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Abstract. Shi and Tao[6] studied the boundedness of multilinear fractional integrals intro-

duced by Kenig and Stein[3] on product of weighted Lp-spaces, and got some results. We

give some remarks with respect to their results and correct some mistakes. We also consider

another multilinear fractional integral introduced by Grafakos[2].
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1 Introduction

Recently the study of multilinear singular integral operators has received increasing atten-

tion. We are interested in multilinear fractional integrals. There are two types: I(m)
α is defined by

Kenig-Stein[3], and Im
α ,θ is defined by Grafakos[2] . Shi-Tao[6] studied the boundedness of I(m)

α on

product of weighted Lp spaces. They showed [6; Theorem1.1], but it must to be corrected. We

will give a counterexample for [6; Theorem1.1], and give a simple proof of [6; Theorem1.2].

We also consider weighted estimates for Im
α ,θ .

Now we introduce some notations and definitions for our results. We say a locally integrable

function w is a weight if w ≥ 0, and we denote ‖ f‖Lp(Rn:w) =
(∫

Rn
| f (x)|pw(x)dx

)1/p

.
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Next we define two multilinear fractional integrals.

Definition 1.1. Let m be an integer and 0 < α < mn. We define the m-linear fractional

integral

I(m)
α ( f1, f2, · · · , fm)(x)

:=
∫

Rn

m

∏
i=1

fi(x− yi) |(y1,y2, · · · ,ym)|α−mn dy1dy2 · · ·dym.

When m = 1, I(m)
α ( f1, f2, . . . , fm) is the usual fractional integrals Iα( f ) (see [7]).

Kenig-Stein[3] investigated the boundedness of I(m)
α from Lp1 ×Lp2 ×·· ·×Lpm to Lp, where

1/p =
m

∑
i=1

1/pi −α/n.

Definition 1.2. Let 0 < α < n, θi �= 0 (1 ≤ i ≤ m), and θi all distinct. We define another

multilinear fractional integral

Im
α ,θ ( f1, f2, . . . , fm)(x)

:=
∫

Rn

m

∏
i=1

fi(x−θiy) |y|α−n dy, where θ = (θ1, . . . ,θm).

Grafakos[2] investigated the boundedness of Im
α ,θ from Lp1 × Lp2 × ·· · × Lpm to Lp, where

1/p =
m

∑
i=1

1/pi −α/n.

To consider the weighted boundedness of these operators, the following Theorems A and

B are important. In 1974, Muckenhoupt and Wheeden[5] proposed the next weighted norm

inequalities:

Definition 1.3. We say a weight w is in the class Ap(Rn)(1 < p < ∞) if

sup
Q⊂Rn,Q:cube

(
1
|Q|

∫
Q

w(x)dx
)(

1
|Q|

∫
Q

w(x)−
1

p−1 dx
)p−1

< ∞.

Definition 1.4. We say a weight w is in the class Ap,q(Rn)(1 < p,q < ∞) if

sup
Q⊂Rn, Q:cube

(
1
|Q|

∫
Q

w(x)qdx
) 1

q
(

1
|Q|

∫
Q

w(x)−p′dx
) 1

p′
< ∞

and
1
p

+
1
p′

= 1.

Theorem A[5]. Let 1 < p,q < ∞ such that
1
q

= 1
p −

α
n

> 0. If w ∈ Ap,q(Rn), then there

exists a constant C > 0 such that

‖Iα f‖Lq(Rn:wq) ≤C‖ f‖Lp(Rn:wp) .
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Remark . We have w ∈ Ap,p(Rn) if and only if wp ∈ Ap(Rn), and w belongs to Ap,q(Rn) if

and only if wq ∈ A1+ q
p′
(Rn).

Also in 2001, Garcia-Cuerva and Martell[1] introduced the following:

Definition 1.5. For a couple of weights (u,v), we say (u,v) ∈ Aα
p,q(Rn) if there exists r > 1

and a constant C > 0 such that for each cube Q ⊂ Rn,

|Q| 1
q + α

n − 1
p

(
1
|Q|

∫
Q

u(x)rdx
) 1

rq
(

1
|Q|

∫
Q

v(x)r(1−p′)dx
) 1

rp′ ≤C.

Theorem B[1]. Let 0 < α < n and 1 < p < q < ∞. If (u,v) ∈ Aα
p,q(Rn), then there exists a

constant C > 0 such that(∫
Rn

|Iα( f )(x)|q v(x)dx
) 1

q

≤C
(∫

Rn
| f (x)|p u(x)dx

) 1
p

.

Shi-Tao[6; Theorem 1.1] states the following Proposition:

Proposition. Let 0 < α < mn, fi ∈ Lpi(Rn : wpi) with 1 < pi <
mn
α

and w ∈∩m
i=1Api,qi(Rn),

where 1/qi = 1/pi − α/mn. If 1/p = 1/p1 + 1/p2 + · · ·+ 1/pm − α/n, then there exists a

constant C > 0 such that∥∥∥I(m)
α ( f1, f2, . . . , fm)

∥∥∥
Lp(Rn:wp)

≤C
m

∏
i=1

‖ fi‖Lpi (Rn:wpi ) . (1)

However, this result is not true in general. In fact, we will give a counterexample when

m = 2 in §3.

Also Shi-Tao[6] proved the following by using Welland’s inequality. We will give a simple

proof without using this inequality in §2.

Theorem C[6 Theorem 1.2]. Let 0 < α < mn and 1 < pi < mp for every i = 1,2, · · · ,m. If

(u,v) ∈ ∩m
i=1Aα/m

pi,mp, then there is a constant C such that∥∥∥I(m)
α ( f1, f2, . . . , fm)

∥∥∥
Lp(Rn:v)

≤C
m

∏
i=1

‖ fi‖Lpi (Rn:u) . (2)

Recently, Moen[4] showed the weighted estimates for Im
α under weaker condition on (u,v).

We consider weighted estimates for Im
α ,θ and obtain the following results.

Theorem 1. Let 0 < α < n and s be the harmonic mean of p1, p2, . . . , pm > 1. Assume that

1 < s <
n
α

and let
1
p

=
1
s
− α

n
. Then, for w(x) := Πm

i=1wi(x), wpi/s
i ∈ As,p(Rn)(1 ≤ i ≤ m), there

exists a constant C > 0 such that

∥∥Im
α ,θ ( f1, f2, . . . , fm)

∥∥
Lp(Rn:wp) ≤C

m

∏
i=1

‖ fi‖Lpi (Rn:wpi
i ) .
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In particular, when wi ≡ 1 for all i, it is the same as Grafakos [2; Theorem 1] for 1 < s <
n
α

.

Theorem 2. Let 0 < α < n and s be the harmonic mean of p1, p2, . . . , pm > 1 with 1 < s <

p. If (u,v) ∈ Aα
s,p(Rn), then there exists a constant C > 0 such that

∥∥Im
α ,θ ( f1, f2, . . . , fm)

∥∥
Lp(Rn:v) ≤C

m

∏
i=1

‖ fi‖Lpi (Rn:u) .

We will prove Theorems 1 and 2 in the next section. Throughout this paper, we may use

varying a constant C.

2 Proofs of the Results

To prove Theorem C, we need the next lemma.

Lemma 2.1. ∣∣∣I(m)
α ( f1, f2, . . . , fm)(x)

∣∣∣ ≤ m

∏
i=1

Iα
m

(| fi|)(x).

Proof. Since

|(y1,y2, . . . ,ym)| = (|y1|2 + |y2|2 + · · ·+ |ym|2) 1
2 ≥ (|y1| · |y2| · · · |ym|) 1

m ,

we have ∣∣∣I(m)
α ( f1, f2, . . . , fm)(x)

∣∣∣ ≤ ∫
(Rn)m

m

∏
i=1

| fi(x− yi)|
|yi|n−

α
m

dy1dy2 · · ·dym

=
m

∏
i=1

Iα
m
(| fi|)(x),

and ∣∣∣I(m)
α ( f1, f2, . . . , fm)(x)

∣∣∣ ≤ m

∏
i=1

Iα
m
(| fi|)(x).

Another proof of Theorem C. By Lemma 2.1 and Hölder’s inequality with the assumption

(u,v) ∈ ∩m
i=1Aα/m

pi,mp and Theorem B, we have(∫
Rn

∣∣∣I(m)
α ( f1, f2, . . . , fm)(x))

∣∣∣p v(x)dx
) 1

p

≤
(∫

Rn

∣∣∣∣∣
m

∏
i=1

(
Iα

m
(| fi|) (x)

)∣∣∣∣∣
p

v(x)dx

) 1
p

≤
m

∏
i=1

(∫
Rn

Iα
m
(| fi|)(x)mpv(x)dx

) 1
mp

≤C
m

∏
i=1

‖ fi‖Lpi (Rn:u) .
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Therefore, we get (2).

Next we prove Theorem 1. First we prove the following lemma.

Lemma 2.2. Under the condition of Theorem 1, we have

∣∣Im
α ,θ ( f1, f2, . . . , fm)(x)

∣∣ ≤ m

∏
i=1

(
Iα

(
| fi|

pi
s

)
(x)
) s

pi .

Proof. By 1/s = 1/p1 + 1/p2 + · · ·+ 1/pm and Hölder’s inequality, we have

∣∣Im
α ,θ ( f1, f2, . . . , fm)(x)

∣∣ ≤ ∫
Rn

m

∏
i=1

| fi(x−θiy)| |y|α−n dy

≤
m

∏
i=1

(∫
Rn

| fi(x−θiy)|
pi
s |y|α−n dy

) s
pi

=
m

∏
i=1

(
Iα

(
| fi|

pi
s

)
(x)
) s

pi ,

and we get the desired result.

Proof of Theorem 1. By Lemma 2.2, we have∫
Rn

∣∣Im
α ,θ ( f1, f2, . . . , fm)(x)w(x)

∣∣p dx ≤
∫

Rn

m

∏
i=1

((
Iα

(
| fi|

pi
s

)
(x)wpi/s

i

)) s
pi
·p

dx.

By Hölder’s inequality and Theorem A,

∥∥Im
α ,θ ( f1, f2, . . . , fm)

∥∥
Lp(Rn:wp) ≤

m

∏
i=1

(∫
Rn

∣∣∣Iα

(
| fi|

pi
s

)
(x)wpi/s

i (x)
∣∣∣p dx

) s
pi
· 1

p

≤C
m

∏
i=1

(∫
Rn

(
| fi(x)|

pi
s wpi/s

i (x)
)s

dx
) 1

pi

= C
m

∏
i=1

‖ fi‖Lpi (Rn:wpi
i ) .

Hence, we have

∥∥Im
α ,θ ( f1, f2, . . . , fm)

∥∥
Lp(Rn:wp) ≤C

m

∏
i=1

‖ fi‖Lpi (Rn:wpi
i ) .

Theorem 2 can be proved in the same way as that of Theorem C by using Theorem B and

Lemma 2.2, therefore we omit the proof.

3 A Counterexample

We give a counterexample for (1). We consider the case m = 2 and p1 = p2, that is, 1/p =

2/p1 −α/n and 1/q1 = 1/q2 = 1/p1 −α/2n.
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Let 0 < β < n(1−1/p1) and γ = (3/4)β + n/p1. We define the next functions and weight.

Let f1(x) = f2(x) = |x|−γ χ{|x|≤1}(x) and w(x) = |x|β .

By Remark in §1, we have w ∈ Ap1,q1(Rn). Since

pi(−γ + β )+ n = β pi/4 > 0,

we have fi ∈ Lpi(Rn : wpi). However, we get∥∥∥I(2)
α ( f1, f2)

∥∥∥
Lp(Rn:wp)

= ∞.

In fact, let

0 < |x| < 1
10

.

Then ∣∣∣I(2)
α ( f1, f2)(x)

∣∣∣ ≥C
∫

|x|
2 ≤|y1|≤ 3

2 |x|

∫
|x|
2 ≤|y2|≤ 3

2 |x|
f1(x− y1) f2(x− y2)

|(y1,y2)|2n−α dy1dy2

≥C |x|−2γ+α ,

and ∫
Rn

∣∣∣I(2)
α ( f1, f2)(x)

∣∣∣p w(x)pdx ≥C
∫ 1

10

0
t p(−2γ+α+β)+n−1dt = ∞,

since

p(−2γ + α + β + n/p) = −β p/2 < 0.

Therefore, we get the desired result.
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