–60% digested scale (3),

60–80% digested scale (4), and 80–100% digested scale (5)] was assigned to indicate

digestibility of the specimen.

Statistical analysis

G. fascicularis feeding rate at different densities of A. salina nauplii were evaluated using

nonlinear least squares regression (Michaelis–Menten models), as described by Anthony

(1999). The curvilinear Michaelis–Menten model is:

FD ¼
ðFmax DÞ
ðK þ DÞ

where, FD is the feeding rate as a function of nauplii density (D), Fmax is the maximum

feeding rate, and K is the nauplii density at which half-saturation occurs. The effect of

feeding condition (with and without light provision) and rate of G. fascicularis was tested

using a split plot design analysis of variance (ANOVA). Spearman’s rank order correlation

was conducted to test the correlation between digestibility of A. salina nauplii and coral

digestion time. All null hypotheses were rejected at P B 0.05.

Results

G. fascicularis feeding rate

G. fascicularis feeding rate increased with increasing nauplii densities (Fig. 1). G. fas-
cicularis feeding with and without light provision was significantly correlated with the

curvilinear model (P values \0.0001 and 0.0015, respectively, Table 1). With light pro-

vision, the maximum feeding rate was 113.6 ind. polyp-1 h-1, whereas the maximum

feeding rate under dark conditions was 76.9 ind. polyp-1 h-1 (Table 2). When G. fas-
cicularis was fed at high nauplii density, it achieved its feeding saturation in a shorter time.

The half-saturation constant (K) values of G. fascicularis with and without light provision

were 1.25 9 104 ind. l-1 and 5.32 9 103 ind. l-1, respectively (Table 2). Corals pieces fed

with A. salina nauplii retained a 100% survival rate for more than 10 months.

Figure 2 shows that coral feeding has a rhythmic trend. Under light conditions, the daily

feeding rate declined on day 2 but increased on day 4. However, the feeding rhythm

extended up to day 3 under dark conditions. The daily feeding rate varied from day to day,

and there was a significant interaction between light provision and feeding time (P \ 0.05,

Table 3). Nevertheless, the average feeding rate was not significantly different under light

and dark conditions (P [ 0.05, Table 3).
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Fig. 1 Feeding rates as a function of Artemia salina nauplii densities for Galaxea fascicularis under light
and dark conditions. Markers d and 9 are the means of n = 3 (with and without light provision,
respectively). The solid line (with light provision) and dash line (without light provision) show the best-fit
curve

Table 1 Summary of analysis of variance (ANOVA) for nonlinear regression analysis for feeding
responses of Galaxea fascicularis with and without light provision

Feeding condition Sources of variation df MS F P

With light provision Regression 1 1446.7551 6957.5310 <0.0001

Error 3 0.2079

Without light provision Regression 1 1542.7563 60.2210 0.0015

Error 3 25.6128

df—degree of freedom, MS—mean squares, F—Fisher F ratio, P—probability

Significant values (P \ 0.05) are indicated in bold

Table 2 Summary of regressions for feeding responses of Galaxea fascicularis with and without light
provision

Feeding condition Curvilinear Michaelis–Menten model Parameter estimatesa

FD ¼ ðFmax DÞ
ðKþDÞ Fmax, ind. polyp-1 h-1 K, ind. l-1

N R2

With light provision 15 0.9998 113.6 12,494

Without light provision 15 0.9779 76.9 5,341

a Parameters for the Michaelis–Menten model (Fmax maximum rate of ingestion; K half-saturation constant)
were calculated using iterative least-squares regression
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A. salina nauplii digestion by G. fascicularis

Table 4 shows the digestibility of A. salina nauplii by G. fascicularis. Complete A. salina
nauplii digestion (scale 5) was observed after 180 min. Most gastrovascular cavity contents

of the specimen showed minor digestion (scale 1) 10 min after feeding (Fig. 3). All major

body parts were intact, but there was some minor degradation in the nauplii appendices.

The modes of nauplii digestibility after 30 and 60 min were recorded at scales 2 and 3,

respectively. Nauplii were partially digested at the time. After 90 and 120 min, most

A. salina nauplii were further digested and recorded at scale 4. A. salina nauplii body shape

could hardly be recognized at this time. After 180 and 420 min after feeding, only mucus

was left in the contents. As for controls, only mucus was found in the gastrovascular cavity

contents withdrawn from the coral polyps. Analysis of Spearman’s rank order correlation

indicates that there was a significant correlation between A. salina nauplii digestibility and

digestion time (r = 0.920, P = 0.014).

Discussion

G. fascicularis is one of the favorite organisms in the marine ornamental industry

(Wabnitz et al. 2003). The scarcity of data in coral feeding and nutritional requirement

renders it difficult to maintain corals in captivity. A. salina nauplii acting as a biocarrier

may be useful to study nutrient requirements of corals. Our results revealed that G. fas-
cicularis was able to feed on A. salina nauplii. Coral feeding capacity was positively

Fig. 2 Galaxea fascicularis feeding rates with and without light provision at different nauplii densities.
Markers are the mean, and vertical bars show standard deviation with n = 3. (a) 2 9 103 ind. l-1; (b)
4 9 103 ind. l-1; (c) 6 9 103 ind. l-1; (d) 10 9 103 ind. l-1
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correlated with nauplii availability. When nauplii are present at low density (1.0 9 102 ind.

l-1), G. fascicularis feeding rate under light and dark conditions was 1.2 ind. polyp-1 h-1

and 0.8 ind. polyp-1 h-1, respectively. When nauplii were present at high density

(1.0 9 104 ind. l-1), G. fascicularis feeding rate under light and dark conditions was 50.5

ind. polyp-1 h-1 and 46.6 ind. polyp-1 h-1, respectively. When the corals were fed with

high nauplii density, their feeding capacity was about 50 times higher than those fed with

low nauplii density. Similar results were documented by Lasker et al. (1982); Clayton and

Lasker (1982); Ferrier-Pages et al. (2003); and Picciano and Ferrier-Pages (2007). Ferrier-

Pages et al. (1998) reported that Stylophora pistillata, a zooxanthellate coral, increased its

feeding rate by 2,000 times when the ciliates density increased from 200 to 800 ciliates

ml-1. In another study, the feeding rate of a Mediterranean red coral, Corrallium rubrum,
doubled, for a sixfold increase in prey concentration (Picciano and Ferrier-Pages 2007).

Feeding satiation and nauplii density was a typical curvilinear response. G. fascicularis
feeding rate and nauplii density was well fitted into a saturation curve (Fig. 1). Feeding by

coral polyps was analogous to the active sites as in the enzymatic kinetics. G. fascicularis
feeding rate can be estimated using the Michaelis–Menten equation. The maximum

G. fascicularis feeding rate with light provision was 113.6 ind. polyp-1 h-1, whereas the

maximum G. fascicularis feeding rate without light provision was 76.9 ind. polyp-1 h-1.

Table 3 Summary of split-plot design analysis of variance (ANOVA) of the effect of feeding condition
(with and without light provision) and feeding time on feeding rate of Galaxea fascicularis at different loads
of Artemia salina nauplii

Split-plot design ANOVA

Nauplii density (ind. l-1) Source of variation df MS F P

2.0 9 103 Feeding condition 1 0.078 0.001 0.976

Feeding time 5 11.185 0.724 0.613

Interaction of feeding condition
and feeding time

5 72.437 4.690 0.005

Error 20 15.445

4.0 9 103 Feeding condition 1 344.288 2.272 0.206

Feeding time 5 104.379 2.426 0.071

Interaction of feeding condition
and feeding time

5 367.994 8.552 0.000

Error 20 43.029

6.0 9 103 Feeding condition 1 896.104 5.237 0.084

Feeding time 5 256.041 2.917 0.039

Interaction of feeding condition
and feeding time

5 370.475 4.220 0.009

Error 20 87.785

1.0 9 104 Feeding condition 1 20.763 0.006 0.944

Feeding time 3.146 792.182 3.936 0.033

Interaction of feeding condition
and feeding time

3.146 904.185 4.493 0.022

Error 12.584 201.258

df—degree of freedom, MS—mean squares, F—Fisher F ratio, P—probability

Significant values (P \ 0.05) are indicated in bold
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The half-saturation constant (K) of the coral’s feeding with and without light provision was

1.25 9 104 ind. l-1 and 5.32 9 103 ind. l-1, respectively. When the corals were fed with

higher nauplii density than the half-saturation constant, there was no further increment in

the coral feeding rate.

A plateau was observed in G. fascicularis when it was fed with high nauplii density.

Ferrier-Pages et al. (1998) reported a feeding plateau in S. pistillata feeding after the coral

ingested 4 9 104 ciliates. However, Clayton and Lasker (1982) and Picciano and Ferrier-

Pages (2007) did not observed any feeding plateau over the range of prey densities fed to

corals. Anthony (1999) reported the feeding rate of four coral species, Pocillopora
damicornis, Montipora digitata, Acropora millepora, and Porites cylindrical, on fine

suspended particulate matter. P. damicornis, M. digitata, and A. millepora ingestion rates

increased linearly from 1 to 30 mg l-1 of the fine suspended particle, whereas P. cylindrica
reached its plateau at 4–8 mg l-1 particle concentrations. The differences in feeding

capability are due to differences in feeding mechanisms, morphology, variable sizes,

number of tentacles and polyps, differences in coelenterates cnidom, prey type and size,

water flow, depth, temperature, and light availability. Any changes of these parameters

affect coral feeding rate and the plateau (Leversee 1976; Lasker 1981; Clayton and Lasker

1982; Okamura 1987; Dai and Lin 1993; Sebens et al. 1997, 1998; Piniak 2002; Tsounis

et al. 2006; Picciano and Ferrier-Pages 2007).

Table 4 Degree of Artemia salina nauplii digestion by Galaxea fascicularis at different sampling times

Degree of digestion

Replicate Time (min)

10 30 60 90 120 180 420 Controla

R1 1 2 3 3 5 5 5 5

R2 1 2 3 4 4 4 5 5

R3 2 2 3 4 4 5 5 5

R4 1 3 3 4 4 5 5 5

R5 1 4 2 4 4 4 5 5

R6 1 3 2 4 3 4 5 5

R7 1 3 2 4 4 4 5 5

R8 2 4 3 4 4 5 5 5

R9 1 2 ND 4 ND 5 5 5

R10 1 ND ND 4 ND 5 5 5

R11 2 ND ND ND ND 5 5 5

R12 1 ND ND ND ND 5 5 5

R13 1 ND ND ND ND 5 5 5

R14 1 ND ND ND ND 5 5 5

R15 1 ND ND ND ND 5 5 5

R16 3 ND ND ND ND 5 5 5

R17 1 ND ND ND ND 5 5 5

Mode 1 2 3 4 4 5 5 5

ND—no nauplii was observed in gastrovascular content of the specimen
a Control: Corals starved for 1 week
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Heterotrophic feeding of coral is affected by light. Ferrier-Pages et al. (1998) reported

the ingestion rate of S. pistillata decreased when light intensity increased. Under dark

conditions, S. pistillata polyps were fully expanded but remained closed most of the time

under light conditions. Clayton and Lasker (1982) found that P. damicornis feeding

capacity was not affected by short-term dark conditions. G. fascicularis feeding rate was

not significantly different under light and dark conditions, as the coral was maintained in

dark conditions for a few hours only. However, G. fascicularis feeding saturation occurred

earlier under light conditions. With light provision, coral feeding rates decreased on day 2

and increased again on day 4 (Fig. 2). Feeding rates of coral fed under dark conditions

achieved feeding satiation after 3 days of feeding, decreased after day 3, and increased

again at day 6. G. fascicularis fed actively under light conditions. Polyp tentacles were

fully extended to enhance prey capture. G. fascicularis consumes more nauplii density

under light conditions for the first day, and feeding rates decreased gradually until day 4.

Coral feeding exhibits a rhythmic trend. Lasker et al. (1982) indicated that Hydra viridis
feeding rhythm was 4.8 h and the consumption reduced during the second feeding.

Fig. 3 (a) Artemia salina nauplii (control). Contents withdrawn from corals’ gastrovascular cavity at (b)
10 min, (c) 30 min, (d) 60 min, (e) 90 min, (f) 120 min, (g) 180 min, and (h) 420 min after feeding. (i)
Contents withdrawn from controls’ gastrovascular cavity (coral starved for 1 week
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Dead nauplii were found throughout the feeding experiment, especially when the corals

were fed at high nauplii density. G. fascicularis preyed on the nauplii with its extended

tentacles (Fig. 4). When nauplii density was high, there were more frequent contacts

between the nauplii and polyp tentacles. Not all captured nauplii were ingested by the

corals. The nauplii may be stung by polyp tentacles, thus causing mortality.

G. fascicularis produced mucus on its fully extended tentacles for better nauplii

entrapment (Fig. 4). It has been observed that when corals are fed with high nauplii

density, polyps produce greater mucus volume. A. salina nauplii were found entrapped by

the mucus before being consumed. Ferrier-Pages et al. (1998) reported that mucus pro-

duced by polyps was one of the major mechanisms to enhance heterotrophy feeding of

corals. The mucus produced by coral is a potential energy sources to the coral itself. It is

high in nutritional value and contains wax esters, triglycerides, fatty acids, and other

energy-rich compounds (Coffroth 1984).

A. salina nauplii digestibility by G. fascicularis is high. The digestion started 10 min

after feeding and took about 180 min to complete (Fig. 5). Time for complete digestion

was similar to that reported for gorgonian soft coral, Pseudoplexaura porosa. (Coffroth

1984). Coffroth (1984) reported that all ingested food was cleared from the gastrovascular

gut within 3–4 h. Sebens and Koehl (1984) reported complete digestion of zooplankton by

octocorals, Alcyonium siderium, was 4–6 h, whereas the hydrocoral Millepora complanata,

was reported to have 91% digestion after 24 h (Lewis 1992). The discrepancies are due to

the fact that coral’s digestion time is dependent on several factors, such as polyp size, prey

Fig. 4 The process by which Galaxea fascicularis preyed on Artemia salina nauplii by both tentacular and
mucus. (a) G. fascicularis with extended polyp tentacles before feeding. (b) Polyps begin to prey on nauplii
with tentacles when fed with nauplii. (c) Nauplii are wrapped with mucus and conveyed to the mouth. (d)
Nauplii are drawn into the mouth and stomodeum
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type, and temperature (Rossi et al. 2004). There are few reports on A. salina nauplii

digestibility by G. fascicularis, but digestibility of A. salina nauplii by other organisms is

well documented. Martinussen and Bamstedt (1999) reported that Aurelia aurita digestion

time with A. salina was 0.3–3.5 h. Morais et al. (2004) reported higher digestibility of

Artemia sp. (60% after 24 h) by herring larvae, Clupea harengus.

Heterotrophic feeding is essential for corals to overcome any nutrient deficiency, as

nitrogen, phosphate, vitamins, and other trace elements are not synthesized through

autotrophic feeding. In this case, the amount of A. salina nauplii carbon that was trans-

ferred to G. fascicularis could be extrapolated based on nutrient content. Artemia sp.

nauplii contained 0.93 lg C ind-1 and 0.20 lg N ind-1 (Evjemo and Olsen 1999).

G. fascicularis was extrapolated to acquire 106 lg C polyp-1 and 23 lg N polyp-1 per 1-h

feeding under light conditions, whereas under dark conditions, 72 lg C polyp-1 and

16 lg N polyp-1 was acquired by G. fascicularis after 1-h feeding. Carbon and nitrogen

acquisition under light conditions was about double the level of carbon and nitrogen under

dark conditions.

Conclusion

A. salina nauplii are well accepted by G. fascicularis (digestibility and feeding captivity).

It is feasible to use them as biocarriers to supply specific nutrients to G. fascicularis. The

maximum G. fascicularis feeding rate under light and dark conditions was 113.6 ind.

polyp-1 h-1 and 76.9 ind. polyp-1 h-1, respectively. Average G. fascicularis feeding rate

was not significantly different under light and dark conditions. However, coral fed under

light conditions achieved earlier feeding satiation compared with coral fed under dark

conditions. Based on the rhythmic trend of feeding satiation, A. salina nauplii can be fed to

Fig. 5 The degree of digestion of Artemia salina nauplii by Galaxea fascicularis at different times (min).
Sample size of each mode is in brackets. Complete A. salina nauplii digestion by G. fascicularis was
estimated at 180 min after feeding
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the coral in captivity once every 3 days. Complete A. salina nauplii digestion was observed

180 min after feeding.
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