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Abstract. For a real valued function f defined on a finite interval I we consider the prob-

lem of approximating f from null spaces of differential operators of the form Ln(ψ) =
n

∑
k=0

akψ(k), where the constant coefficients ak ∈ R may be adapted to f .

We prove that for each f ∈ C(n)(I), there is a selection of coefficients {a1, · · · ,an} and

a corresponding linear combination

Sn( f ,t) =
n

∑
k=1

bkeλkt

of functions ψk(t) = eλkt in the nullity of L which satisfies the following Jackson’s type

inequality:

‖ f (m) −S(m)
n ( f ,t)‖∞ ≤ |I|1/qe|λn||I|

|an|2n−m−1/p|λn|n−m−1 ‖Ln( f )‖p,

where |λn| = max
k

|λk|, 0 ≤ m ≤ n−1, p,q ≥ 1, and
1
p

+
1
q

= 1.

For the particular operator Mn( f ) = f + 1/(2n)! f (2n) the rate of approximation by the

eigenvalues of Mn for non-periodic analytic functions on intervals of restricted length is

established to be exponential. Applications in algorithms and numerical examples are dis-

cussed.
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1 Introduction

The problem of approximating a real valued function f on a finite interval I by linear com-

binations from subsets of the set E = {eλt |λ − complex number} is studied extensively. The

most classical approach is the Fourier series expansion when one uses expanding subspaces

SN = span{1,e±it , . . . ,e±iNt} and the linear combination is the solution of the extremal problem

ETN( f ) = min
ck∈R

‖ f (t)−
N

∑
k=−N

ckeikt‖2(I),

where

‖ f‖p(I) =
(∫

I
| f (t)|pdt

)1/p

, 0 < p < ∞

and ‖ f‖∞ = sup
t∈I

| f (t)| are the norms of f in the spaces Lp(I),0 < p ≤ ∞. The exponents ik lie on

the imaginary axis and are predetermined for any function f . The "goodness" of approximation

is measured by the rate at which ETN( f ) approaches 0 as N → ∞. To characterise the classes of

functions with the same rate of approximation for smooth functions it is important to establish

Jackson’s type estimates of the form ETN( f ) ≤ ‖ f (m)‖2

Nα , in L2 for example. The maximum

α determines the rate of approximation, for more details see [6]. One way to generalize the

classical Fourier series is to replace SN by the set of eigenfunctions of predetermined differential

operators, Sturm-Liouville and self-adjoint operators, and etc., for details see [1].

The goal of the present paper is to study approximation by finite linear combinations of

elements of E with exponents λk,k = 1, . . . ,n adapted to f . For a given function f on a fi-

nite interval I we determine λ ’s as the characteristic roots of the linear differential operator

Ln(ψ , t) =
n

∑
k=0

akψ(k)(t),ak ∈ R, that minimizes ‖Ln( f , t)‖2(I). For a particular operator Ln the

space of solutions to the equation Ln(ψ , t) = 0 is called a null space of Ln or fundamental set

of solutions. That space is spanned by n functions, ψk(t) = eλkt ,k = 1, . . . ,n, where λk are the

roots of the corresponding characteristic polynomial Pn(λ ) =
n

∑
k=0

akλ k. Once the optimal op-

erator Ln is determined we approximate f in Lp, p > 0 by linear combinations from the finite

dimensional null space of Ln. Fourier and polynomial approximations could be considered in

that setting with predetermined operators. For the particular sequence of operators Ln( f ) = f (n)

the fundamental set of solutions are the power functions ψk(t) = tk,k = 0, . . . ,n−1. For the op-

erators SN =
N

∏
k=−N

(D + ikId), where i2 = −1,Dk f = f (k) and Id( f ) = f is the identity operator

the fundamental set of solutions is the set of the Fourier modes eikt ,k = −N, · · · ,N.

It is well known, see [6], that if the function f is non-periodic on I the rate of convergence of
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the Fourier series is 1/n. In Section 2 we establish exponential decay of the rate of approximation

of analytic non-periodic functions in uniform norm from the null space of the operator Mn =

Dn/n! + Id when the interval I on which the approximation takes place is of a length less than

log4. That result is related to the result of a method due to D.Gottlieb, C.W. Shu, A. Solomonoff,

and H. Vendeven[4] about approximation of an analytic non-periodic function, defined on a finite

interval I, by algebraic polynomials with exponential decay in uniform norm.

In Section 2 we also establish Jackson’s type estimates for the error of approximation from

null spaces of optimal operators and for particular types of operators the rate of approximation

is discussed. In Section 3 we consider explicit formulas, algorithms and examples to illustrate

the use of the results obtained in Section 2.

2 Approximation from Null Spaces of Linear Differential Operators

In the current section we study the error of approximation of a smooth function by funda-

mental set of solutions of prescribed differential operators with constant coefficients and obtain

Jackson’s type estimates. The operators considered are of the type Ln( f , t) =
n

∑
j=0

aj f ( j)(t), for

real aj, j = 0, . . . ,n, with the requirement that an �= 0. The characteristic polynomial of Ln is de-

noted by Pn(λ ) =
n

∑
j=0

ajλ j. The roots of Pn are the complex conjugated numbers λ j, j = 1, · · · ,n.

Throughout the paper we consider only operators with simple roots. The case of repeated roots

can be treated similarly with slight modifications. The collection of functions ψ j(t) = eλ jt , j =

1, . . . ,n is the fundamental set of solutions to the equation Ln(g, t) = 0 i.e. Ln(ψ j, t) = 0. The

determinant of the Wronskian of ψ’s is W (ψ1, · · · ,ψn)(s) = detV (λ1, · · · ,λn)e∑n
k=1 λkt , where

V (λ1, · · · ,λn) is the Van der Monde matrix of λ ’s.

Let

Qn−1(λ ) =
n

∑
j=1

f ( j−1)(t0)

(
n

∑
m= j

amλ m− j

)
,

C be a smooth closed curve in the complex plane containing in its interior all λ ’s, and
∫

C indicates

integration over C. By Br(0) we denote the circle in the complex plane with radius r centred at

the origin and Cn(I) is the class of functions with continuous n-th derivative on I. The following

theorem holds true on any I.

Theorem 2.1. For any f ∈ C(n)(I) and any t0 ∈ I the solution g∗(t) of the initial value

problem (IVP)

Ln(g, t) = Ln( f , t), g( j)(t0) = 0, j = 0, · · · ,n−1, (1)
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is given by each of the next two formulas

g∗(t) =
1

2πi

∫ t

t0

(∫
C

ez(t−s)

Pn(z)
dz

)
Ln( f ,s)ds, (2)

and

g∗(t) = f (t)−
n

∑
k=1

Qn−1(λk)
P′

n(λk)
eλk(t−t0). (3)

Proof. First we prove the representation (2). Let Wk(ψ1, . . . ,ψn)(s) be the determinant of

the Wronskian with k-th column replaced by the column (0, . . . ,0,1). It is well known, see for

example [1], that the solution of IVP (1) is given by the formula

g∗(t) =
1
an

n

∑
k=1

ψk(t)
∫ t

t0

Wk(ψ1, . . . ,ψn)(s)
W (ψ1, . . . ,ψn)(s)

Ln( f ,s)ds.

From the explicit expressions for Wk and W and the fact that V is Van der Monde matrix we get

W (s) = ∏
j<m

(λm −λ j)e∑ λ j s, Wk(s) = (−1)n+k ∏ j<m, j,m �=k(λm −λ j)e(∑λ j s)−λks, and hance

Wk(s)
W (s)

= an
e−λks

P′
n(λk)

.

Multiplying by ψk(t) and summing the terms for k = 1, . . . ,n we get

n

∑
k=1

ψk(t)
Wk(ψ1, . . . ,ψn)(s)
W (ψ1, . . . ,ψn)(s)

= an

n

∑
k=1

e(t−s)λk

P′
n(λk)

.

The expression on the right is the divided difference of the complex value function H(z) = ez(t−s)

evaluated at the complex nodes λk, k = 1, . . . ,n. The closed curve C encircles all λ ’s and by using

the results from [2] it follows that

an

n

∑
k=1

e(t−s)λk

P′
n(λk)

=
an

2πi

∫
C

ez(t−s)

Pn(z)
dz.

Summing up we get the identity

1
an

n

∑
k=1

ψk(t)
∫ t

t0

Wk(ψ1, . . . ,ψn)(s)
W (ψ1, . . . ,ψn)(s)

Ln( f ,s)ds

=
1

2πi

∫ t

t0

(∫
C

ez(t−s)

Pn(z)
dz

)
Ln( f ,s)ds,

and (2) follows immediately.

Next we derive the form (3) of the solution. Since f is a particular solution to Ln(g, t) =

Ln( f , t) from the general theory, see for example [1], it follows that the solution of IVP (1) is



Anal. Theory Appl., Vol. 27, No.2 (2011) 191

of the form f −ψh. Here ψh is the solution of the homogeneous IVP Ln(ψh, t) = 0 with the

same initial conditions as in (1), and hence ψh(t) =
n

∑
j=1

bjeλ jt where bj are solutions of the linear

system ψ(k)
h (t0) =

n

∑
j=1

bjλ k
j eλ jt0 = f (k)(t0),k = 0, . . . ,n− 1. Let Wk( f , t0) be the Wronskian W

with the k−th column replaced by the column vector ( f (t0), . . . , f (n−1)(t0)) and evaluated at t0.

If A j,k denotes the algebraic compliment of the element λ j−1
k in V then by using the Cramer’s

rule we get

bk =
Wk( f , t0)

W (t0)
= e−λkt0

n

∑
j=1

f ( j−1)(t0)(−1)k+ j A j,k

detV
.

Let σ j(λ1, . . . ,λn) be the j−th symmetric polynomial of all of λ ’s and σ j,k(λ1, . . . ,λn) be the

j−th symmetric polynomial of all of λ ’s but λk. Using the results obtained in [4], it follows that

bk =
ane−λkt0

P′
n(λk)

n

∑
j=1

(−1)n+ jσn− j,k f ( j−1)(t0).

From the relation σn− j,k = σn− j −λkσn− j−1,k we get

ψh(t) = an

n

∑
k=1

(
n

∑
j=1

f ( j−1)(t0)(−1)n+ jσn− j,k

)
eλk(t−t0)

P′
n(λk)

=
n

∑
k=1

eλk(t−t0)Qn−1(λk)
P′

n(λk)
,

and since g∗ = f −ψh the proof is completed.

By identity (2) we obtain representations for the derivatives of the function g(t) = f (t)−
ψh(t) in terms of the contour integrals over C.

Corollary 2.1. Let ψh be as in Theorem 2.1 and g(t) = f (t)−ψh(t), then for any non-

negative integer m ≤ n−1 we have

g(m)(t) =
1

2πi

∫ t

t0

(∫
C

zmez(t−s)

Pn(z)
dz

)
Ln( f ,s)ds. (4)

Proof. The result can be shown by using the companion system of first order differential

equations but we consider a more direct approach. From Theorem 2.1 it follows that

g(t) =
n

∑
k=1

eλkt

P′
n(λk)

∫ t

t0
e−λksLn( f ,s)ds, (5)

and after differentiating once we get that

g′(t) =
n

∑
k=1

λkeλkt

P′
n(λk)

∫ t

t0
e−λksLn( f ,s) ds+ Ln( f , t)

n

∑
k=1

1
P′

n(λk)
.
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Considering the divided differences with nodes λ ’s, it is clear that the second term in the expres-

sion above is the divided difference of the constant function 1, and hence zero. Differentiating

m − 1 more times and taking into account that
n

∑
k=1

λ r
k

P′
n(λk)

= 0,r < n, since it is the divided

difference of zr, we get (4).

Combining (2) and (3) we obtain a representation formula for f by a linear combination,

Sn( f , t) =
n

∑
k=1

bkeλkt , of the set of fundamental solutions to Ln(g, t) = 0. The choice of bk en-

sures that f (k)(t0) = S(k)
n (t0) for k = 0, . . . ,n− 1 and an error estimate in C(I) can be obtained.

In the rest of the section we investigate different operators Ln and estimate the integral error

representation in Lp, p ≥ 1. Let λ j be enumerated in such a way, that |λ1| ≤ · · · ,≤ |λn|, then the

following theorem holds true.

Theorem 2.2. Let the fundamental set of the solutions to Ln(g, t) =
n

∑
j=0

ajg( j)(t) = 0 be

eλkt ,k = 1, . . .n, then for any f ∈ C(n)(I) we have the following estimate of approximation of

f (m) by functions from the set

{
n

∑
k=1

ckeλkt | ck ∈ R

}
,

min
Sn∈{∑n

k=1 ckeλkt | ck∈R}
‖ f (m) −S(m)

n ( f , t)‖∞ (6)

≤ |I|1/qe|λn ||I|

|an|2n−m−1/p|λn|n−m−1 ‖Ln( f )‖p,

where m ≤ n−1 is an integer, p,q ≥ 1, and
1
p

+
1
q

= 1.

Proof. Let R = 2|λn| and C = BR(0), then |z− λk| ≥ R for any k and any z on C. The

following estimate for the contour integral in (4) holds∣∣∣∣∣ 1
2πi

∫
C

zmez(t−s)

Pn(z)
dz

∣∣∣∣∣ ≤ 1
2π|an|

∫
C

|z|me|z||t−s|

∏n
k=1 |z−λk| |dz| ≤ RmeR|t−s|

|an|Rn R,

and hence for ck = bk, as considered in Theorem 2.1, we get the estimate

| f (m)(t)−S(m)
n ( f , t)| ≤ 1

|an|Rn−m−1

∣∣∣∣
∫ t

t0
eR|t−s||Ln( f ,s)|ds

∣∣∣∣ .
By choosing t0 to be the middle point of I and applying Hölder’s inequality we get the following

uniform estimate for the approximation of f by linear combinations of ψ’s on I

‖ f (m) −S(m)
n ( f , t)‖∞ ≤ eR|I|/2

21/qπ|an|Rn−m−1 |I|1/q‖Ln( f )‖p.

Finally, from the relations R = 2|λn| and the fact that the right-hand side is independent of the

choice of ck we obtain (6).
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A few remarks are in order. The estimate (6) depends exponentially on the maximum mod-

ulus of the characteristic roots of Ln and the length of the interval I. The dependence on the in-

terval is similar to the situation with Fourier approximation, for example the function e−1/(1−x2)

has exponential rate of convergence on the interval [−1,1] but any expansion of that interval

forces the rate to drop to linear i.e 1/n( see [5]).

The error estimate also depends on the amplitude of the largest characteristic root |λn| and

there are no suitable( known to the author) a priori estimates for the magnitude of |λn| based on

the function and its derivatives. In order to develop an efficient method for approximation from

the null spaces we need to consider an intermediate approximation step. From (6) it is clear that

if the operator Ln has all of its characteristic roots in BR/2(0), then the right-hand side in (6)

decreases by decreasing the norm of Ln. The intermediate step is to approximate the function

by the fundamental set of solutions of the operator Mn( f , t) = f (t)+
1
n!

f (n)(t). In the rest of the

section we consider real analytic functions f and study the convergence of approximation error

for Ln = Mn, when n → ∞. First we provide an explicit formula for approximation by using Mn.

The characteristic polynomial of Mn is Pn(λ ) =
1
n!

λ n + 1, and hence

Qn−1(λk) =
n

∑
j=1

f ( j−1)(t0)
λ n− j

k
n!

.

Let

Dn( f , t0,z) =
n

∑
j=1

f ( j−1)(t0)z1− j

be the truncated z− transform of the sequence { f ( j)(t0)}∞
j=0, then

bk =
Qn−1(λk)

P′
n(λk)

e−t0λk =
1
n! ∑n

j=1 f ( j−1)(t0)λ n− j
k

λ n−1
k

(n−1)!

e−t0λk

=
1
n

Dn( f , t0,λk)e−t0λk ,

and the approximant defined by (3) is

Σn( f , t) =
1
n

n

∑
k=1

Dn( f , t0,λk)e(t−t0)λk .

Let C = B2(n!1/n)(0), then by differentiating m times and taking into account the identities for

divided differences with nodes λ ’s we get

Σ(m)
n ( f , t) =

1
n

n

∑
k=1

λ m
k Dn( f , t0,λk)e(t−t0)λk (7)

=
1

2πin!

∫
C

zmDn( f , t0,z)e(t−t0)z

Pn(z)
dz.
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The zeros of Pn are λk = n!1/ne
2k+1

n iπ ,k = 0, . . . ,n− 1 and all of them belong to Bn!1/n(0). The

approximants Σn are linear combinations of eλkt and represent an approximation of the function

f on I. For comparison the Fourier partial sums have their modes λ on the imaginary axis on

the segment [−in, in]. Next we show that if the interval I has a length less than log4, then letting

n → ∞, i.e. when expanding the circles B2n!1/n(0) the functions Σn approach f uniformly.

Theorem 2.3. For any real function f , analytic on I = [t0 −η , t0 + η ], we have

‖ f (m) −Σ(m)
n ( f )‖∞(I) ≤Ce(η−log2)nnm+1, (8)

for n ≥ 5, m ≤ M ≤ n− 1, and a positive constant C. Furthermore, if M does not depend on n

and η < log2, then the right hand side converges to zero.

Proof. Since f is analytic on I, there exists a positive constant C such that | f (k)(t)| ≤Ck!

for any integer k and any t ∈ I. Then ‖Mn( f )‖p ≤ 2C|I|1/p and the inequality (6) becomes

‖ f (m) −Σ(m)
n ( f )‖∞(I) ≤C21/p|I|e

n!1/n|I|

2n−m n!
m+1

n .

By using the estimate n! ≤√
2πn

( n
e

)n e1/12n, given by the Stirling’s approximation of n!, we get

n!1/n ≤ (2πn)1/2ne1/12n2−1n < n/2 for n ≥ 5. Substituting in the above expression, we obtain

the estimate

‖ f (m) −Σ(m)
n ( f )‖∞(I) ≤ C|I|e|I|/2nnm+1

2n

= C exp
(
|I|/2− log 2+(m + 1)

logn
n

)
nm+1.

Since m < M and M does not depend on n, it is clear that the expression on the right converges

to zero if the exponent η − log2 is negative i.e. η < log2. The convergence is geometric for

large n and bounded M if |I|/2− log2+(m+1)
logn

n
< 0 i.e. η < log2− (M +1)

logn
n

→ log2.

From Theorem 2.3, it follows that any real analytic function f on |I| < 2log 2, is uniformly

approximated by Σn( f ), thus it avoids Gibbs phenomenon at the end points. Similar result about

approximation with algebraic polynomials and using as an intermediate step the Fourier partial

sums is obtained in [3]. The similar question about approximating periodic functions is solved

in [7].

From the proof of Theorem 2.3 it is clear that any sequence of operators Ln with roots of

their characteristic polynomials in bounded and slowly expanding domains Cn, and such that

‖Ln( f )‖p < Cn, also provide approximations to f with an exponential decay.

In the next section we consider two steps algorithm to find a sequence of operators that

provide convergent sequence of errors. Numerical implementations and examples of the result

in Theorem 2.1 are also presented.
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3 Applications and Examples

In the previous section it was discussed that the error estimate (6) depends on the mag-

nitude of the largest root of the characteristic polynomial of Ln as well, as the magnitude of

‖Ln( f , t)‖p(I). In this section we suggest an algorithm for constructing operators Ln that pro-

vides convergent error estimates in (6). At the end of the section we consider two numerical

examples.

First we consider the problem of minimizing L2 norms of operators with roots of their char-

acteristic polynomials restricted to the interiors of expanding circles. If the characteristic poly-

nomial Pn is of an odd degree, than it has at least one real root which corresponds to ψ(t) = ert

with r ∈ R. To ensure that the characteristic polynomial has only complex conjugated roots we

consider only the case of even n. First we approximate f by the set of fundamental solutions of

M2n( f ) = f +1/(2n)! f (2n). According to Theorem 2.3 the error of approximation has exponen-

tial decay on small intervals. The second step is to optimize the approximation of Σ2n( f ) over

differential operators with characteristics roots in B(2n)!1/2n(0).

For large n, from Theorem 2.3, it follows that Σ2n( f ), the approximant corresponding to

M2n, approaches f exponentially fast. If we fix n large enough to achieve a prescribed precision,

then instead of seeking operators Lv(g) = ∑v
j=0 c jg( j), c j ∈ R, with the normalization condition

cv = 1, that minimize ‖Lv( f , t)‖p we can seek Lv to minimize ‖Lv(Σ2n( f ), t)‖p. In the case p = 2

the space L2(I) is a Hilbert space and after some weakening of the inequalities the problem of

characterizing Lv can be considered as a problem of finding weighted orthogonal polynomials,

for an overview source of orthogonal polynomials on the unit disc see [6]. Let R = (2n)!1/2n and

C = B2R(0), then from (7) it follows that

v

∑
j=0

c jΣ
( j)
2n ( f , t) =

1
2πi(2n)!

∫
C

(
∑v

j=0 c jz j
)

D2n( f , t0,z)e(t−t0)z

P2n(z)
dz. (9)

For P2n(z) on C we have that |P2n(z)| = |z2n/(2n)! + 1| ≥ 22n − 1 and from the inequality∣∣∣∣
∫

C
F(z)dz

∣∣∣∣ ≤ ∫C |F(z)||dz| , we obtain the following estimate

∣∣∣∣∣
v

∑
j=0

c jΣ
( j)
2n ( f , t)

∣∣∣∣∣ ≤ 1
2(22n −1)π(2n)!

∫
C
|D2n( f , t0,z)||ez(t−t0)||

v

∑
j=0

c jz j| |dz|.

By applying the Schwartz inequality and estimating |t − t0| ≤ I we get that

‖
v

∑
j=0

c jΣ
( j)
2n ( f , t)‖∞(I) ≤C(n)

(∫ 2π

0
|D2n( f , t0,z)|2|

v

∑
j=0

c jz j|22Rdθ

)1/2

,
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where

C(n) =
e2(2n)!1/2n|I|

π1/2(22n −1)(2n!)1−1/4n
→ 0, as n → ∞.

It is clear that, in order to estimate the norm on the left, over c0, . . . ,cv−1 it suffices to find the

minimizer of the following extremal problem

min
Tv(z)=(2Reiθ )v+...

∫ 2π

0
|D2n( f , t0,2Reiθ )|2|Tv(2Reiθ )|22Rdθ .

The weight function |D2n( f , t0,z)|2 is uniformly bounded for any n,z and t0 ∈ I. Indeed, by using

the fact that f is analytic and the Stirling’s estimate we get the inequalities

||D2n( f , t0,z)|− | f (t0)|| ≤
2n−1

∑
j=1

| f ( j)(t0)|
|z| j ≤C

2n−1

∑
j=1

j!
2 j(2n)! j/2n

≤ C
2n−1

∑
j=1

√
j

(
je−

11
12

2n

) j

≤C
2n−1

∑
j=1

√
j

e
11
12 j

.

The last inequality follows from the fact that j < 2n. Since e
11
12 > 1, then taking the limit when

n → ∞ of the convergent series on the very right we get that |D2n( f , t0,z)|2 ≤ K < ∞. Going back

to the extremal problem we see that the minimum is attained when Tv(z) is the v−th orthogonal

polynomial on C with a weight function |D2n( f , t0,z)|2. It is well known, see [6], that all of the

zeros of the v-th orthogonal polynomial Tv are inside C. On the other hand the zeros of Tv are the

roots of the characteristic polynomial of Lv = Tv(D) and to ensure decay of the error they have

to belong to BR(0). To formulate the problem on BR(0) we use the following inequality∫ 2π

0
|D2n( f , t0,2Reiθ )Tv(2Reiθ )|2dθ ≤ 22v

∫ 2π

0
|D2n( f , t0,Reiθ )Tv(Reiθ )|2dθ .

Indeed,

D2n( f , t0,2Reiθ ) =
2n−1

∑
j=0

f ( j)(t0)
2 jR j e−i jθ ,

Tv(2Reiθ ) =
v

∑
k=0

ck2kRkeikθ ,

and for the L2 norm of their product it follows that

‖
v

∑
s=−2n+1

(
∑

k− j=s

f ( j)(t0)
R j Rkck

)
2seisθ‖2 =

v

∑
s=−2n+1

(
∑

k− j=s

f ( j)(t0)
R j Rkck

)2

22s

since eisθ are orthogonal on [0,2π]. Similar calculations show that

∫ 2π

0
|D2n( f , t0,Reiθ )Tv(Reiθ )|2dθ =

v

∑
s=−2n+1

(
∑

k− j=s

f ( j)(t0)
R j Rkck

)2

,
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and hence the inequality holds. Let

O2n( f ,v) = 22v+1 min
Tv(z)=(Reiθ )v+...

∫ 2π

0
|D2n( f , t0,Reiθ )|2|Tv(Reiθ )|2Rdθ , (10)

then summing up we can formulate a Jackson’s type estimate for approximation of an analytic

function f by linear combinations of complex exponents eζ1t , . . . ,eζ2vt with ζ j, j = 1, . . . ,2v ≤
2n−2 in the disk DR = Dn!1/n(0) = {z||z| ≤ n!1/n}.

Lemma 3.1. For a function f analytic on D2R the following estimate holds

min
dj∈R,ζ j∈DR

‖ f −
v

∑
j=1

djeζ jt‖∞(I) ≤Ce(|I|/2−log 2)vvO1/2
2n ( f ,v)+‖ f −Σ2n( f , t)‖∞, (11)

where C is a real constant.

Proof. Let Lv = Tv(D) be defined by (10), then the characteristic roots ξk,k = 1, · · · ,v of

Lv, are inside the disk DR. From (6) and using similar arguments as in the proof of Theorem 2.3

we get that,

‖Σ2n( f , t)−
m

∑
j=1

djeξ jt‖∞ ≤Ce(|I|/2−log 2)vvO1/2
2n ( f ,v).

From the inequality

‖ f −
v

∑
j=1

djeξ jt‖∞(I) ≤ ‖ f −Σ2n( f )‖∞(I)+‖Σ2n( f , t)−
v

∑
j=1

djeζ jt‖∞(I)

and the above estimate we get (11) for any ζ j ∈ DR.

We conclude the paper with two numerical examples illustrating the roles of n and the length

of the interval I in the error estimate in Theorem 2.2. In the first example we consider the single

frequency function f (t) = 2cos μt, μ ∈ R on an arbitrary interval containing 0 with length less

than log 4. Since f ′′ + 1
μ2 f = 0 we study the solution of the extremal problem (10) for v = 2 and

increasing n. The approximation procedure is as follows: For a fixed n, first approximate f by

the operator M2n and then find the zeros of T2 that minimizes (10). It turns out that the zeros of

T2 are purely imaginary and complex conjugated with absolute value x∗(n) and |x∗(n)−|μ || ≤
Cn−3,C ∈ R.

Example 1. Let f (t) = 2cos μt = eiμt + e−iμt , R = n!1/n, and t0 = 0, then D2n(eiμt ,0,z) =
1− (iμ/z)2n

1−μ/z
. Since the weight is a symmetric function and the domain is a circle, it follows that

T2(z) = z2 + x, for some real x. The extremal problem (10) for T2 on BR(0) is equivalent to

min
x∈R

∫
BR(0)

∣∣∣∣ z2n − (iμ)2n

z− iμ
+

z2n − (−iμ)2n

z− (−iμ)

∣∣∣∣
2

|z2 + x|2 |dz|

= C(R)min
x∈R

∫ π

−π

∣∣∣∣∣R
2nei2nθ +(−1)(n+1)|μ |2n

R2ei2θ + |μ |2
∣∣∣∣∣
2

|R2ei2θ + x|2 dθ ,
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where C(R) depends only on R. Since the interval is symmetric and the integrand even, it follows

that the extremal problem to be considered is

min
x∈R

∫ π

0

∣∣∣∣R2neinθ +(−1)n+1|μ |2n

R2eiθ + |μ |2
∣∣∣∣
2 (

(R2 cosθ + x)2 + R4 sin2 θ)
)

dθ .

Let r = μ/R2 and un(r,θ) =
r2n + 2(−1)n+1rn cosnθ + 1
r2 + 2(−1)n+1r cos nθ + 1

, then the extremal x∗(r) is given by

the formula

x∗(n) = −R2

∫ π
0 cos θ

∣∣∣R2neinθ +(−1)n+1|μ |2n

R2eiθ +|μ |2
∣∣∣2 dθ

∫ π
0

∣∣∣R2neinθ +(−1)n+1|μ |2n

R2eiθ +|μ |2
∣∣∣2 dθ

= −R2
∫ π

0 cos θ |un(r,θ)|dθ∫ π
0 |un(r,θ)|dθ

.

For n → ∞ we have that r(n) → 0, un(r,θ) → 1, and
∫ π

0 |un(r,θ)|dθ → π . For large n the

function un is positive and the integral
∫ π

0 cosθun(r,θ)dθ , as a function of r, has a Taylor’s

series expansion about r = 0 of the form −πr +Cr2, where C is a constant. By substituting

in the formula for x∗(n) we get |x∗n − |μ || < 1/R4. In other words, the zero of the orthogonal

polynomial T2 extracts the frequency μ with a rate of convergence faster than 1/n3. We want to

stress once again that the interval on which f is defined could be smaller than half of the period

μ/2.

In the second example we keep the order of the operator Ln fixed to 4 and to achieve better

approximation we partition the interval [−1,1].

Example 2. Let f (t) = exp(−t2)sin 2(t +2)2.2 + exp(2t)sin 20(t +1) and I = [−1,1]. The

function f is infinitely many times differentiable on I. We consider minimization of ‖ f (4) +

c3 f (3) + c2 f (2) + c1 f (1) + c0 f‖2 over the real constants c’s. According to the estimate (6), in

order to decrease the error, we need to consider small intervals. For that we generate the partition

with break points at −1, 1, and the extrema of f . On each of the subintervals we solve (10)

with n = 4 and get four complex conjugated roots of the characteristic polynomial P(λ ) =

λ 4 +c3λ 3 +c2λ 2 +c1λ +c0. The collection of all of the approximants on the partition is a piece-

wise continuous function with discontinuities at the break points. The jumps are relatively small,

since the method provides uniform approximation including at the end points, and we apply a

simple smoothing procedure to get continuous approximant. The function f (the continuous line)

and the approximant(the dotted line) are plotted in Fig. 1. The dashed line represents the error

function.

On each subinterval the real and the imaginary parts of the roots of P are constants. In Fig 2.

each of the four numbers is plotted at the right end of the corresponding subinterval. The upper

continuous line is the function 4.4(t +2)1.2 which is the instantaneous frequency of the first term
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Fig. 1 Piece-wise continuous approximation to f

of f . The lower line is the function −2t which is the instantaneous bandwidth of the first term

of f . The two, clearly recognizable horizontal, lines are at levels 20 and 2 and correspond to the

instantaneous frequency and the instantaneous bandwidth of the second term of f .
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Fig. 2 Discrete approximation to the instantaneous frequencies and bandwidths
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