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Abstract. As a counterpart to best approximation in normed linear spaces, the best coap-
proximation was introduced by Franchetti and Furi. In this paper, we shall consider the
relation between coproximinality M in X and L?(S,M) in L”(S,X). Finally we give some
results in cochebyshev subspaces and additional subspaces.
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1 Introduction

Let X be a normed linear space and M be a nonempty subspace of X. Then a point go € M

is said to be a best coapproximation for x € X if for every g € M,

18— goll < Ilx—gll-

If each x € X has at least one best coapproximation in M, then M is called a coproximinal
subspace of X. If M is a coproximinal subspace in X, then M is closed in X. If each x € X has a
unique best coapproximation in M, then M is called a cochebyshev subspace of X.

Let M be a subspace of a normed linear space X, then for x € X we put

Ry (x) ={go € M: ||g—goll < [lx—gl| Vg €M},

the set of all best coapproximations for x in M. It is clear that Ry, (x) is a closed, bounded and
convex subset of X. The set-valued function R, associated to each x in X is called a cometric

projection opeator. Put

M={xeX : |g| <l|g—x| VgeM} =Ry, 0).
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Let X be a Banach space and (S,M, 1) be a finite complete measure space. A function

¢ : S — X is said to be simple if its range contains only finitely many points xj, x>, ...,x, € X, and
n

if @~!(x;) is measurable for all i = 1,2,...,n. Such ¢ can be written as ¢ = Zx,-in, where %,
i=1
is the characteristic function of the set E; = ¢~ !(x;). A function f : S — X is said to be strongly
measurable if there exists a sequence {¢,} of simple functions with lim ||@,(¢) — f(¢)|| = 0
n—oo
almost everywhere [du].
The space of Bochner p-integrable functions is denoted by L”(S,X) which contains of all

strongly measurable functions f : S — X such that

JIfolrdun <o, 1<p<e

i
The norm in L”(S,X) is defined to be || f||, = (/s Hf(t)H”du(t)) " It is known that LP(S,X) is
a Banach space. It is clear that if M is a closed subspace of a Banach space X, then L?(S,M) is
a closed subspace of L?(S,X), 1 < p < oo,

Let 7 be a set valued mapping, taking each point of a measurable space S into a subset of a

topological space Y. We say that & is weakly measurable if the set
n®(F)={teS:n(t)NF # 0}

is measurable in S for every closed set F in Y.

We say that 7 has a measurable selection if there exists a measurable function f: S — Y
such that f(r) € n(¢) for eachz € S.

We assume that X is a Banach space and M is a closed subspace of X. For each f € L!(S,X),
we defined the map 7y : § — 2M by

m(t)={gEM:f(t)—geM}, te€S.

The aim of this paper is to find more results about coapproximation in LP(S,X) that obtained in

[4]. For this purpose we give a list of known facts needed in the proof of our main results.

Lemma 1.1%,  [f £ : S — X is measurable in the classical sense and has essentially sep-
arable range, then f is strongly measurable.
Lemma 1.2, Let ¢ : S — 2¥ be a weakly measurable set valued function. IfY is a

complete separable metric space, then @ has a measurable selection.
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2 Coproximinality in L7 (S, X)

In this section at first we give some lemmas proved in [5] which are required in the sequel.

Lemma 2.1/, Suppose M is coproximinal and T is weakly measurable. If M is separable,
then L'(S,M) is coproximinal in L' (S, X).

Lemma 2.25).  Let M be a closed subspace of X. Then g € L' (S,M) is a best coapproxima-
tion for an element f of L' (S,X) if and only if for almost all s € S, g(s) is a best coapproximation
for £(s).

Proposition 2.3.  Let M be a closed subspace of X and L' (S, M) be coproximinal in L' (S, X),
then M is coproximinal in X.

Proof. Letae X\ M. Define f:S — X by f(t) =a for any t € S. Since pu(S) < oo,
f € L'(S,X) and so there exists g € Rp1(sp) (f)- Therefore by Lemma 2.2 for any € S, g(t) is
a best coapproximation in M for f(t) = a.

Lemma 2.4. Let M be a coproximinal subspace in X. Then every simple function in

L'(S,X) has a best coapproximation in L' (S,M).

Proof. Let f = le X, and x} be a best coapproximation x; in M. Define [’ = Zx XE;-
i=1
Clearly f' € L'(S,M). For all g € L' (S,M),

g1l = /Hg ldu(®
- ¥ / Ils(e) ()
Y . Nt —xilauto

- /||g (Olldu ()
— e~ f||1

IN

and so f is a best coapproximation for f in L!(S,M).
Definition. Let (S, A, ) be a measure space. A subset F of L'(S,X) is called uniformly
integrable if for every € > 0, there exist § > 0 such that for every E € A with u(E) < 6, then

Llsoldue <e (ren.

Lemma 2.5P).  Ler (S,A, 1) be a measure space, and {f,} convergence to f in L'(S,X).
Then F ={f, f1, fa,...} is uniformly integrable.

Theorem 2.6. Let M be a reflexive subspace and coapproximinal of X. Then L'(S,M) is
coapproximinal in L' (S,X).
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Proof. Suppose f € L'(S,X). Then there exists {f,} of simple functions that
Jim [ [1/a() = f(©)lldpe(r) = 0.
By Lemma 2.4 for any {f,} there exists a best coapproximation {f;} in L' (S, M). Put

K:{f7f17f27"'}7 K/:{fllaféa}

We show K’ has a weakly convergent subsequence. Since M is a reflexive subspace, by Danford
Theorem in [1] and Theorem 13.1 in chapter 502 it is sufficient to verify that K’ is bounded and
uniformly integrable. f’ is a best coapproximation of f,, consequence ||f,|| < ||f|| for every
n> 1. {f,} is convergent in L'(S,X), and so is bounded. Let &€ > 0, by Lemma 2.2 for every
t € Sand every n > 1 f(t) is a best coapproximation of f,(t)andsol|f, (t)|| <||f.(¢)||.by Lemma
2.5 there exists 6 > 0 such that for every measurable subspace E of S with u(E) < &, we have

AHMﬂMMQ<aHmwhumﬁ<6

LIz0ldue) < [ 100 <.
E E

Therefore K’ is uniformly integrable. Then there exists a subsequence of { f; } such that it weakly
converges to f’. Without lose of generality we can suppose f;, — f".Now we show that f’ is a
best coapproximation in L!(S,M) for f. For every P € [L'(S,M)]* with ||P|| < 1 and for every
g€ L\ (S,M)

| <f —gP>|

Nn— o0

< lim [, = || [|P]]
< gim||f; gl
< lim||f, gl
= |If—ell
Therefore
sup{| < f'—g,P>|: Pe[L'(S, M), ||P][ <1} <||f—gll.
Then

I =gl <1f —sll.

Corollary 2.7. Let M be a coapproximinal subspace of X. If dim M < o, then L' (S, M) is

coapproximinal in L' (S,X).
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Theorem 2.8. Let 1 < p < oo. The following are equivalent.

(i) L'(S,M) is coproximinal in L' (S,X).

(i) LP(S,M) is coproximinal in LP(S,X).

Proof.  Suppose LF(S,M) is coproximinal in L”(S,X). Define the maping

J: LI(S,X) — LP(S,X),
IO = FOIF@] "

Hence ||J(f)(2)|| = Hf(t)Hfl’ It is clear that J is bijective. Now suppose f € L!(S,X). Without
lose of generality we can suppose f # 0 a.e.(it). Since J is surjective and L? (S, M) is coproxim-
inal in L” (S, X), there exists g € L'(S,M) such that for every h € L' (S, M)

V(&) =IM)ll, < () = (&)l

By Lemma 2.2 for every y € M a.e.(1l)

() (@) =yl < [ (f)() = II-

Therefore for every y € M a.e.(i),

e@)lle@) 1>~ =yl < W@ IFON " =l

Thus
sOlg®ll> DI =l < 11 @) I,

and so w(t) = g(1)|g(1)]| p! ||f(t)||]_; for every t € S is a best coapproximation for f(z). By
Lemma 2.2 w is a best coapproximation for fin L! (S, M).

Conversely, let f € L(S,X). Since u(S) < oo, LP(S,X) C L'(S,X) and so f € L!(S,X).
Then there exists g € L'(S,M) that is a best coapproximation for f. By Lemma 2.2 for every
t € S ae.(u), g(t) is a best coapproximation for f(¢) and so ||g(r)|| < ||f(¢)|| for every t € S
a.e.(u) and therefore g € L¥(S,M). Now h is an arbitrary element of L”(S,M),

1A () = g(@)I| < () = F(D)]].
Consequently,
1 —ellp < [[h=fll,-

Corollary 2.9. If M be a closed subspace of a Hilbert space H, then for 1 < p < oo,
LP(S,M) is coproximinal in LP(S,X).
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Corollary 2.10. If M be a closed subspace of X, then for 1 < p <o, g € LP(S,M) is a best
coproximinal of f € LP(S,X) if and only if for almost t € S, g(t) is a best coapproximation for
£0).

Theorem 2.11.

(1) Let M be a cochebyshev subspace of X. Then by either condition of Theorem 2.6 or
Lemma 2.1 LF(S,M) is cochebyshev in LP(S,X).

(i) If L (S,M) is cochebyshev in LF' (S, X), then M is cochebyshev in X.

Proof. (i) By either condition of Theorem 2.6 or Lemma 2.1, L(S,M) is coproximinal
in LP(S,X). Suppose g,h € LP(S,M) are two best coapproximations of f € LP(S,X), then by
Corollary 2.10 for almost ¢ € S,g(¢) and h(r) are two best coapproximations for f(z) and so
g(t) = h(t) for almost t € S. Thus g = h a.e.(i).

(ii) Suppose L”(S,M) is cochebyshev in L”(S,X ), then by Proposition 2.3 and Theorem 2.8,

M is coproximinal in X. Let b,c € M be two best coapproximations of a € X. Define
f:S—X, h:S—M, 6 g:S—M
fO)=a,  ht)=c,  g(t)=b.
Clearly f € LP(S,X), g,h € LP(S,M) and g,h are two best coapproximations in L?(S,M) for f.

Since L (S, M) is cochebyshev in L”(S,X), then g =h and so b = c.

Theorem 2.12. Let M,N are separable and coproximinal in X. If for any f € L'(S,X) Ty
is weakly measurable, then L'(S,M)+ L' (S,N) is coproximinal in L' (S,X).

Proof. Let f € L'(S,X) be arbitrary and so 7; is weakly measurable. Then from Lemma
1.2, ; has a measurable selection. Hence there exists a measurable function g : § — M such

that g(¢) € ms(¢) for allt € S. Thus, f(t) — g(t) € M for all t € S. Now, we define
g:S— M by g(t)=f(t)—g(t) forall t€S. (1)

Since M is separable, from Lemma 1.1, g is strongly measurable. But f is strongly measurable,

therefore ¢ is strongly measurable and
18I < [18(2) + &) 2)
Now, we show ||g||1 < ee. For this, consider
sl = [le@ldue) < [ 120)+e0)lau)

S ALGIETO
= Al <ee.
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Similarly for N there exists & € L'(S,N) with the same conditions as g.
Now define w = }(g+h). Clearly g € L'(S,M) +L'(S,N). Now suppose k € L'(S,M) +
L'(S,N), then

wkl = 1l (e0)-+ () ~ ko) [0

< 180+ 560)+ i)+ S h(e) KO |du ()
= [0+ 50—k ldu()
=n

Then L'(S,M) +L'(S,N) is coproximinal in L! (S,X).

(1]
(2]

(3]

(4]

(5]

(6]
(7]
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