Anal. Theory Appl.
Vol. 27, No. 3 (2011), 211-219
DOI10.1007/s10496-011-0211-7

A NEW BLO ESTIMATE FOR
MAXIMAL SINGULAR INTEGRAL OPERATORS

Qiquan Fang and Xianliang Shi

(Hunan Normal University, China)

Received Mar. 25,2010; Revised Aug. 15,2011
(© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. In this paper, we extend Hu and Zhang’s results in [2] to different case.
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1 Introduction

We will work on R”, n > 2. Let Q be homogeneous of degree zero, integrable on the unit

sphere $"~! and have mean value zero. Define the singular integral operator T by

Q(x—y)
Tf(x)= .v./ d 1.1
FO)=pov- [y TO) (L.1)
and the corresponding maximal operator 7™ by
T"f(x)= sup [Tenf(x)l, (1.2)
0<e<N<oo

where T¢ v f(x) is the truncated operator defined by
Q(x—
Tes() = [ ) rvgay (13)
e<l—yl<N X =]

Definition 1. The space BLO(R") consists of all f € L! _(R") such that

Loc

Hf”BLO(R") = S%P(mB(f) —inf f(x)) < oo,

xEB
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where the supremum is taken over all balls B and mp(f) denotes the mean value of f on the ball
1
B, that is, mg(f) = / F(x)d,
Bl /B

Definition 2. Let Q € L'(5"~1), define the L' modulus of continuity of Q as

w(8)= sup | 10(px) - Q(w)|do(),
p|<8/s"

where |p| denotes the distance of p from the identity rotation, and the supremum is taken over
all rotations on the unit sphere with [p| < d.

Definition 3. As usual, a function A : [0,00) — [0,0) is a Young function if it is continuous,
conex and increasing satisfying A(0) =0 and A(r) — oo as t — co. We define the A-average of a

function f over a ball B by means of the following Luxemburg norm

s =int(a > 05 o fa (0 )ay <. 14

The following generalized Holder’s inequality holds:

1
5 00y <17l (19

where A is the complementary function associated to A (see[4][5]).
Definition 4.  For a suitable Young function A and its complementary function A{, we say

f satisfies A?-condition if it satisfies

b o

where ¢ > 1, C and C| are positive constants.

For a Young function A(f) = rlog(2 +1¢), its complementary function A;(f) ~ expt, Hu
Guoen and Zhang Qihui® proved the following theorem:

Theorem A. Let 7" be the maximal singular integrable operator defined by (1.2), Q be
homogeneous of degree zero, integrable on the unit sphere S"~! and have mean value zero.

Suppose that for some g > 2, Q € L(logL)?(S"~ 1), namely,
[, Ioiiogr -+ |2)do () <.
s

and the L' modulus of continuity of Q satisfies

1 1.ds
/O 0(8)log(2+ )5 <.

Then for any f €eBMO(R"), T*f(x) is either infinite everywhere or finite almost everywhere.
More precise, if f €EBMO(R") such that 7% f(xo) < oo for some xo € R”, then T*f(x) is finite
almost everywhere, and

17" fllsLor) < CllfIBMmO(RY)-
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In this paper, we consider the general case and ¢ > 1. Our main result is stated as follows.
Theorem. Let A(t) be a Young function and A\ (t) be its complementary function. Suppose
that / IA(]Q(x)\)dc(x) < oo and the L' modulus of continuity of Q satisfies
s

1 1.dé
d)log? (2 oo,
| o602+ )5 <
If f € BMO(R") and f satisfies A%-condition such that T* f(xp) < o for some xo € R", then

T* f(x) is finite almost everywhere, and
17" fllBLor) < CI|fllBMO(R™):

where p,q > 1 and ! + ! =1

Remark 1. etus cognpare the above theorem with Theorem A. We consider the case where
g > 1 and the pair (A(r),A;(t)) is a general complementary pair of Young functions. In Theorem
A, the power ¢ > 2 and (A(r),A;(¢)) is a special pair of Young complement. But the assumption
on ®(t) in our theorem is a little bit stronger than that of Theorem A. The following are two
examples pairs of Young complements:

Example 1. A(t) =t(1+1In"1)% o > 0. The complement of A(¢) is A1 () ~ e

Example2.  A(r) = tInIn(100 + ). The complement of A(r) is A (1) ~ e°'.

11/

2 Proof of Theorem

We begin with some preliminary lemmas.

1 1
Lemmal. Letp,g>1land + =1,b,m>0. Then we have
P 4q

b<ml4+m 1.

Lemma 2B/, Let A(1) be a Young function and A, (t) be its complementary function. Then
Jorany 0 <1y,1; <o,
i <A(t)+Ai(n).

Lemma3. Suppose Q is homogeneous of degree zero, and satisfies / 1A(\Q(x) [)do(x) <

sn

oo, Then there is a positive constant C such that for any f € BMO(R"), f satisfies A‘f—condition
and r > 0,

30 s o VO (0105 <o
Proof. Without loss of generality, we may assume that || f||gppo = 1. For each fixed R > 2r,

write
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A I 50 g, (Pl

—r<l—yl<r =y

< / ‘Q(x_y)‘If(y)—mB<X,R>(f)|dy

R—r<jx—y|<R |x—y["

1Q(x—y)]
R—r<|x—y|<R |x—y["

—HmB(x.R) (f) - mB@”) (f)’
=B+ B».

Recall that [mg_, (f) —ma,, (f)| < Clog R where C is a positive constant. Thus,

n—1

1 R R 'r R
B, <C / Q(x—y)|dylo <C lo <C.
I R

To estimate By, Lemma 2 gives that for R > 2r,

c |f(y) —msg_, (f)]
b= (R—r)" /Ix—y|<RA1 < C1< | )dy

C
+ Ry /| L Alee )

(R)" <C.

SCR_pp =

This completes the proof of the lemma.
Proof of Theorem. It suffices to show that there is a positive constant C such that for any
ball B,

1 * . *
1,700 < Cl lavtoge +E T ). 26)

We now prove (1.6). Let f eBMO(R"), without loss of generality, we may assume that
”fHBMO(R”) = 1. For each fixed ball B = B(xo,r), set

Si(x) = (f(x) =ms(f) %8 (x), f2(x) = (f(x) = mp(f)) Xrm68(x)-

The vanishing moment of € implies the following pointwise inequality
T f(x) <T"fi(x)+T" fo(x).

The L?(R") boundedness of T* via the Holder’s inequality tells us that

o Jir e <c (g [ nwre) |

<) If(X)—mB(f)lzdxy <c
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It remains to deal with 7* f>(x). Set

_ Qx—y)
Tewf@ = [ ST sy

Note that for y € B,

T fa(y) = sup |Tenfa(y)

0<e<N<oo

< sup |Tenfo()| 4+ sup  [Tenfa(y)l

e<r E>r
0<e<N<eo 0<e<N<oo

and
sup |T8,Nf2<y>|=max{ sip [ Tonfs() sup |Ts,Nf2()’)|}~

e<r 0<e<r<N<oo 0<e<N<r
0<e<N<oo

An easy computation shows that for y € B,

sup  |Tenfo(y)] < sup

/ Q(y_z)fz(z)dz‘

e<|x—y|<r !y - Z‘n

0<e<r<N<oo 0<e<r<N<oo
Qy—z
+  sup / v n)fz(Z)dz
0<e<r<N<oo|Jr<|y—z|<N ]y—z\

= sup |Trvfa(y)l;
0<N<eo

and if 0 < € <N <r, Tg nf2(y) = 0. Therefore for any y € B,

sup \Ts,Nfz(Y)\SOSUP TN f2 ()]

e<r <N<oo
0<e<N<eo

Then,
T*fo(y) < sup |[Tenfo(y)l

r<e<N<oo

< sup |TenfO)+ sup [Tenfi(y)

r<g<N<eo r<g<N<eo

/ Q(y—2) s ( £)dz

+ sup o
<py-z<n [y —2

r<e<N<oo

<T*fy)+ sup |Tenfi(y)|

r<e<N<oo

< T*f(y) +25up | Te oo f1 (7))

e>r

215
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For each € with r < € < e and y € B, an application of Lemma 2 and the increasing of Young

function shows that

1y —2)|
Tewhi O < [ E @) g, (e
B 1Q(>y —2)|
+|mB(yﬁg,) (f) mB(f)| /r<|yz<8r \y—z!”
c
A(Q(y —
S R CEIT
. A (!f(Z) —mp, <f>r> 0
7" J|y—z|<8r C
C [f(y) = ma, (F)] 1
< r" /yz|<8rmax {Al ( c LAY <C1> dz
+C <C.
We thus obtain that for y € B,
T* fo(y) <T"f(y) +C. (2.7

The proof of the inequality (1.6) is now reduced to proving that for any x,y € B,

T f2(x) =T" f2(y)| < C. (2.8)
To prove (1.8), note that
Qx—z Qy—z
up To fo(x) ~ Tos(¥)| < sup A [FAGITE

>0 >0/ |x—z|>¢ Ix —z] ly—z|

Qy—z
s [ ERIATACIEE

>0 |x—z|<e|y—z|>¢€ \y—z!

Qy—z
+sup/ b n)‘ f2(2)]dz
>0/ |x—z|>¢,ly—z|<e b’_Z’

=D +Dy+Ds
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It follows from Lemma 3 that for x,y € B,

D; < sup / 120 =2 o) ()

e-2r<|y—z|<e |y - Z|n

£>5r
|Q(y—z)|
< su / ) —m dz
_EZB e-2r<ly—zl<e [y —z|" £) B<,v,2r>(f)’

Qv —
+|mp,,, (f) —mp(f)| sup 1Q>y—2)|

e>4rJe—2r<|y—z|<e ’y_z‘n

<C.

Similarly, for any x,y € B,

Qy—z
D, < sup [y n)llf(z)—mB(f)|dz
e>5rJe<|y—z|<e+2r !y—z\
Qy—z
= sup/ [ n”\f(z)—mg(f)\szC.
e>7rJe—2r<ly—zl<e [y —12]

Observing that for any x,y € B, we can write
Qx—z2) Qy—2)

D, g/ — . | 1f2(2)]dz
g5 | x—z" |y —2
Qx—2z)—Q(y—z
<f | 1ete9-00-d L,
|x—z|>2r |X - Z|

lx—yl

+C
—z[>2r Jx — [T

Q(x —2) f2(2)|dz

=D +Dy.

The term D1, is easy to deal with. In fact,

Do <cri | 2@ = (Dl

k=1J2kr<|x—z]<2k+1r ‘X_Z"H—l

|Q(x—2)]

2k r<|x—z| <2k r |)C - Z|n+1

+Cr E |mB(X.2k+,r) (f) —mp(f)]
k=1 ’

<C.
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On the other hand, invoking Lemma 1, a straightforward computation gives that for any x,y € B
and some g > 1,
= Qx—2) —Q(y—2)]
Dy < / Z)—m dz
= k)::1 2hp<[x—z|<2htlr lx—z|" 1F2) = ms i, ()]

Qx—2) - Q(y—2)|

2 - d
" k)::l ‘mBW“") () =ma() 2kr<|x—z]<2k+1r |x —z|" :
gczw/ Q=) -Q0-2)
k=1 2kr<|x—z| <2kt ‘X — Z’n
- Q(x—2)|
+ k KI/ zZ)—m ) qu
k)::1 2hr<|x—g <2kt [x—2" 1F@) = ms s,y ()]

v i 12>y —2)]
ka - ad
+k§1 /zkrgx_zl<2k+lr |x_Z|n ’f(z) mB(X12k+l,) (f)’ Z

=E+F+G.

Note that by the same argument as used in [1], there is a positive constant D depending only on

n such that for any x,y € B,

do
Qx—2)-Q(y— d<CﬁB/i o(8) . .
/2k+lnB\2knB| (x=2) b =2)ldz<CI2°B D2 k-1<§<D2k (®) 0
This in turn implies that
= do
E <CY kb / ()
k=1 JD2*-1<§<D2* o
= _1,dé
<CY o(6)log’(2+067") . <C.
k=1.D2-*"1<§<D2* 0

Applying the generalized Holder’s inequality (1.5) we deduce that for x € B and g > 1,

F < Q(x— _ aq
- kgl (2kp)n /|xz<2k+1,| (x=2)[1£(2) MB ks, (f)|?dz

<C E A=)z sl(F0) = ms ey, ()20 <C.

Similarly, we have G < C and then D; < C. Combining the estimates for D1, D, and D3 yields
the inequality (1.6), and finishes the proof of Theorem.
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