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Abstract We compare the canonical treatment of calcite’s dissolution rate from the

literature in a closed system, particle batch reactor, with the alternative approach suggested

by Truesdale (Aquat Geochem, 2015). We show that the decay of rate over time can be

understood in terms of the evolution and distribution of reactive sites on the surface of

these particles. We also emphasize that interpretation of observed rates must not exclude

the fundamental role of crystal defects, whose importance is already implicitly reflected in

the common form of rate laws in geochemistry. The empirical behavior of overall rate in

closed systems, such as those described by Truesdale, may thus reflect relationships

between defect centers and the generation of steps over the calcite surface (previously

documented for silicates), such that below a critical free energy limit, there is insufficient

driving force to open hollow cores and thus a loss of reaction mechanism. Dissolution in

this very-near-equilibrium regime will be dependent on the distribution of extant steps and

the energetics of new kink site nucleation. However, these sensitivities are complicated in

the case of particle systems by grain boundaries, edges, corners, and other terminations.

Such discontinuities constitute a defect class whose overall kinetic importance will be

strongly tied to particle diameter and which can act independently of the internal strain

field imposed by screw and edge dislocations.
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1 Introduction

We welcome the opportunity to comment on Victor Truesdale’s paper, ‘‘Evidence and

potential implications of exponential tails to concentration versus time plots for the batch

dissolution of calcite’’ (Truesdale 2015). There are two major issues that warrant
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discussion here: (1) how rate ‘‘constants’’ are manipulated to describe overall reaction

rates, and (2) the relationships of particle dissolution rate to surface area, defect distri-

butions, and surface reaction mechanism. Before discussing these points, we provide a

brief review of the paper’s major points. Truesdale introduces a dissolution model (the

‘‘shrinking object,’’ SO hereafter), which, he argues, is relevant to the dissolution of calcite

under various conditions, as well as other minerals. In support of this model, he also

presents the results of batch dissolution experiments (closed, stirred system) in which

powdered calcite is added to solutions containing TRIS or NaOH buffer. Analytical results

consist of dissolved calcium concentrations that are followed as a function of time (pH

stability was also verified during solution sampling). He computes dissolution rates from

the change in dissolved calcium concentration normalized to surface area (A) and assumes

that there is no significant change in this term over the course of a given experiment

(although A is given as ‘‘actual surface area of solid’’ in his Table 1, it is not clear from his

text how this value was obtained).

According to the SO model, ‘‘ideal’’ reactions should proceed with simple, strict first-

order dependencies, i.e., on surface area, in the case of the forward reaction step (disso-

lution), and on the product of surface area and a single concentration term in the case of the

backward reaction (growth or precipitation). These assumptions, i.e., first-order growth rate

dependence on concentrations of a single component, a surface reaction that proceeds

mechanistically as written, with participation of the solid only as a fixed, unit surface area

term, yield a solution of the resulting ODE, that is, to no great surprise, a simple expo-

nential function of time:

cðtÞ ¼ csat 1 � exp �kb

A

V
t

� �� �

¼ csat 1 � exp �kf
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csat
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V
t

� �� �

where A
V

is the surface area per unit solution volume, kf and kb are the forward and

backward reaction rate constants, respectively, and csat is the equilibrium concentration of

the single component (apparently determined separately as a function of pH). They also

predict a simple linear dependency of the net rate on the concentration of the single

component.

However, instead of this simple linear dependency, the observed concentration data

show two apparent segments: an initial segment characterized by rapid dissolution

ðt�OðN1ÞminÞ, followed by a decaying, ‘‘long tail’’ ðt�OðN3ÞminÞ, over which the rate

ðd½Ca2þ�
dt

Þ approaches zero, and concentration converges on a fixed value. He computes initial

rates using the slopes from the first segment, but argues that the long decay of rate over

time is significant: if we understand his argument correctly, the departure of the observed

rate from its expected congruence with this first-order SO model indicates a ‘‘complex’’

and ‘‘non-ideal’’ reaction. He further argues that despite the explicit first-order assump-

tions, ‘‘readers should avoid interpreting this as a first-order reaction, as it would have been

had the kinetic system been a simple one.’’ Instead, he introduces another solution, a

superposition of exponential terms parameterized by two other ‘‘rate constants,’’

c ¼ Að1 � expð�k1tÞÞ þ Bð1 � expð�k2tÞÞ ð1Þ

which are used to fit both the early and late reaction segments, accommodating the later

rates as a straight line when these are plotted as a function of lnð1 � c=csatÞ. Here,
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ceq ¼ Aþ B, and the new rate constants, as used here, presumably have subsumed the A
V

terms as well.

2 Discussion

First, it has been understood for many years that the kinetics of calcite dissolution are

complex, and that the value of ‘‘rate constants’’ depends on the origin and nature of the

mineral, e.g., precipitated powder versus Iceland spar crystal rates (Rickard and Sjöberg

1983; Morse and Arvidson 2002). Although we are as yet unable to easily resolve the

relationship between the distribution of the reaction rate over the mineral surface and

measured changes in solution, there is new recognition of the sources of this problem and

exploration of approach strategies (Fischer et al. 2012; Luttge et al. 2013; Fischer et al.

2014). The well-known, general problem of rate versus surface area is significantly

enhanced in the case of particles. In addition to the interactions between solution com-

position and site and defect distributions, rate statistics in particle systems will be sensitive

to contributions from crystal edges and similar features [grain and twin boundaries, cor-

ners, etc. (Schott et al. 1989; Arvidson et al. 2003; Fischer et al. 2012)], and thus a

function of particle diameter. It thus seems likely that the assumption of constancy in the

surface term is unwarranted, as the distribution of the surface reactivity changes as dis-

solution continues.

Second, in discussing the canonical rate equation used for calcite dissolution (his eq. 1),

Truesdale mentions that such an approach treats the reaction in a piecewise fashion, in

which the resulting ‘‘reaction order(s)’’ assume purely empirical status. In the case of

complex dissolution reactions, we agree that the attempt to unify rates under a global ‘‘rate

law,’’ parameterized by empirical terms, although otherwise convenient from the stand-

point of simple evaluation, may not otherwise yield much insight and in fact may conjoin

rates that are quite distinct mechanistically. However, ignorance of reaction mechanism

does not allow one to simply discard terms involved in its parameterization. To be suffi-

ciently clear, we detour here slightly to review common rate equations used for calcite

growth and dissolution in the context of detailed balancing and microscopic reversibility

(Tolman 1925). As discussed elsewhere (Lasaga 1998), we can derive equations for dis-

solution and growth through detailed balancing, assuming for the sake of simplicity that

concentrations are sufficiently small to warrant the approximation of single ion ci � 1. We

will also neglect, for now, the complex dependence of dissolution and growth reactions on

surface area (A, hereafter assumed implicitly to be per unit volume solution). Similar to the

treatment in Arvidson and Morse (2014), let us assume as a thought experiment that the

concentration dependencies in the appearance of calcite during growth [r] versus its

consumption [p] via dissolution for the reaction

CaCO3 � Ca2þ þ CO2�
3 ð2Þ

can be represented as

½p�0 ¼ A kþ

½r�0 ¼ A k� ½Ca2þ�n½CO2�
3 �n

where n is the reaction order that, although yet to be determined, is assumed to be the same

with respect to both lattice species. At equilibrium, the net reaction must be zero,
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½p�0 � ½r�0 ¼ A kþ � k� ½Ca2þ�n½CO2�
3 �n

� �
¼ 0

kþ ¼ k�K
n

where K is the equilibrium constant for Eq. (2). For arbitrary, non-equilibrium conditions

where the net rate ½p�0 � ½r�0 6¼ 0, we can substitute Xn ¼ ½Ca2þ�½CO2�
3 �=K

� �n
to give

expressions for dissolution and growth in terms of X (as opposed to time, as in Eq. 1),

respectively:

rd ¼ k� AKn 1 � Xnð Þ
rg ¼ k� AKn Xn � 1ð Þ

ð3Þ

Equations similar to Eq. (3) appear in previous treatments of calcite dissolution and growth

kinetics with differences in the observed value of n (Reddy and Nancollas 1971; Sjöberg

1976). The difference between Eq. (3) and that most commonly used in geochemistry to

describe the rate of carbonate mineral dissolution (Morse and Arvidson 2002),

r ¼ k A 1 � Xð Þn ð4Þ

is in terms of the action of the reaction order, n. This critical point is discussed in Morse

and Arvidson (2002), Arvidson and Morse (2014), and illustrated by expanding X ¼
eDG=RT in a truncated Taylor series:

Fig. 1 Schematic description of the dependence of rate on free energy, using the distinction between a near-
equilibrium linear region and a far-from-equilibrium dissolution plateau (Lasaga and Luttge 2001). The
former is controlled by the movement of extant steps, in which there is inadequate undersaturation
ðjDGrj\jGcritjÞ to initiate the development of hollow cores at screw dislocation centers; for the plateau
ðjDGrj[ jGcritjÞ, the continual generation of new steps at the margins of defect-generated etch pits ensures
layer-by-layer removal. Data are from albite dissolution, figure adapted from Arvidson and Luttge (2010)
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expðDG=RTÞ ¼ 1 þ DG
RT

þ 1

2!

DG
RT

� �2

þ � � � � 1 þ DG
RT

Close to equilibrium, the dissolution rate given by Eq. (3) is linear with respect to DG
(which is negative with respect to reaction 2):

r ¼ A k 1 � Xnð Þ ¼ �A k n
DG
RT

In contrast, the rate expressed by Eq. (4) remains a nonlinear power function,

r ¼ A k 1 � Xð Þn¼ A k
jDGj
RT

� �n

Thus, even close to equilibrium, the common expression for calcite dissolution (Eq. 4)

remains nonlinear in DG, a distinction that should not be minimized. In the complementary

expression for growth,

Fig. 2 Parabolic rate law for dissolution, r ¼ Akð1 � XÞn. Top model rate versus DG=RT, with n ¼ 2,
showing far-from-equilibrium dissolution plateau (red line) and near-equilibrium linear region (magenta). It
is possible that the intervening region may not reflect steady-state conditions (cf. Fig. 1), depending on the
statistical distribution of reaction mechanism over the particle population. Rates are expressed in arbitrary
units, see text for discussion. Bottom computed reaction path of above dataset in terms of lnð1 � c

ceq
Þ versus

reaction time. Note that sluggish reaction progress in the near-equilibrium region requires increasing
reaction times (per mole dissolved, arbitrary timescale), consistent with Truesdale’s observations (his fig. 4)
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r ¼ A kðX� 1Þn

a similar nonlinear dependence was derived in the detailed treatment of crystal growth by

Burton et al. (1951) and related to the fundamental role of screw dislocations (see also

Nielsen 1981, 1984). The appearance of supersaturation raised to a power (typically n� 2)

reflects the role of free energy as a driver for the diffusion of terrace ions toward step

edges, as well as a control of the critical radius of curvature of the advancing spiral step

(Arvidson and Morse 2014). A similar argument, in which screw dislocations cannot be

regarded as equilibrium defects, can be made for crystal dissolution as well (see Lasaga

1998; Morse et al. 2007). Moreover, a detailed treatment of the relationship between DG
and dissolution rate for surface-limited reactions (Lasaga and Luttge 2001) demonstrates

two regions to exist in terms of free energy dependence: a linear, near-equilibrium region

in which dissolution is dependent on extant steps, and a far-from-equilibrium dissolution

plateau (see, for example, albite dissolution in Fig. 1), whose boundary is a function of the

value of DGcrit, at which point there is sufficient free energy to permit hollow cores to form

(Frank 1951). The bifurcation of rate with respect to these two distinct, surface reaction

mechanisms is discussed in detail with respect to silicate reactions (see Luttge 2006; Beig

and Luttge 2006).

With these thoughts in mind, we may consider the possibility that the persistence of the

observed ‘‘long tails’’ described by Truesdale and the apparent transition between reactive

regimes may be related to this DGcrit region. In calcite, the near-equilibrium region may be

relatively small; nevertheless, as the system in these closed-system experiments traverses

the overall reaction path described by Eq. (4), the solid will inevitably encounter a near-

equilibrium region with time; depending on the volume distribution of defects among the

particles and the previous consumption of extant step edges during the early dissolution

‘‘leg,’’ there may be inadequate driving force to continually nucleate new defect centers.

Fig. 3 Simulations of particle dissolution. Left kinetic Monte Carlo dissolution of a small, dissolving
particle, assuming a simple cubic (Kossel–Stranski) crystal structure, in which reactive sites have been
color-coded to reflect coordination and reactivity. Note that the corners and edges of the particle have
suffered extensive material loss, with only minor pitting of terrace f100g faces. Crystal is free of defects.
Right Details of inset region from left, clearly showing the high density of 3-bonded kink sites (yellow);
2-bonded sites are shown in red, step sites (4-bonded in tan and 5-bonded terrace sites) are in brown. In this
kink-rich region, surface diffusion of adatoms (not shown) increases the probability that they will be
accepted by a neighboring kink site prior to ultimate detachment and exit from the system
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These relationships are displayed in Fig. 2, constructed by computing the rate (Eq. 4) using

n ¼ 2. It is apparent that one can produce relationships using this ‘‘rate law’’ that are

similar to those displayed in Truesdale’s dataset. Thus, we argue that rather than fit these

data to piecewise expressions, a practice that, as has been argued previously (Beig and

Luttge 2006; Arvidson and Luttge 2010), runs the risk of using a common expression to tie

rates together that are otherwise mechanistically distinct: the slow, near-equilibrium ‘‘long

tails’’ may simply reflect dissolution under conditions in which there is insufficient driving

force to sustain new step generation beyond that already present.

Lastly, there is an additional important caveat here concerning the role of boundaries on

particle surfaces (also as mentioned above). This can be illustrated with a simple Monte

Carlo simulation involving an idealized, Kossel–Stranski crystal (see Fig. 3, left panel).

This simulation illustrates a snapshot in time during the dissolution of a small particle, at

which point substantial material has been lost from the original crystal corner and edge

terminations. As the surface evolves, these areas become increasingly dominated by kink

sites (shown in yellow). Atoms that are liberated from a given site on such high-index

vicinal surfaces may thus not diffuse far before being trapped in an adjacent kink site,

reducing the efficiency of the dissolution process and increasing the complexity in the

relationship between surface area and net dissolution rate. We offer this as a simple

example of the pitfalls of assuming a constant relationship between surface area, the extent

of reaction, and the overall flux of material from the mineral particle.

3 Conclusions

Truesdale campaigns the significance of the observed stepwise change from fast initial to

slow final decay of concentration over time, presenting these periods as ‘‘archetypes’’ with

utility as reaction ‘‘templates’’ and emphasizing the fact that the concentration data fit

exponential expressions. However, his statements that this work has revealed new aspects

of the dissolution kinetics previously unrecognized appear to be at odds with the existing

state-of-the-art understanding of calcite dissolution. Although he cites much of the volu-

minous work on calcite that has appeared over the last twenty years, much of the increased

understanding in terms of site-specific reactivity (now a common observation in calcite

AFM and related surface studies; see, e.g., Ruiz-Agudo et al. 2012) has not been fully

incorporated in his paper. We do feel that the observations he has made are valuable, but

our view diverges substantially from the approach he has taken in terms of integrating

these into a larger heuristic framework.
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