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Abstract. Parabolic sections were introduced by Huang[1] to study the parabolic Monge-

Ampère equation. In this note, we introduce the generalized parabolic sections P and define

BMOq
P spaces related to these sections. We then establish the John-Nirenberg type inequal-

ity and verify that all BMOq
P are equivalent for q ≥ 1.
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1 Introduction

In 1996, Caffarelli and Gutiérrez[1] studied the real variable theory related to the Monge-

Ampère equation. They define sections to be a family of convex sets F = {S(x, t) : x∈Rn and t >

0} in Rn satisfying certain axioms of affine invariance. In term of these sections, they set up a

variant of the Calderón-Zygmund decomposition by using the covering lemma and the doubling

condition of a Borel measure μ ; this decomposition is very important in studying the linearized

Monge-Ampère equation[2] . As an application, they defined BMOF(Rn) and showed the John-

Nirenberg type inequality. Hardy space H1
F(Rn) associated to sections was established by Ding
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and Lin[4]. They also showed that the dual space of H1
F(Rn) is just the space BMOF(Rn) defined

in [1] and the Monge-Ampère singular integral operator is bounded from H1
F(Rn) to L1(Rn).

On the other hand, to study the parabolic Monge-Ampère equation, Huang[5] defined the

parabolic sections and proved the Besicovitch type covering lemma and Caldrón-Zygmund de-

composition associated with these sections.

So a natural question arises: is there a theory of Hardy and BMO type spaces associated to

the parabolic sections? In the present note, we want to deal with this problem. More precisely,

we introduce the generalized parabolic sections P and define BMOq
P spaces associated to these

sections. We then establish the John-Nirenberg type inequality and verify that all BMOq
P are

equivalent for q ≥ 1. We remark that Hardy spaces for the generalized parabolic sections have

been developed in [6].

Now we give the definition and basic properties of the generalized parabolic sections. Sup-

pose ϕ(t) : [0,∞) → [0,∞) is a monotonic increasing function satisfying

ϕ(0) = 0, lim
t→∞

ϕ(t) = ∞, ϕ(2t) ≤Cϕ(t),

where C is a constant depending only on ϕ . Define the generalized parabolic sections by

Qϕ(z,r) = S(x,r)× (t − ϕ(r)/2, t + ϕ(r)/2), where S is the (elliptic) sections. Note that if

ϕ(t) = t, then this definition coincides with that used in [5]. Since we can choose ϕ(t) to be any

polynomial in t with nonnegative coefficients and without constant term, thus our definition of

parabolic sections are more general. Throughout this paper, we will work for a fixed function

ϕ described as above. Thus we use Q(z, t) to denote the generalized parabolic section without

specifying ϕ . The generalized parabolic sections have the following properties.

(A) There exist positive constants K1, K2, K3, ε1 and ε2 with the following property: Given

two sections Q(z0,r0), Q(z,r) with r ≤ r0 and Tp an affine transformation that normalizes

Q(z0,r0), if

Q(z0,r0) ∩ Q(z,r) �= /0,

then there exists z′ = (x′, t ′) ∈ B(0,K3) such that

B
(

x′,K2( r
r0

)ε2

)
×

(
t ′ − ϕ(r)

2r0
, t ′ + ϕ(r)

2r0

)
⊂ Tp(Q(z,r))

⊂ B
(

x′,K1( r
r0

)ε1

)
×

(
t ′ − ϕ(r)

2r0
, t ′ + ϕ(r)

2r0

)
,

(1.1)

and

Tpz = (T x, t ′) ∈ B
(

x′,
1
2

K2(
r
r0

)ε2

)
×{t ′}.
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(B) There exists δ > 0 such that for a section Q(z0,r) and z /∈ Q(z0,r), if Tp is an affine

transformation that normalizes Q(z0,r), then

K(Tp(z),εδ ) ∩ Tp(Q(z0,(1− ε)r)) = /0, for 0 < ε < 1.

(C) ∩r>0Q(z,r) = {z} and ∪r>0Q(z,r) = Rn+1.

The measure M is defined by dM = dμ ⊗ dt, where μ is the Borel measure on Rn used in

[5] and assumed to have the doubling property

μ(S(x,2t)) ≤Cμ(S(x, t)) for all section S(x, t)

and satisfy μ(Rn) = ∞. From this, we can easily see

M(Q(x,2r)) ≤ C′M(Q(x,r)) and M(Rn+1) = ∞. (1.2)

Now we are ready to give the definition of the space BMOq
P. Below the generalized parabolic

sections are often called parabolic sections for simplicity. For 1 ≤ q < ∞, we say that f ∈BMOq
P

if there exists a constant C > 0 such that
(

1
M(Q)

∫
Q
| f (z)− fQ|qdM(z)

)1/q

≤ C (1.2)

for every parabolic section Q, where

fQ = M(Q)−1
∫

Q
f (z)dM(z).

The “Norm” of f in BMOq
P is the smallest constant appearing in (1.3) , and it is denoted by

‖ f‖q,∗. When q = 1, we use BMOP and ‖ · ‖∗ to denote BMO1
P and ‖ · ‖1,∗ respectively.

Our first result is the following John-Nirenberg type inequality.

Theorem 1.1. There exist positive constants C1, C2 which depend only on the measure M

such that for every f ∈ BMOP and continuous we have

1
M(Q)

∫
Q

exp
(

C1
| f (z)− fQ|
‖ f ‖∗

)
dM(z) ≤C2

for every section Q.

Our second result is the equivalence of all BMOq
P spaces which is used in proving the dual

theorem in [6].

Theorem 1.2. For any 1 < q < ∞, BMOq
P(Rn+1) = BMOP(Rn+1).

Finally, we would like to point out that the main idea used in this paper is taken from [3] and

[1].
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2 Proof of Theorem 1.1

We may assume that ‖ f‖∗ = 1. We shall show that there exist positive numbers ε < 1 and

M depending only on the measure M such that

M{z ∈ Q : | f (z)− fQ| > t} ≤ ε0M{z ∈ Q : | f (z)− fQ| > t −M} (2.1)

for every parabolic section Q and every t > M. Let us fix a parabolic section Q and set

A = {z ∈ Q : | f (z)− fQ| > t}, B = {z ∈ Q : | f (z)− fQ| > t −M}.

The following Calderón-Zygmund decomposition is showed in [1] for the sections, but the

argument also works for the generalized parabolic sections. Similar decomposition is also ob-

tained in [5] to prove the parabolic Harnack inequality.

Theorem 2.1. Given a bounded open set O and 0 < λ < 1, there exists a family of parabolic

sections P={Q(zk,rk)}∞
k=1 with the following properties:

(a)
δ
C1

≤ μ(Qk ∩O)
μ(Qk)

≤ δ , C1 > 0 depending only on C in (A).

(b) O ⊂ ∪kQk.

(c) M(O) ≤ δ0M(∪kQk) where δ0 = δ0(δ ,C2) < 1 and C2 is a constant depending only on

the parameters in (A), (B), (C) and dimension.

(d) If τ > 0 is sufficiently small and Qτ
k = Q(zk,(1− τ)tk), then

∑
k

χQ(zk,(1−ε)rk)(z) ≤ K log
1
τ
,

and
δ
c2

<
M(Qτ

k ∩O)
M(Qτ

k)
≤ δ ,

where K is a constant depending only on the constants in (A) and (B) and c2 depends only on

the doubling constant in (1.2).

Let 0 < δ < 1 and {Q(zk,rk)}∞
k=1 be the decomposition of the set A given by Theorem 2.1.

We then have

(1) There exists C1 > 0, depending only on the doubling constant of M such that

δ
c1

<
M(Qk ∩A)

M(Qk)
≤ δ ;

(2) A ⊂∪∞
k=1Qk;

(3) For 0 < τ sufficiently small the family Qτ
k= Qk(zk,(1− τ)tk), k = 1,2, · · · , has bounded

overlaps; i.e.,

∑
k

χQτ
k
(z) ≤ K log

1
τ
,
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and
δ
c2

<
M(Qτ

k ∩A)
M(Qτ

k)
≤ δ .

Pick ε > 0 sufficiently small such that

ε ≤ min
{

δ
c1

,
δ
c2

}
< δ ≤ 1− ε .

Then

ε <
M(Qk ∩A)

Qk
,
M(Qτ

k ∩A)
Qτ

k
< 1− ε .

We claim that
M(Qτ

k ∩B)
Qτ

k
> 1− ε

2
, ∀k ≥ 1.

Denote g(z) = f (z)− fQ and note that (2.2) is equivalent to

M(Qτ
k ∩{z ∈ Q : |g(z)| ≤ t −M})

Qτ
k

≤ ε
2
.

Suppose on the contrary that the claim is false. Then there exists m such that

M(Qτ
m ∩{z ∈ Q : |g(z)| ≤ t −M})

Qτ
m

>
ε
2
. (2.3)

Note that for any parabolic section Q′, we have

g(z)−g
Q′ = f (z)− f

Q′

and consequently, ‖g‖∗ ≤ ‖ f‖∗ ≤ 1.

Let

ḡm =
1

M(Qτ
m)

∫
Qτ

m

g(z)dM.

We have the following possible cases:

(1) t − M
2

≤ |ḡm| < t.

(2) t −M < |ḡm| < t − M
2

.

(3) |ḡm| > t.

(4) |ḡm| < t −M.

In the first case we have

1 ≥ 1
M(Qτ

m)

∫
Qτ

m

|g(z)− ḡm|dM

≥ 1
M(Qτ

m)

∫
Qτ

m∩{z∈Q:|g(z)|≤t−M}

∣∣|g(z)|− |ḡm|
∣∣dM

≥ M
2

M(Qτ
m ∩{z ∈ Q : |g(z)| ≤ t −M})

M(Qτ
m)

≥ M
2

ε
2
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by (2.3). In the second case we have

1 ≥ 1
M(Qτ

m)

∫
Qτ

m

|g(z)− ḡm|dM ≥ 1
M(Qτ

m)

∫
Qτ

m∩A

∣∣|g(z)|− |ḡm|
∣∣dM

≥ M
2

M(Qτ
m ∩A)

M(Qτ
m)

≥ M
2

ε .

by the property (3) of the decomposition. In case (3), we have

1 ≥ 1
M(Qτ

m)

∫
Qτ

m

|g(z)− ḡm|dM

≥ 1
M(Qτ

m)

∫
Qτ

m∩{z∈Q:|g(z)|≤t−M}

∣∣|g(z)|− |ḡm|
∣∣dM

≥ M
M(Qτ

m ∩{z ∈ Q : |g(z)| ≤ t −M})
M(Qτ

m)
≥ M

ε
2

by (2.3). Finally, in case (4) we have

1 ≥ 1
M(Qτ

m)

∫
Qτ

m

|g(z)− ḡm|dM(x) ≥ 1
M(Qτ

m)

∫
Qτ

m∩A

∣∣|g(z)|− |ḡm|
∣∣dM(x)

≥ M
M(Qτ

m ∩A)
M(Qτ

m)
≥ Mε

obtained by the property (3) of the decomposition. Therefore, if M is large enough (depending

only on the size of ε) we get a contradiction which proves the claim (2.2).

We now write

M(Qτ
k ∩B) = M(Qτ

k ∩{z ∈ Q : t −M < |g(z)| ≤ t})+M(Qτ
m ∩A).

Hence, by (2.2) and the choice of ε we obtain

(1− ε
2
)M(Qτ

k) < M(Qτ
k ∩{z ∈ Q : t −M < |g(z)| ≤ t})+ (1− ε)M(Qτ

m),

i.e.,

M(Qτ
k ∩{z ∈ Q : t −M < |g(z)| ≤ t}) > (1− ε

2
)M(Qτ

k).

Summing the last inequality over k, using Theorem 2.1 and the bounded overlaps we obtain

K log
1
τ
(M({z ∈ Q : |g(z)| > t −M})−M({z ∈ Q : |g(z)| > t}))

= K log
1
τ
M({z ∈ Q : t −M < |g(z)| < t})

≥∑
k

M(Qτ
k ∩{z ∈ Q : t −M < |g(z)| ≤ t})

>
ε
2 ∑

k
M(Qτ

k) ≥
ε
2
M(

∞⋃
k=1

Qτ
k) ≥

ε
2

δ−1
0 M(A).
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Hence,

M(A) ≤ ε0M(B)

with ε0 =
(

1+
ε
2
(δ0K log

1
τ
)−1

)−1

.

The inequality (2.1) implies that

M({z ∈ Q : |g(z)| > M + kM})≤ εk
0M({z ∈ Q : |g(z)| > M}) ≤ εk

0M(Q) (2.4)

for k = 0,1, · · · .
We write

∫
Q

exp(α |g(z)|)dM = α
∫ ∞

0
eαtM({z ∈ Q : |g(z)| > t})dt

= α
∫ M

0
eαtM({z ∈ Q : |g(z)| > t})dt + α

∫ ∞

M
eαtM({z ∈ Q : |g(z)| > t})dt

= I + II.

Clearly I ≤CM(Q). On the other hand,

II = eαM
∫ ∞

0
eαtM({z ∈ Q : |g(z)| > M + t})dt

= eαM
∞

∑
k=0

∫ (k+1)M

kM
eαtM({z ∈ Q : |g(z)| > M + t})dt

≤ Me2αM
∞

∑
k=0

eαkMM({z ∈ Q : |g(z)| > M + t})

≤ Me2αM
∞

∑
k=0

eαkMεk
0M(Q).

Since ε0 < 1, ε0 = e−λ0 with λ0 > 0, by taking α ≤ λ0 the series converges and we obtain the

desired result.

3 Proof of Theorem 1.2

By Hölder’s inequality, it is easy to see BMOq
P(Rn+1) ⊂ BMOP(Rn+1). On the other hand,

we assume that f ∈ BMOP(Rn+1) with ‖ f‖∗ = 1. Then we can take positive numbers ε0 < 1

and Γ depending only on the constant in (1.2) and the constants in the properties (A) and (B)

of the parabolic sections, such that, for any parabolic section Q ∈ P and each k = 0,1,2, · · · , by

(2.4)

M({z ∈ Q : | f (z)−mQ( f )| > Γ+ kΓ}) ≤ εk
0M({z ∈ Q : | f (z)−mQ( f )| > Γ}). (3.1)
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Thus

1
M(Q)

∫
Q
| f (z)−mQ( f )|dM(z)

=
q

M(Q)

∫ ∞

0
αq−1M({z ∈ Q : | f (z)−mQ( f )| > α})dα

=
q

M(Q)

∫ Γ

0
αq−1M({z ∈ Q : | f (z)−mQ( f )| > α})dα

+
q

M(Q)

∫ ∞

Γ
αq−1M({z ∈ Q : | f (z)−mQ( f )| > α})dα

:=I1 + I2.

We have

I1 ≤ q
M(Q)

∫ Γ

0
αq−1dα ·M(Q) = Γq < ∞.

On the other hand, by (3.1) and ε0 < 1,

I2 =
q

M(Q)

∫ ∞

0
(α + Γ)q−1M({z ∈ Q : | f (z)−mQ( f )| > α + Γ})dα

=
q

M(Q)

∞

∑
k=0

∫ (k+1)Γ

kΓ
(α + Γ)q−1M({z ∈ Q : | f (z)−mQ( f )| > α + Γ})dα

≤ q
M(Q)

∞

∑
k=0

((k + 1)Γ+ Γ)q−1M({z ∈ Q : | f (z)−mQ( f )| > kΓ+ Γ}) ·Γ

≤ q
M(Q)

∞

∑
k=0

(k + 2)q−1Γqεk
0M({z ∈ Q : | f (z)−mQ( f )| > Γ})

≤ qΓq
∞

∑
k=0

(k + 2)q−1εk
0 ≤CqΓq.

Then by (3.2), we conclude that BMOq
P(Rn+1) ⊃ BMOP(Rn+1) and Theorem 1.2 follows.
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