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Abstract Emissions of anthropogenic carbon dioxide (CO2) to the atmosphere and the

consequent effects of climate change and ocean acidification on coral reef ecosystems have

motivated significant interest in describing and understanding the CO2–carbonic acid system

of diverse coral reef environments. Although numerous studies have been successful in

monitoring reef metabolism both in the field and in the laboratory, physical and biological

forcings produce distinct conditions among environments. Due to the geographic isolation

and associated difficulties with measuring marine carbon chemistry in waters of the Papa-

hānaumokuākea Marine National Monument (PMNM), relatively few studies have described

the CO2–carbonic acid system and carbonate saturation state gradients of these waters. Yet,

PMNM remains one of the largest conservation areas in the world with extensive and diverse

coral reef ecosystems that could offer valuable insight into our current and future under-

standing about regional and global impacts of ocean acidification. In order to provide a broad

overview of latitudinal trends and features of the marine carbon system in PMNM waters,

continuous measurements for surface seawater fugacity of CO2 (fCO2) and pH were col-

lected during August 2011 and July 2012 cruises of the NOAA Ship Hi’ialakai. These
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measurements indicate that pH and fCO2 are three times more variable in nearshore mon-

ument waters relative to open ocean transect measurements. This variability can be observed

up to 50 km away from the nearest reef and is likely the result of the direct and significant

impact of coral reef metabolism on marine carbon chemistry around the islands and atolls.

The relationship between total alkalinity and dissolved inorganic carbon is consistent with

net calcification which creates an alkalinity sink throughout PMNMwaters. Additionally, our

measurements show clear latitudinal trends in fCO2, pH, and aragonite saturation state that

are influenced by environmental forcings, including temperature, wind speed, and residence

time of the water. Collectively, our results suggest that coral reefs located at the northern-

most atolls of PMNM may be the most susceptible to the adverse impacts of climate change

and ocean acidification.

Keywords Carbon � Ocean acidification � Coral reef � Papahānaumokuākea Marine

National Monument

1 Introduction

Papahānaumokuākea Marine National Monument (PMNM), encompassing the Northwest-

ern Hawaiian Islands (NWHI), is home to a diverse array of biological, ecological, and

cultural resources. The islands and coral reef atolls that make up this unique archipelago

comprise one of the largestmarine reserves in theworld, encompassing nearly 140,000 square

miles. In addition to serving as a biodiversity hotspot (DeMartini and Friedlander 2004; Kane

et al. 2013) and important habitat to protected species, such as the critically endangered

Hawaiian monk seal and threatened green sea turtle, the nearly uninhabited monument is in

relatively pristine condition and exhibits a predator-dominated ecosystem structure observed

in few places around the world (Friedlander and DeMartini 2002). Although conservation

efforts in the monument are ongoing, the risks associated with climate change, including

seawater acidification, sea level rise, and ocean warming, are considered threats to the health

and abundance of resources in this important marine ecosystem (Selkoe et al. 2008).

Relatively few studies describing the trends and dynamics of the CO2–carbonic acid

system in marine waters of the NWHI have been published (Sabine and Mackenzie 1995;

Thompson et al. 2014). Although Grigg (1982) quantified reef accretion rates as a function

of latitude by measuring the linear growth rate of corals, there have been no recent

publications describing the latitudinal gradients and features of the marine carbon system

along the archipelago. The goal of this study is to provide a current baseline understanding

of the CO2–carbonic acid system of the NWHI, identify latitudinal gradients and features,

and describe the processes and mechanisms that are responsible for these patterns. These

measurements may provide some insight into the resilience and/or vulnerability of reef

habitats in the monument waters undergoing the effects of climatic change, as well as

assess the potential biological impacts in response to ocean acidification (OA).

2 Climate Change and Ocean Acidification

Oceanic uptake of CO2 decreases pH and shifts the distribution of dissolved inorganic

carbon (DIC) species by increasing the partial pressure of carbon dioxide (pCO2) and

decreasing carbonate ðCO3
2�Þ ion concentration and aragonite saturation state (Xar), a

536 Aquat Geochem (2015) 21:535–553

123



process known as OA (Caldeira and Wickett 2003; Raven et al. 2005). Given the CO2

emission scenarios described by the IPCC, surface ocean pH is expected to decline by

0.07–0.33 pH units by the end of the twenty-first century (Bopp et al. 2013). The maximum

projected drop in pH is equivalent to an approximate 150 % increase in [H?] and 50 %

decrease in ½CO3
2�� (Orr et al. 2005). A decrease in ½CO3

2�� may decrease the rate at

which marine calcifying organisms form calcium carbonate shells and tests (CaCO3) (e.g.,

Broecker 1971; Kleypas et al. 1999a, b).

At the present time, CaCO3 saturation states are highest in shallow, warm tropical

waters and lowest in cold, high-latitude regions and at depth in the sea, reflecting the

influence of temperature and pressure on CaCO3 solubility (Morse and Mackenzie 1990;

Feely et al. 2003; Doney et al. 2009). However, the Xar of the global ocean is projected to

decline by 2.8 by the year 2100, which reflects a 17–35 % decrease in calcification since

preindustrial times. Additionally, the isolines of high Xar will shift equatorward, narrowing

the latitudinal boundaries for optimal reef growth (Kleypas et al. 1999a, b). Although some

species of corals may be resilient to certain environmental conditions that inhibit calcifi-

cation (Jokiel et al. 2008; Cohen and Holcomb 2009), seasonally extreme temperature, and

low-light conditions, combined with a decrease in Xar may put calcifying organisms in the

high-latitude regions as the first to experience the adverse impacts of OA (Grigg 1982;

Kleypas et al. 1999a, b; Andersson and Mackenzie 2004; Andersson et al. 2005; Orr et al.

2005).

The relative abundance of calcifying organisms such as bryozoans and crustose cor-

alline algae (CCA) increases toward the northwest in the Hawaiian Archipelago (Chave

1954; Schlanger and Konishi 1975; Agegian and Mackenzie 1989). These organisms

contain a higher percentage of Mg calcite, the most soluble phase of CaCO3. CCA are an

important component for the framework of coral reefs and facilitate the growth of larger

structures by acting like cement that glues the reef together. The increased susceptibility of

CCA–OA has been demonstrated in numerous studies (Anthony et al. 2008; Manzello et al.

2008; Fabricius et al. 2011), and a loss of these sensitive reef-building species could result

in a decline in the overall health of a coral reef.

3 Seasonal Trends in CO2–Carbonic Acid System Variability in the North
Pacific Subtropical Ocean

Oceanographic conditions and carbon chemistry trends in the North Pacific subtropical

region are well characterized (Takahashi et al. 2009; Nakano and Watanabe 2005; http://

www.socat.info/). Summer latitudinal (15�–35�N) gradients in sea surface temperature

(SST) are relatively small (24–28 �C), whereas winter temperatures (15–25 �C) decrease
rapidly with increasing latitude. Wind speed in the summer lacks a defined latitudinal

gradient, while during the winter, wind speed increases in the north. (http://www.socat.

info/). The average peak-to-peak DpCO2 (pCO2sw - pCO2air) is approximately 40 latm
and reflects the influence of temperature on CO2 solubility. The spatiotemporal distribution

of pH below 40�N is small (\0.03) (Nakano and Watanabe 2005). These seasonal and

geographic trends cause the northern ocean region to switch from a source of CO2 in the

summer to a CO2 sink in the winter (Takahashi et al. 2009).

At the Hawai’i Ocean Time-Series (HOT) station A Long-term Oligotrophic Habitat

Assessment (ALOHA), 100 km north of Oahu, pCO2 in the surface seawater is moni-

tored by time series observations. Since these waters are oligotrophic and average peak-
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to-peak SSTs are 23–27 �C, annual variations in surface pCO2 (350–390 latm), pH

(8.055–8.082), and total alkalinity (TA) (2305–2335 leq kg-1) are relatively small.

Similarly, daily temperature only varies by about ±0.07 �C (Church et al. 2009), pro-

ducing a diel pCO2 signal of ±1.5 ppm (Karl 1999; Takahashi et al. 2002; Sarmiento

and Gruber 2006; Dore et al. 2003; Sutton et al. 2010; http://hahana.soest.hawaii.edu/hot/

hot-dogs/bseries.html).

Although time series data collected at station ALOHA reveal that open ocean waters

surrounding the Hawaiian Islands currently act as a net sink for CO2 (Dore 2009), mon-

itoring studies have observed concurrent increases in atmospheric CO2, surface seawater

pCO2, and DIC at station ALOHA (Winn et al. 1998; Takahashi et al. 2006). The uptake of

anthropogenic CO2 is likely the cause for both long-term increases in DIC and decreases in

CaCO3 saturation state and pH (-0.02 units per decade) (Dore et al. 2003). Over time, this

shift in the distribution of DIC species will decrease the buffering capacity and the ability

of the ocean to absorb anthropogenic CO2 (Revelle and Suess 1957).

4 Coral Reef Metabolism in Coastal Environments

Shallow-water environments play an important role in the global carbon cycle (Andersson

and Mackenzie 2004; Andersson et al. 2005) and display complex carbon system

dynamics, particularly in tropical and subtropical coral reef ecosystems. Because of the

great physical and biological heterogeneity of these environments (Gattuso et al. 1996;

Lantz et al. 2013), spatial and temporal variations in the parameters of the CO2–carbonic

acid system are large and often difficult to assess accurately over time (Drupp et al. 2013).

In addition to physical and environmental forcings, organic and inorganic metabolic

processes significantly alter the chemical properties of the water. Photosynthesis and

respiration and calcification and dissolution are opposing forces for changes in pCO2

(Smith and Key 1975) and other components of the carbonate system (Morse and

Mackenzie 1990; Gattuso et al. 1993, 1996; Yates and Halley 2006). Thus, determination

of the physical and biological forcings driving changes is often difficult.

The effect of increased marine productivity near islands, or downstream from an island,

is termed the ‘island mass effect’ (Doty and Oguri 1956). This effect refers to an

upwelling-induced, biological enhancement around oceanic islands (Barton 2001). The

topographic disturbance of an island assists in the formation of eddies downstream. These

eddies can enhance the supply of nutrients into the euphotic zone and increase surface

seawater productivity, stimulating higher biological carbon uptake and strengthening the

flux of CO2 into the ocean (Caldeira et al. 2002; Bakker et al. 2007).

Lack of freshwater, nutrient and suspended solid inputs by rivers, and human discharge

make the NWHI an ideal location to study the natural physical, biological, and chemical

forcings that influence variability in the CO2–carbonic acid system across the archipelago.

Furthermore, studies describing this chemical system in the NWHI are relatively scarce,

despite the critical need to characterize such environments for future time series obser-

vations tracking the long-term impacts of OA. In order to understand the processes that

influence the marine carbon system and quantify the magnitude of variability in carbon

parameters both spatially and temporally within coral reef ecosystems and adjacent waters

of the NWHI, continuous high-resolution measurements of surface seawater fCO2 and pH

were made during oceanographic cruises in the summer seasons of 2011 and 2012 around

the islands and atolls of the NWHI.
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5 Description of Northwestern Hawaiian Islands Area

PMNM (Fig. 1) is comprised of a number of islands and coral reef atolls in a relatively

pristine environment undisturbed by local anthropogenic activity (Desch et al. 2009). The

NWHI chain extends from the island of Nihoa (23�N, 161�W) in the south to Kure atoll

(28�N, 178�W) in the north. Due to the large expanse of the Monument, various natural

factors play a role in influencing the structure of NWHI reef ecosystems. While SSTs at

the southern end of the chain vary annually by 4 �C (*23–27 �C), SSTs at the northern

end may vary annually by up to 10 �C (18–29 �C) (Friedlander et al. 2005; Desch et al.

2009). Surface currents in the NWHI are highly variable in both speed and direction

(Firing et al. 2006). In the mean, surface currents at the southern end of the chain flow

eastward, while the northern atolls experience predominantly southwestward flow.

Winter storms in the North Pacific also affect the spatial distribution of benthic organ-

isms, as some corals and/or algae are sensitive to high-wave-energy events generated by

these storms (Grigg et al. 2008; Desch et al. 2009; Rooney et al. 2008). Additionally,

internal tidal-driven waves have been observed along the Hawaiian Ridge and have the

potential to cause turbulent mixing near island boundaries, bringing up waters that have

different chemical characteristics than those of the overlying surface seawaters (Rudnick

et al. 2003). Collectively, these oceanographic influences can affect the formation and

distribution of coral reef communities in the NWHI (Polovina et al. 2001; Rudnick et al.

2003; Firing et al. 2006; Friedlander et al. 2005; Grigg et al. 2008; Rooney et al. 2008;

Desch et al. 2009).

Fig. 1 Map with boundaries of the PMNM (NOAA PMNM) and track of ship for August 2011 (black) and
July 2012 (red) research cruises. Sections (20�–30�N) of WOCE legs P14, P15, and P16 are given in white
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6 Data Collected and Quality Control

Continuous underway measurements of oceanic fCO2, atmospheric fCO2, pH, salinity,

temperature, and oxygen were collected in surface seawaters of PMNM during August

2011 (7/24–8/21) and July 2012 (7/5–7/13) (see Fig. 1 for ship track). Meteorological data

including wind speed and direction were recorded by the ship’s instruments and are

available on the National Oceanographic Data Center (NODC) website (http://www.nodc.

noaa.gov/access/ accession numbers: 0075826, 0104266). Because the various instruments

were sampled at different time intervals, the data were binned into the approximate 2-min

sampling interval used by the underway system. These data include measurements in

offshore waters throughout the monument, as well as shallow waters surrounding the

islands and atolls.

Atmospheric and surface seawater fCO2 were collected with a General Oceanics Model

8050 underway pCO2 system with a LI-COR, Inc., 7000 Infrared Gas (CO2/H2O) Analyzer

(IRGA) located in the wet lab of the NOAA Ship Hi’ialakai. The instrument sampled air

collected from the bridge and air equilibrated with seawater. Air samples were drawn in

from both sides of the bridge where a sensor located 10 m above sea level analyzed wind

speed and direction and used air from the upwind side least contaminated by the ship’s

stack gases. Seawater samples were collected approximately every 2 min from an intake

port 5 m below the ship’s waterline. These samples were collected with a ratio of 60

equilibrator samples to six atmospheric boundary layer samples (Pierrot et al. 2009). In

order to calibrate the IRGA, the underway pCO2 system measures four CO2 standard gases

every 2.5–3 h, and the differences between the certified values and the measured values are

used to correct seawater and atmospheric CO2 measurements. Offsets between certified and

measured values for July 2012 indicate that on average the system was accurate to within

±2 latm.

In order to calculate sea surface fCO2 using mixing ratios determined by the IRGA,

temperature and pressure inside the equilibrator, as well as SST, are required. Atmospheric

pressure is also required to convert mixing ratios to partial pressures. Pressure inside the

infrared analyzer is used to correct the signal for pressure effects. Temperature (within

±0.01 �C) and pressures (within ±0.2 mbars) were measured in order to achieve an

accuracy of 0.2 latm for atmospheric measurements and 2 latm for surface seawater

measurements (Dickson et al. 2007; Pierrot et al. 2009).

Measurements of SST were made using a digital oceanographic thermometer, Sea-Bird

Electronic (SBE) 38, which is located at the intake port for the pCO2 system. Sea surface

salinity was measured and recorded by a SBE 21, and dissolved oxygen concentrations were

determined using an Aanderra Optode 4330F, corrected for the influences of temperature

and salinity. Both the salinity and oxygen sensors were located in the ship’s wet lab.

pH was measured using a Honeywell Durafet (see Martz et al. 2010 for performance

evaluation) pH electrode with a 2-min sampling interval. Duplicate water samples were

collected daily for electrode calibration. Sampleswere collected in the ship’swet lab from the

same inflow pipe used to measure CO2 and kept in 250-ml and 500-ml borosilicate glass

bottles, which were allowed to overflow twice. Samples were then poisoned with 100–200 ll
of saturated mercuric chloride (HgCl2) solution to prevent further biological activity, and

sealed with Apiezon grease. Rubber bands were affixed to ensure a tight seal. The samples

were analyzed using spectrophotometric techniques (Clayton and Byrne 1993) and purified

m-cresol purple dye (Liu et al. 2011) at 25 �C.ALambdaEZ210 spectrophotometer equipped

with a temperature-controlled sample chamber was used for these analyses.
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To test the accuracy of our laboratory measurements, certified reference materials

(CRM) of a known TA, salinity, and DIC (Dickson et al. 2003) were used. Although CRMs

are not available for pH, we calculated pH in CO2 sys using the certified TA and DIC

values (Pierrot et al. 2006). In order to limit CO2 exchange, spectrophotometric pH was

measured immediately after opening each bottle. Based on the offset between the calcu-

lated pH from the CRMs and our measured pH, the average difference was 0.006 pH unit

with a standard deviation (SD) of 0.003 pH unit (Table S1). Thirty-three sets of duplicates

were also analyzed for reproducibility and indicate the average difference between samples

was 0.0002 pH unit (SD = 0.007) (Figure S1) (Dickson et al. 2007).

A total of 17 discrete samples were used for electrode calibration during July 2012. An

average standard electrode potential (E0) was calculated from spectrophotometric pH

measurements on discrete samples corrected to in situ temperature. The average E0 for July

was -0.43485. This value, along with the voltage output from the electrode, was then

applied in the calculation for pH over the entire transect.

7 Results and Discussion

7.1 Coral Reef Metabolism and the Island Mass Effect

Net ecosystem calcification (NEC) over most coral reef environments is positive (i.e., NEC

[0), while net organic production (NP) is near zero (Falter et al. 2011; Shamberger et al.

2011; Lantz et al. 2013). The resulting combination for net ecosystem production (NEP)

causes coral reef environments to act as net sources of CO2 to the atmosphere (Suzuki and

Kawahata 2003). High-frequency carbon measurements collected during our study display

more variability and consistently higher fCO2 and lower pH values in surface seawaters

than nearby transects in the open ocean, indicating the influence of coral reef metabolism

and suggesting net calcification (i.e., net source of CO2) over these reefs (Suzuki and

Kawahata 1999; Borges et al. 2005; Fagan and Mackenzie 2007; Hofmann et al. 2011;

Drupp et al. 2011, 2013). In order to describe quantitatively the magnitude of variability

within our transects, we compared our underway fCO2 and pH to the underway pCO2 and

discrete pH data collected on the World Ocean Circulation Experiment (WOCE) transects

located both west and east of the NWHI. The WOCE lines used for comparison here are

P14 conducted in November–December 2007 (Fukasawa et al. 2008) and P16 conducted in

February–March 2006 (Feely et al. 2008) (see Fig. 1).

7.1.1 August 2011 Transects

Although pH measurements were not made during the August 2011 cruise, these transects

provided the greatest opportunity to examine latitudinal gradients in fCO2near the atolls.On the

first transect traveling north, the surface seawaters of Nihoa, French Frigate Shoals (FFS), and

Pearl and Hermes (P&H) were sampled. Traveling back south toward the main Hawaiian

Islands (MHI), the Lisianski, Laysan, and Gardner Pinnacles surface seawaters was sampled.

The fCO2 data collected during the August 2011 transects clearly show an increase in the

magnitude and variability of fCO2 in shallow surface seawaters (denotedby the red circles) near

the islands and atolls (Figs. 2, S6), while at further distances (denoted by the blue and green

circles), lower values and less variability in fCO2 is observed. The coefficient of variation (CV)

was calculated for WOCE P16 (0.012), WOCE P14 (0.017), and NWHI August 2011 (0.034)

and indicates two to three times higher variability in the NWHI measurements.
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Whereas fCO2 is relatively constant in surface seawaters of the WOCE transects, much

more variability exists in our measurements within the monument waters, even while

transiting between islands and at distances[50 km from the nearest reef (e.g., between

26�N and 28�N). Although this variability could be explained by turbulent mixing induced

by eddies (Lumpkin 1998; Calil et al. 2008) or internal wave and tidal action along the

island slope (Garrett and Munk 1979; Rudnick et al. 2003), surface seawaters would need

to mix with waters at least 300 m below the surface (assuming a 50 % mixing ratio) to

produce a 20–60 ppm fCO2 increase in the open ocean near our transects. CTD profiles

collected during our NWHI research cruises show that temperature and salinity at 300 m

depth are generally lower by *14 �C and 1.0 ppt, respectively, than in the surface sea-

water. These changes in salinity and temperature do not coincide with the fCO2 increases

observed on the NWHI transect. The increase in fCO2 variability observed in our mea-

surements throughout Monument waters therefore is probably primarily a result of pho-

tosynthesis/respiration and calcification/dissolution that occurs over and around the atolls

within Papahānaumokuākea. The variability observed in our fCO2 and pH measurements

collected farther away from the islands is hypothesized to be a result of water parcels

moving away from the reefs and not fully mixing with open ocean water.

There also appears to be an underlying trend in fCO2 during the August 2011 cruises, with

fCO2 increasingwith latitudenear the atolls.Most coral reefs are balanced in termsof the uptake

or contribution of DIC for photosynthesis and respiration (Falter et al. 2011; Shamberger et al.

2011;Lantz et al. 2013), respectively, andwecan assume that organicmetabolism in reefs of the

NWHI are also balanced (Falter et al. 2011), since there is no land-derived inputs or evidence of

upwelling in the northern region during the time of our study that would drive excess meta-

bolism. If the latitudinal fCO2 increase is not driven by net respiration, and net calcification
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produces CO2, our 2011 data suggest that the northern reefs could be calcifying at a higher rate

than reefs located at the southern end of the chain. Grigg (1982) found that net reef accretion of

corals in the NWHI decreases with increasing latitude due to high-intensity storm events in the

north, cooler water temperatures, less light availability, and subsidence of the Pacific plate.

Therefore, other possible explanations for this trend were explored.

We have identified two main environmental factors that may contribute to the latitudinal

increase in fCO2 during August 2011. First, there is a latitudinal increase in temperature

(Figure S2). Normalizing fCO2 with respect to temperature according to Takahashi et al.

(1993, 2002) removes the effect of temperature on fCO2 for any given water sample

(Fig. 3). Independent of temperature, fCO2 at P&H is still *20 latm higher than fCO2

data measured in waters at lower latitudes indicating that temperature alone cannot account

for all of the variability observed. Second, trade wind intensity and residence time of reef

water also appear to play an important role in latitudinal carbon gradients.

The increase in fCO2 of reef-associated surface seawaters over that of the open ocean

during the cruise of August 2011 was coincident with a latitudinal decrease in trade wind

intensity (Fig. 4) and a slight decrease in the flux of CO2 to the atmosphere (Figure S5).

Decreases in wind speed suppress air–sea exchange (Wanninkhof 1992; Fagan and

Mackenzie 2007) and could decrease surface current velocities, which in turn may reduce

the flushing of reef ecosystems and increase the residence time of waters within the lagoon.

Additionally, islands located at the southern end of the chain (e.g., Nihoa and Gardner) and

open atolls such as FFS and Maro Reef, are more exposed to flushing with the open ocean.

The semi-enclosed northern atolls, including P&H and Midway, experience limited

exchange between the lagoon and open ocean waters. Therefore, semi-enclosed bays and

lagoons typically have longer residence times than fringing reef systems (Delesalle and

Sournia 1992; Lowe et al. 2009), which contributes to greater magnitudes of change in
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Fig. 3 Underway surface seawater-normalized fCO2 (at 25 �C) during August 2011. The colors represent
distance (km) from the nearest island or atoll
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carbon parameters (Shamberger et al. 2011) and increases fCO2 through the processes of

calcification and organic matter decomposition (Gattuso et al. 1996; Suzuki and Kawahata

1999; Kayanne et al. 2005).

7.1.2 July 2012 Transect

Both fCO2 and pH data for surface seawaters were collected during the July 2012 cruise.

July measurements indicated an increase in the variability (CV = 0.031) and magnitude of

fCO2 and pH in both nearshore and offshore waters of reef ecosystems (Fig. 5), relative to

the WOCE transects. pH declined markedly (-0.06) in nearshore waters around FFS and

also displayed a decreasing trend with increasing latitude. The latitudinal gradients in

fCO2, wind speed (Fig. 4) and CO2 flux (Figure S5) are weak, in part, because only FFS

and P&H were sampled. This increases our confidence that while biological processes are

the dominant control on island-to-open ocean carbon gradients, latitudinal trends in wind

speed and reef water residence time indirectly contribute to the build-up (or lack thereof)

of CO2.

7.2 TA/DIC Relationship

Because both pH and pCO2 were measured during the July cruise, we used these data to

examine the latitudinal gradients in the TA/DIC ratio as well as in Xar. Although TA and

DIC can be computed from the fCO2–pH pair, there are potentially significant errors

associated with this calculation (Millero 2007). These errors are attributed to the strong
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covariance between pH and fCO2 (Dickson and Riley 1978; Gray et al. 2011). The

uncertainty for our fCO2 and our spectrophotometric pH calibration measurements was

±2 latm and ±0.003 pH units, respectively. This combination of uncertainties can pro-

duce inaccuracies of 15–30 lmol/kg for DIC and alkalinity, respectively. However, since

the calculation of both alkalinity and DIC is similarly affected by the covariance of pH and

fCO2, considerably greater confidence can be attributed to the TA/DIC ratio. In fact,

doubling the uncertainties in both fCO2 and pH described above yields a potential error of

only 0.2 % in the ratio of these parameters.

The TA/DIC ratios computed from our underway data varied between 1.144 and 1.160

(Fig. 6), with the lowest values observed at FFS. The TA/DIC at station ALOHA during

summer months, as well as the ratios on the available WOCE lines east and west of the

island, are generally higher than the ratios we observed (Table 1). The relatively low TA/

DIC ratios observed on the July transect are consistent with the higher fCO2 and lower pH

within the archipelago (Fig. 5), and are produced by TA decreasing at a higher rate than

DIC. This pattern is consistent with net calcification that intensifies near the reefs and

creates an alkalinity sink in the coastal waters surrounding the NWHI. A net increase in

nDIC in the waters surrounding the NWHI is unlikely given that it would require net

heterotrophy or net air–sea invasion of CO2. Given the late summer timing of the NWHI

surveys, these scenarios are implausible.

Plotting changes in the TA relative to DIC can provide some insight into the relative

impact of organic photosynthesis/respiration and CaCO3 calcification/dissolution on the

marine carbon system (Moulin et al. 1985; Morse and Mackenzie 1990; Andersson and

Gledhill 2013). Typical coral reef environments exhibit a slope of 0.95 when changes in

TA are plotted versus changes in DIC (Andersson and Gledhill 2013; Andersson et al.
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2014). However, studies have reported slopes ranging from 0.26 to 2.02 (Suzuki and

Kawahata 2003; Lantz et al. 2013). A scatterplot of nTA versus nDIC for all of the data

collected within the archipelago in July displays a remarkably consistent relationship with

a least squares slope of 1.17 (Fig. 7). At the temperatures and salinities observed during the

July transect, a slope of 1.22 is expected if the ocean remains in equilibrium with the

atmosphere. The slightly lower slope observed through the NWHI suggests that the

reaction pathway of the carbon system within the surface seawaters of the archipelago is

predominantly governed by calcification and dissolution.

Table 1 Temperature, average normalized alkalinity, average normalized DIC, and average nTA/nDIC for
WOCE P14 (1993, 2007), WOCE P15 (1994), WOCE P16 (1997, 2006), and this NWHI study (2012)

Program Sample period Temperature
range

Average
nTA

Average
nDIC

Average
nTA/nDIC

WOCE P14 1993 July 20.1–28.1 2298.0 1958 1.1736

WOCE P15 1994 October 21.3–27.8 2302.3 1962 1.1734

WOCE P16 1997 November 24.2–25.8 2301.5 1974.8 1.1654

WOCE P16 2006 March 2006 19.9–23.2 2302.2 1979.6 1.1630

WOCE P14 2007 October–November 2007 25.6–26.9 2300.6 1962 1.1726

Average 2300.9 1967.3 1.1696

This study July 2012 25.1–27.3 2227.1 1926.3 1.1562

Difference -73.8 -41.0 1.80
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The net effect of the NWHI reef metabolism on the waters of the North Pacific Sub-

tropical Gyre (NPSG) can be illustrated by comparing the average nTA and nDIC values for

WOCE P-14 and P-16 (2300.9 and 1967.3, respectively) to the overall average for the

NWHI (2227.1 and 1926.3, respectively) (Table 1). Assuming the WOCE data are repre-

sentative of NPSG water unaffected by the Hawaiian Archipelago, the overall difference

reveals a nTA/nDIC slope of approximately 1.80 which is close to the theoretical 2.00 value

expected solely from net calcification without exchange with the overlying atmosphere.

7.3 Aragonite Saturation

As expected, Xar showed the greatest range within the waters surrounding FFS, decreasing

in shallow water near the reef due to calcification and increasing further away from the

atoll as a result of dissolution and likely some mixing with open ocean water (Fig. 8). The

decrease in pH with latitude also forces a latitudinal decrease in Xar. Previous studies have

reported average near-surface (*20 m depth) Xar of 4.80 (Sabine 1992; Sabine and

Mackenzie 1995) and 3.61 (Thompson et al. 2014). Here, we report aragonite saturation

levels ranging from 3.03 to 3.82 (mean = 3.44), with the lowest values measured in

nearshore waters around FFS and in the northern end of the NWHI chain. Although our

measurements provide greater coverage and data closer to shore, an overall decrease (1.36)

in the mean value of Xar over the past 20 years may be an indication of long-term change

as a consequence of OA.

Laboratory-derived studies have found that the calcification rate of corals decreases as

carbonate saturation states decline (Gattuso et al. 1998), and previous research has shown

that most coral reef communities exist in waters with Xar[ 3.3 (Kleypas et al. 1999a, b).

From a thermodynamic perspective, organisms expend more energy to calcify at lower
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saturation states, and at undersaturation, dissolution of CaCO3 may exceed precipitation

(Andersson et al. 2011; Mackenzie and Andersson 2013). A recent study by Shamberger

et al. (2014) found that coral cover, diversity, and richness were maintained in waters with

Xar\ 2.7 at Rock Island, Palau. While this observation may have hopeful implications for

some reefs in an OA world, northern reefs in the NWHI experience a combination of

growth-inhibiting environmental factors (e.g., high temperature variability, strong storm

events, less light availability) (Grigg 1982), in addition to low aragonite saturation states.

Although the July 2012 transect only extended to P&H, a linear regression of the data

yielded -0.054 Xar deg
-1 �N, which would mean that reefs at Midway and Kure may

experience average aragonite saturation states of 3.01 and 3.00, and chronically lower than

those at P&H. The reef ecosystems at Midway and Kure may not have the capacity to

maintain their growth rates under current or future OA conditions.

8 Conclusions

The observations presented in this study suggest that biological processes occurring within

the coral reef ecosystems that comprise the NWHI significantly influence the CO2–car-

bonic acid system in the surrounding coastal and open ocean environment. Our data

demonstrate that considerably more variability in the seawater carbon system exists in and

around the archipelago than in the surrounding open ocean. We interpret this spatial

variability as being a consequence of the mixing of waters directly impacted by the coral

reef ecosystem with open ocean waters being advected generally east to west across the

NPSG. Our data also show that the impact of reef metabolism is not restricted to nearshore
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waters within the archipelago, but that the impact can be observed at distances up to 50 km

from the nearest shallow water environments. In addition, our observations suggest that

metabolic processes generate a significant decrease in the ratio of alkalinity to DIC relative

to the open ocean waters both east and west of the archipelago. The change in this ratio is

consistent with net calcification that decreases both alkalinity and DIC. These data taken

together suggest that the reef ecosystems within the Pahapahānaumokuākea Marine

National Monument have substantial impact on the inorganic carbon system in relatively

vast regions (at least 10s of kilometers) around the archipelago.

Our data also show latitudinal variability within monument waters. There appeared to be

gradients in fCO2 and pH that can be linked to latitudinal gradients in environmental factors,

such as temperature, wind speed, and assumed atoll residence times that are produced, in

part, by the configuration of the islands geomorphology. In addition, seawater aragonite

saturation state values calculated from fCO2 and pH during July 2012 reveal a decrease in

nearshore waters as well as a latitudinal decrease in the surrounding open ocean. In addition

to the lower Xar values observed in this study, coral reefs of the northern atolls are subject to

conditions less favorable for reef accretion due to higher wave energy during the winters,

extreme seasonal variability in water temperatures, and lower solar insolation (Grigg 1982;

Andersson and Mackenzie 2004; Andersson et al. 2005; Orr et al. 2005; Rooney et al. 2008;

Doney et al. 2009; Gove et al. 2013), relative to the southern reefs. Although we do not have

winter carbon data in the NWHI, the environmental conditions of the North Pacific sub-

tropical ocean would likely drive Xar approximately one unit lower than the summer values

observed in this study. Furthermore, the abundance of high-Mg-calcite-secreting organisms

(i.e., coralline algae and bryozoa) increases in the northern Hawaiian waters (Chave 1954;

Schlanger and Konishi 1975). These mineral compositions are more soluble than those of

calcite and even aragonite. At the lower carbonate saturation states of northern waters, as

anthropogenic CO2 is added to surface ocean water, Mg calcite mineral phases are probably

most at risk of dissolution, relative to organisms with primarily calcite and aragonite

mineral compositions (Bischoff et al. 1987; Morse et al. 2006; Andersson et al. 2008;

Manzello et al. 2008). Thus, the coral reef ecosystems of these northern atolls may be most

susceptible to the adverse effects of climate change and OA. Additional surveying and

monitoring of underway fCO2 and pH in the Monument waters may help to quantify net

calcification rates across the archipelago, measure the long-term effects of OA, and assist in

the development of effective and informed management plans.
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