SOME RESULTS ABOUT BEST COAPPROXIMATION IN $L^{P}(S,X)$

M. R. Haddadi, N. Hejazjpoor and H. Mazaheri

(Yazd University, Iran)

Received May 18, 2009

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2010

Abstract. As a counterpart to best approximation in normed linear spaces, the best coapproximation was introduced by Franchetti and Furi. In this paper, we shall consider the relation between coproximinality M in X and $L^p(S,M)$ in $L^p(S,X)$. Finally we give some results in cochebyshev subspaces and additional subspaces.

Key words: *coproximinal subspace, cochebyshev subspace, reflexive subspace* **AMS (2010) subject classification:** 46A32, 46M05, 41A17

1 Introduction

Let X be a normed linear space and M be a nonempty subspace of X. Then a point $g_0 \in M$ is said to be a best coapproximation for $x \in X$ if for every $g \in M$,

$$||g-g_0|| \le ||x-g||.$$

If each $x \in X$ has at least one best coapproximation in M, then M is called a coproximinal subspace of X. If M is a coproximinal subspace in X, then M is closed in X. If each $x \in X$ has a unique best coapproximation in M, then M is called a cochebyshev subspace of X.

Let *M* be a subspace of a normed linear space *X*, then for $x \in X$ we put

$$R_M(x) = \{g_0 \in M : ||g - g_0|| \le ||x - g|| \quad \forall g \in M\},\$$

the set of all best coapproximations for x in M. It is clear that $R_M(x)$ is a closed, bounded and convex subset of X. The set-valued function R_M associated to each x in X is called a cometric projection opeator. Put

$$\breve{M} = \{x \in X : \|g\| \le \|g - x\| \ \forall g \in M\} = R_M^{-1}(0).$$

Let *X* be a Banach space and (S, M, μ) be a finite complete measure space. A function $\varphi: S \to X$ is said to be simple if its range contains only finitely many points $x_1, x_2, \ldots, x_n \in X$, and if $\varphi^{-1}(x_i)$ is measurable for all $i = 1, 2, \ldots, n$. Such φ can be written as $\varphi = \sum_{i=1}^n x_i \chi_{E_i}$, where χ_{E_i} is the characteristic function of the set $E_i = \varphi^{-1}(x_i)$. A function $f: S \to X$ is said to be strongly measurable if there exists a sequence $\{\varphi_n\}$ of simple functions with $\lim_{n \to \infty} \|\varphi_n(t) - f(t)\| = 0$ almost everywhere $[d\mu]$.

The space of Bochner *p*-integrable functions is denoted by $L^p(S,X)$ which contains of all strongly measurable functions $f: S \to X$ such that

$$\int_{S} \|f(t)\|^{p} \mathrm{d}\mu(t) < \infty \quad , \quad 1 \le p < \infty \cdot$$

The norm in $L^p(S,X)$ is defined to be $||f||_p = \left(\int_S ||f(t)||^p d\mu(t)\right)^{\frac{1}{p}}$. It is known that $L^p(S,X)$ is a Banach space. It is clear that if M is a closed subspace of a Banach space X, then $L^p(S,M)$ is a closed subspace of $L^p(S,X)$, $1 \le p < \infty$.

Let π be a set valued mapping, taking each point of a measurable space *S* into a subset of a topological space *Y*. We say that π is weakly measurable if the set

$$\pi^{\omega}(F) = \{t \in S : \pi(t) \cap F \neq \emptyset\}$$

is measurable in S for every closed set F in Y.

We say that π has a measurable selection if there exists a measurable function $f: S \longrightarrow Y$ such that $f(t) \in \pi(t)$ for each $t \in S$.

We assume that X is a Banach space and M is a closed subspace of X. For each $f \in L^1(S,X)$, we defined the map $\pi_f : S \longrightarrow 2^M$ by

$$\pi_f(t) = \{g \in M : f(t) - g \in \check{M}\}, \quad t \in S$$

The aim of this paper is to find more results about coapproximation in $L^p(S,X)$ that obtained in [4]. For this purpose we give a list of known facts needed in the proof of our main results.

Lemma 1.1^[4]. If $f: S \longrightarrow X$ is measurable in the classical sense and has essentially separable range, then f is strongly measurable.

Lemma 1.2^[4]. Let $\varphi : S \longrightarrow 2^Y$ be a weakly measurable set valued function. If Y is a complete separable metric space, then φ has a measurable selection.

2 Coproximinality in $L^p(S,X)$

In this section at first we give some lemmas proved in [5] which are required in the sequel.

Lemma 2.1^[5]. Suppose M is coproximinal and π is weakly measurable. If M is separable, then $L^1(S,M)$ is coproximinal in $L^1(S,X)$.

Lemma 2.2^[5]. Let M be a closed subspace of X. Then $g \in L^1(S, M)$ is a best coapproximation for an element f of $L^1(S, X)$ if and only if for almost all $s \in S$, g(s) is a best coapproximation for f(s).

Proposition 2.3. Let M be a closed subspace of X and $L^1(S, M)$ be coproximinal in $L^1(S, X)$, then M is coproximinal in X.

Proof. Let $a \in X \setminus M$. Define $f : S \longrightarrow X$ by f(t) = a for any $t \in S$. Since $\mu(S) < \infty$, $f \in L^1(S,X)$ and so there exists $g \in R_{L^1(S,M)}(f)$. Therefore by Lemma 2.2 for any $t \in S$, g(t) is a best coapproximation in M for f(t) = a.

Lemma 2.4. Let M be a coproximinal subspace in X. Then every simple function in $L^1(S,X)$ has a best coapproximation in $L^1(S,M)$.

Proof. Let $f = \sum_{i=1}^{n} x_i \chi_{E_i}$ and x'_i be a best coapproximation x_i in M. Define $f' = \sum_{i=1}^{n} x'_i \chi_{E_i}$. Clearly $f' \in L^1(S, M)$. For all $g \in L^1(S, M)$,

$$\begin{split} |g - f'||_{1} &= \int_{S} ||g(t) - f'(t)|| d\mu(t) \\ &= \sum_{i=1}^{n} \int_{E_{i}} ||g(t) - x'_{i}|| d\mu(t) \\ &\leq \sum_{i=1}^{n} \int_{E_{i}} ||g(t) - x_{i}|| d\mu(t) \\ &= \int_{S} ||g(t) - f(t)|| d\mu(t) \\ &= ||g - f||_{1} \end{split}$$

and so f' is a best coapproximation for f in $L^1(S, M)$.

Definition. Let (S, \mathcal{A}, μ) be a measure space. A subset F of $L^1(S, X)$ is called uniformly integrable if for every $\varepsilon > 0$, there exist $\delta > 0$ such that for every $E \in \mathcal{A}$ with $\mu(E) < \delta$, then

$$\int_{E} ||f(t)|| \mathrm{d}\mu(t) < \varepsilon \quad (f \in F).$$

Lemma 2.5^[5]. Let (S, A, μ) be a measure space, and $\{f_n\}$ convergence to f in $L^1(S, X)$. Then $F = \{f, f_1, f_2, ...\}$ is uniformly integrable.

Theorem 2.6. Let M be a reflexive subspace and coapproximinal of X. Then $L^1(S,M)$ is coapproximinal in $L^1(S,X)$.

Proof. Suppose $f \in L^1(S, X)$. Then there exists $\{f_n\}$ of simple functions that

$$\lim_{n \to \infty} \int_{S} ||f_n(t) - f(t)|| \mathrm{d}\mu(t) = 0$$

By Lemma 2.4 for any $\{f_n\}$ there exists a best coapproximation $\{f'_n\}$ in $L^1(S, M)$. Put

$$K = \{f, f_1, f_2, \ldots\}, \qquad K' = \{f'_1, f'_2, \ldots\}.$$

We show K' has a weakly convergent subsequence. Since M is a reflexive subspace, by Danford Theorem in [1] and Theorem 13.1 in chapter $5^{[2]}$, it is sufficient to verify that K' is bounded and uniformly integrable. f' is a best coapproximation of f_n , consequence $||f'_n|| \le ||f_n||$ for every $n \ge 1$. $\{f_n\}$ is convergent in $L^1(S,X)$, and so is bounded. Let $\varepsilon > 0$, by Lemma 2.2 for every $t \in S$ and every $n \ge 1$ $f'_n(t)$ is a best coapproximation of $f_n(t)$ and so $||f'_n(t)|| \le ||f_n(t)||$.by Lemma 2.5 there exists $\delta > 0$ such that for every measurable subspace E of S with $\mu(E) < \delta$, we have $\int_E ||f_n(t)|| d\mu(t) < \varepsilon$. Hence for $\mu(E) < \delta$

$$\int_E ||f_n'(t)|| d\mu(t) \leq \int_E ||f_n(t)|| d\mu(t) < \varepsilon,$$

Therefore K' is uniformly integrable. Then there exists a subsequence of $\{f'_n\}$ such that it weakly converges to f'. Without lose of generality we can suppose $f'_n \rightharpoonup f'$.Now we show that f' is a best coapproximation in $L^1(S, M)$ for f. For every $P \in [L^1(S, M)]^*$ with $||P|| \le 1$ and for every $g \in L^1(S, M)$

$$\begin{split} | < f' - g, P > | &= \lim_{n \to \infty} | < f'_n - g, P > | \\ &\leq \lim_{n \to \infty} ||f'_n - g|| \; ||P|| \\ &\leq \lim_{n \to \infty} ||f'_n - g|| \\ &\leq \lim_{n \to \infty} ||f_n - g|| \\ &= ||f - g||. \end{split}$$

Therefore

$$\sup\{| < f' - g, P > | : P \in [L^1(S, M)]^*, ||P|| \le 1\} \le ||f - g||.$$

Then

$$||f' - g|| \le ||f - g||.$$

Corollary 2.7. Let M be a coapproximinal subspace of X. If dim $M < \infty$, then $L^1(S,M)$ is coapproximinal in $L^1(S,X)$.

Theorem 2.8. Let 1 . The following are equivalent.

- (i) $L^1(S,M)$ is coproximinal in $L^1(S,X)$.
- (ii) $L^{p}(S,M)$ is coproximinal in $L^{p}(S,X)$.

Proof. Suppose $L^{P}(S,M)$ is coproximinal in $L^{P}(S,X)$. Define the maping

$$J: L^{1}(S, X) \longrightarrow L^{p}(S, X),$$

$$J(f)(t) = f(t) ||f(t)||^{\frac{1}{p}-1}.$$

Hence $||J(f)(t)|| = ||f(t)||^{\frac{1}{p}}$. It is clear that *J* is bijective. Now suppose $f \in L^1(S,X)$. Without lose of generality we can suppose $f \neq 0$ a.e.(μ). Since J is surjective and $L^p(S,M)$ is coproximinal in $L^p(S,X)$, there exists $g \in L^1(S,M)$ such that for every $h \in L^1(S,M)$

$$||J(g) - J(h)||_p \le ||J(f) - J(g)||_p.$$

By Lemma 2.2 for every $y \in M$ a.e.(μ)

$$||J(g)(t) - y|| \le ||J(f)(t) - y||$$

Therefore for every $y \in M$ a.e.(μ),

$$||g(t)||g(t)||^{\frac{1}{p}-1} - y|| \le ||f(t)||f(t)||^{\frac{1}{p}-1} - y||.$$

Thus

$$|g(t)||g(t)||^{\frac{1}{p}-1}||f(t)||^{1-\frac{1}{p}}-y|| \le ||f(t)-y||,$$

and so $w(t) = g(t)||g(t)||^{\frac{1}{p}-1}||f(t)||^{1-\frac{1}{p}}$ for every $t \in S$ is a best coapproximation for f(t). By Lemma 2.2 w is a best coapproximation for f in $L^1(S, M)$.

Conversely, let $f \in L^1(S,X)$. Since $\mu(S) < \infty$, $L^p(S,X) \subseteq L^1(S,X)$ and so $f \in L^1(S,X)$. Then there exists $g \in L^1(S,M)$ that is a best coapproximation for f. By Lemma 2.2 for every $t \in S$ a.e. (μ) , g(t) is a best coapproximation for f(t) and so $||g(t)|| \leq ||f(t)||$ for every $t \in S$ a.e. (μ) and therefore $g \in L^p(S,M)$. Now h is an arbitrary element of $L^p(S,M)$,

$$||h(t) - g(t)|| \le ||h(t) - f(t)||.$$

Consequently,

$$||h-g||_p \leq ||h-f||_p$$

Corollary 2.9. If M be a closed subspace of a Hilbert space H, then for $1 \le p < \infty$, $L^p(S,M)$ is coproximinal in $L^p(S,X)$.

Corollary 2.10. If *M* be a closed subspace of *X*, then for $1 \le p < \infty$, $g \in L^p(S, M)$ is a best coproximinal of $f \in L^p(S, X)$ if and only if for almost $t \in S$, g(t) is a best coapproximation for f(t).

Theorem 2.11.

(i) Let M be a cochebyshev subspace of X. Then by either condition of Theorem 2.6 or Lemma 2.1 $L^{P}(S,M)$ is cochebyshev in $L^{p}(S,X)$.

(ii) If $L^{P}(S, M)$ is cochebyshev in $L^{P}(S, X)$, then M is cochebyshev in X.

Proof. (i) By either condition of Theorem 2.6 or Lemma 2.1, $L^p(S,M)$ is coproximinal in $L^p(S,X)$. Suppose $g, h \in L^p(S,M)$ are two best coapproximations of $f \in L^p(S,X)$, then by Corollary 2.10 for almost $t \in S, g(t)$ and h(t) are two best coapproximations for f(t) and so g(t) = h(t) for almost $t \in S$. Thus g = h a.e.(μ).

(ii) Suppose $L^p(S,M)$ is cochebyshev in $L^p(S,X)$, then by Proposition 2.3 and Theorem 2.8, M is coproximinal in X. Let $b, c \in M$ be two best coapproximations of $a \in X$. Define

$$f: S \longrightarrow X$$
, $h: S \longrightarrow M$, $g: S \longrightarrow M$
 $f(t) = a$, $h(t) = c$, $g(t) = b$.

Clearly $f \in L^p(S,X)$, $g,h \in L^p(S,M)$ and g,h are two best coapproximations in $L^p(S,M)$ for f. Since $L^p(S,M)$ is cochebyshev in $L^p(S,X)$, then g = h and so b = c.

Theorem 2.12. Let M, N are separable and coproximinal in X. If for any $f \in L^1(S,X)$ π_f is weakly measurable, then $L^1(S,M) + L^1(S,N)$ is coproximinal in $L^1(S,X)$.

Proof. Let $f \in L^1(S,X)$ be arbitrary and so π_f is weakly measurable. Then from Lemma 1.2, π_f has a measurable selection. Hence there exists a measurable function $g: S \longrightarrow M$ such that $g(t) \in \pi_f(t)$ for all $t \in S$. Thus, $f(t) - g(t) \in \check{M}$ for all $t \in S$. Now, we define

$$\breve{g}: S \longrightarrow \breve{M} \text{ by } \breve{g}(t) = f(t) - g(t) \text{ for all } t \in S.$$
(1)

Since M is separable, from Lemma 1.1, g is strongly measurable. But f is strongly measurable, therefore \check{g} is strongly measurable and

$$\|\breve{g}(t)\| \le \|\breve{g}(t) + g(t)\|.$$
⁽²⁾

Now, we show $||g||_1 < \infty$. For this, consider

$$\begin{aligned} \|g(t)\|_{1} &= \int_{S} \|g(t)\| d\mu(t) &\leq \int_{S} \|\breve{g}(t) + g(t)\| d\mu(t) \\ &= \int_{S} \|f(t)\| d\mu(t) \\ &= \|f\|_{1} < \infty. \end{aligned}$$

Similarly for *N* there exists $h \in L^1(S, N)$ with the same conditions as *g*.

Now define $w = \frac{1}{2}(g+h)$. Clearly $g \in L^1(S,M) + L^1(S,N)$. Now suppose $k \in L^1(S,M) + L^1(S,N)$, then

$$\begin{split} \|w-k\|_{1} &= \int_{S} \|\frac{1}{2}(g(t)+h(t))-k(t)\|d\mu(t) \\ &\leq \int_{S} \|\frac{1}{2}\breve{g}(t)+\frac{1}{2}g(t)+\frac{1}{2}\breve{h}(t)+\frac{1}{2}h(t)-k(t)\|d\mu(t) \\ &= \int_{S} \|\frac{1}{2}f(t)+\frac{1}{2}f(t)-k(t)\|d\mu(t) \\ &= \|f-k\|_{1}. \end{split}$$

Then $L^1(S, M) + L^1(S, N)$ is coproximinal in $L^1(S, X)$.

References

- [1] Conway, J. B., A Cource in Functional Analysis, Secound Edition, Springer-Verlag, New york, 1990.
- [2] Diestel, J. and Uhl, J. R., Vector Measur, Math. Surveys Monograghs, Vol. 15, Amer. Math. Soc. Providence, RI, 1997.
- [3] Franchetti, C. and Furi, M., Some Characteristic Properties of Real Hilbert Spaces, Rev. Roumaine Math. Pures Appl, 17(1972), 1045-1048.
- [4] Light, W. and Cheney, W., Approximation Theory in Tensor Product Spaces, Lecture Notes in Math. Springer, New York 1169 (1985).
- [5] Mazaheri. H. and Jesmani, S. J., Some Results on Best Coapproximation in $L^1(S,X)$, Mediterr. J. Math., 62(2008), preprint.
- [6] Narang, T. D., Best Coapproximation in Metric Spaces, Publ. Inst. Math. (Beograd) (N.S) 51(1992), 71-76.
- [7] Papini, P. L. and Singer, I., Best Coapproximation in Normed Linear Spaces, Mh. Math., 88(1979), 27-44.

Faculty of Mathematics

Yazd University,

Iran

M. R. Haddadi

E-mail: haddadi83@math.iut.ac.ir

H. Mazaheri

E-mail: hmazaheri@yazduni.ac.ir