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Abstract. As a counterpart to best approximation in normed linear spaces, the best coap-

proximation was introduced by Franchetti and Furi. In this paper, we shall consider the

relation between coproximinality M in X and Lp(S,M) in Lp(S,X). Finally we give some

results in cochebyshev subspaces and additional subspaces.
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1 Introduction

Let X be a normed linear space and M be a nonempty subspace of X . Then a point g0 ∈ M

is said to be a best coapproximation for x ∈ X if for every g ∈ M,

‖g−g0‖ ≤ ‖x−g‖.

If each x ∈ X has at least one best coapproximation in M, then M is called a coproximinal

subspace of X . If M is a coproximinal subspace in X , then M is closed in X . If each x ∈ X has a

unique best coapproximation in M, then M is called a cochebyshev subspace of X .

Let M be a subspace of a normed linear space X , then for x ∈ X we put

RM(x) = {g0 ∈ M : ‖g−g0‖ ≤ ‖x−g‖ ∀g ∈ M},

the set of all best coapproximations for x in M. It is clear that RM(x) is a closed, bounded and

convex subset of X . The set-valued function RM associated to each x in X is called a cometric

projection opeator. Put

M̆ = {x ∈ X : ‖g‖ ≤ ‖g− x‖ ∀g ∈ M} = R−1
M (0).
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Let X be a Banach space and (S,M,μ) be a finite complete measure space. A function

ϕ : S→X is said to be simple if its range contains only finitely many points x1,x2, . . . ,xn ∈X , and

if ϕ−1(xi) is measurable for all i = 1,2, . . . ,n. Such ϕ can be written as ϕ =
n

∑
i=1

xiχEi
, where χEi

is the characteristic function of the set Ei = ϕ−1(xi). A function f : S → X is said to be strongly

measurable if there exists a sequence {ϕn} of simple functions with lim
n→∞

‖ϕn(t)− f (t)‖ = 0

almost everywhere [dμ ].

The space of Bochner p-integrable functions is denoted by Lp(S,X) which contains of all

strongly measurable functions f : S → X such that

∫
S
‖ f (t)‖pdμ(t) < ∞ , 1 ≤ p < ∞ ·

The norm in Lp(S,X) is defined to be ‖ f‖p =
(∫

S
‖ f (t)‖pdμ(t)

) 1
p

. It is known that Lp(S,X) is

a Banach space. It is clear that if M is a closed subspace of a Banach space X , then Lp(S,M) is

a closed subspace of Lp(S,X), 1 ≤ p < ∞.

Let π be a set valued mapping, taking each point of a measurable space S into a subset of a

topological space Y . We say that π is weakly measurable if the set

πω(F) = {t ∈ S : π(t)∩F �= /0}

is measurable in S for every closed set F in Y .

We say that π has a measurable selection if there exists a measurable function f : S −→ Y

such that f (t) ∈ π(t) for each t ∈ S.

We assume that X is a Banach space and M is a closed subspace of X . For each f ∈ L1(S,X),

we defined the map π f : S −→ 2M by

π f (t) = {g ∈ M : f (t)−g ∈ M̆}, t ∈ S.

The aim of this paper is to find more results about coapproximation in Lp(S,X) that obtained in

[4]. For this purpose we give a list of known facts needed in the proof of our main results.

Lemma 1.1[4]. If f : S −→ X is measurable in the classical sense and has essentially sep-

arable range, then f is strongly measurable.

Lemma 1.2[4]. Let ϕ : S −→ 2Y be a weakly measurable set valued function. If Y is a

complete separable metric space, then ϕ has a measurable selection.
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2 Coproximinality in Lp(S,X)

In this section at first we give some lemmas proved in [5] which are required in the sequel.

Lemma 2.1[5]. Suppose M is coproximinal and π is weakly measurable. If M is separable,

then L1(S,M) is coproximinal in L1(S,X).

Lemma 2.2[5]. Let M be a closed subspace of X. Then g∈ L1(S,M) is a best coapproxima-

tion for an element f of L1(S,X) if and only if for almost all s∈ S, g(s) is a best coapproximation

for f (s).

Proposition 2.3. Let M be a closed subspace of X and L1(S,M) be coproximinal in L1(S,X),

then M is coproximinal in X.

Proof. Let a ∈ X \M. Define f : S −→ X by f (t) = a for any t ∈ S. Since μ(S) < ∞,

f ∈ L1(S,X) and so there exists g ∈ RL1(S,M)( f ). Therefore by Lemma 2.2 for any t ∈ S, g(t) is

a best coapproximation in M for f (t) = a.

Lemma 2.4. Let M be a coproximinal subspace in X. Then every simple function in

L1(S,X) has a best coapproximation in L1(S,M).

Proof. Let f =
n

∑
i=1

xiχEi and x′i be a best coapproximation xi in M. Define f ′ =
n

∑
i=1

x′iχEi .

Clearly f ′ ∈ L1(S,M). For all g ∈ L1(S,M),

||g− f ′||1 =
∫

S
||g(t)− f ′(t)||dμ(t)

=
n

∑
i=1

∫
Ei

||g(t)− x′i||dμ(t)

≤
n

∑
i=1

∫
Ei

||g(t)− xi||dμ(t)

=
∫

S
||g(t)− f (t)||dμ(t)

= ||g− f ||1

and so f ′ is a best coapproximation for f in L1(S,M).

Definition. Let (S,A,μ) be a measure space. A subset F of L1(S,X) is called uniformly

integrable if for every ε > 0, there exist δ > 0 such that for every E ∈ A with μ(E) < δ , then
∫

E
|| f (t)||dμ(t) < ε ( f ∈ F).

Lemma 2.5[5]. Let (S,A,μ) be a measure space, and { fn} convergence to f in L1(S,X).

Then F = { f , f1, f2, . . .} is uniformly integrable.

Theorem 2.6. Let M be a reflexive subspace and coapproximinal of X. Then L1(S,M) is

coapproximinal in L1(S,X).
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Proof. Suppose f ∈ L1(S,X). Then there exists { fn} of simple functions that

lim
n→∞

∫
S
|| fn(t)− f (t)||dμ(t) = 0.

By Lemma 2.4 for any { fn} there exists a best coapproximation { f ′n} in L1(S,M). Put

K = { f , f1, f2, . . .}, K′ = { f ′1, f ′2, . . .}.

We show K′ has a weakly convergent subsequence. Since M is a reflexive subspace, by Danford

Theorem in [1] and Theorem 13.1 in chapter 5[2], it is sufficient to verify that K′ is bounded and

uniformly integrable. f ′ is a best coapproximation of fn, consequence || f ′n|| ≤ || fn|| for every

n ≥ 1. { fn} is convergent in L1(S,X), and so is bounded. Let ε > 0, by Lemma 2.2 for every

t ∈ S and every n ≥ 1 f ′n(t) is a best coapproximation of fn(t)andso|| f ′n(t)|| ≤ || fn(t)||.by Lemma

2.5 there exists δ > 0 such that for every measurable subspace E of S with μ(E) < δ , we have∫
E
|| fn(t)||dμ(t) < ε . Hence for μ(E) < δ

∫
E
|| f ′n(t)||dμ(t) ≤

∫
E
|| fn(t)||dμ(t) < ε ,

Therefore K′ is uniformly integrable. Then there exists a subsequence of { f ′n} such that it weakly

converges to f ′. Without lose of generality we can suppose f ′n ⇀ f ′.Now we show that f ′ is a

best coapproximation in L1(S,M) for f . For every P ∈ [L1(S,M)]∗ with ‖P‖ ≤ 1 and for every

g ∈ L1(S,M)

| < f ′ −g,P > | = lim
n→∞

| < f ′n −g,P > |
≤ lim

n→∞
|| f ′n −g|| ||P||

≤ lim
n→∞

|| f ′n −g||
≤ lim

n→∞
|| fn −g||

= || f −g||.

Therefore

sup{| < f ′ −g,P > | : P ∈ [L1(S,M)]∗, ||P|| ≤ 1} ≤ || f −g||.

Then

|| f ′ −g|| ≤ || f −g||.

Corollary 2.7. Let M be a coapproximinal subspace of X. If dim M < ∞, then L1(S,M) is

coapproximinal in L1(S,X).
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Theorem 2.8. Let 1 < p < ∞. The following are equivalent.

(i) L1(S,M) is coproximinal in L1(S,X).

(ii) Lp(S,M) is coproximinal in Lp(S,X).

Proof. Suppose LP(S,M) is coproximinal in LP(S,X). Define the maping

J : L1(S,X) −→ Lp(S,X),

J( f )(t) = f (t)|| f (t)|| 1
p−1.

Hence ||J( f )(t)|| = || f (t)|| 1
p . It is clear that J is bijective. Now suppose f ∈ L1(S,X). Without

lose of generality we can suppose f �= 0 a.e.(μ). Since J is surjective and Lp(S,M) is coproxim-

inal in Lp(S,X), there exists g ∈ L1(S,M) such that for every h ∈ L1(S,M)

||J(g)− J(h)||p ≤ ||J( f )− J(g)||p.

By Lemma 2.2 for every y ∈ M a.e.(μ)

||J(g)(t)− y|| ≤ ||J( f )(t)− y||.

Therefore for every y ∈ M a.e.(μ),

||g(t)||g(t)|| 1
p−1 − y|| ≤ || f (t)|| f (t)|| 1

p−1 − y||.

Thus

||g(t)||g(t)|| 1
p−1|| f (t)||1− 1

p − y|| ≤ || f (t)− y||,

and so w(t) = g(t)||g(t)|| 1
p−1|| f (t)||1− 1

p for every t ∈ S is a best coapproximation for f (t). By

Lemma 2.2 w is a best coapproximation for f in L1(S,M).

Conversely, let f ∈ L1(S,X). Since μ(S) < ∞, Lp(S,X) ⊆ L1(S,X) and so f ∈ L1(S,X).

Then there exists g ∈ L1(S,M) that is a best coapproximation for f . By Lemma 2.2 for every

t ∈ S a.e.(μ), g(t) is a best coapproximation for f (t) and so ||g(t)|| ≤ || f (t)|| for every t ∈ S

a.e.(μ) and therefore g ∈ LP(S,M). Now h is an arbitrary element of Lp(S,M),

||h(t)−g(t)|| ≤ ||h(t)− f (t)||.

Consequently,

||h−g||p ≤ ||h− f ||p.

Corollary 2.9. If M be a closed subspace of a Hilbert space H, then for 1 ≤ p < ∞,

Lp(S,M) is coproximinal in Lp(S,X).
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Corollary 2.10. If M be a closed subspace of X, then for 1 ≤ p < ∞, g ∈ Lp(S,M) is a best

coproximinal of f ∈ Lp(S,X) if and only if for almost t ∈ S, g(t) is a best coapproximation for

f (t).

Theorem 2.11.
(i) Let M be a cochebyshev subspace of X. Then by either condition of Theorem 2.6 or

Lemma 2.1 LP(S,M) is cochebyshev in Lp(S,X).

(ii) If LP(S,M) is cochebyshev in LP(S,X), then M is cochebyshev in X.

Proof. (i) By either condition of Theorem 2.6 or Lemma 2.1, Lp(S,M) is coproximinal

in Lp(S,X). Suppose g,h ∈ Lp(S,M) are two best coapproximations of f ∈ Lp(S,X), then by

Corollary 2.10 for almost t ∈ S,g(t) and h(t) are two best coapproximations for f (t) and so

g(t) = h(t) for almost t ∈ S. Thus g = h a.e.(μ).

(ii) Suppose Lp(S,M) is cochebyshev in Lp(S,X), then by Proposition 2.3 and Theorem 2.8,

M is coproximinal in X . Let b,c ∈ M be two best coapproximations of a ∈ X . Define

f : S −→ X , h : S −→ M , g : S −→ M

f (t) = a, h(t) = c, g(t) = b.

Clearly f ∈ Lp(S,X), g,h ∈ Lp(S,M) and g,h are two best coapproximations in Lp(S,M) for f .

Since LP(S,M) is cochebyshev in LP(S,X), then g = h and so b = c.

Theorem 2.12. Let M,N are separable and coproximinal in X. If for any f ∈ L1(S,X) π f

is weakly measurable, then L1(S,M)+ L1(S,N) is coproximinal in L1(S,X).

Proof. Let f ∈ L1(S,X) be arbitrary and so π f is weakly measurable. Then from Lemma

1.2, π f has a measurable selection. Hence there exists a measurable function g : S −→ M such

that g(t) ∈ π f (t) for all t ∈ S. Thus, f (t)−g(t) ∈ M̆ for all t ∈ S. Now, we define

ğ : S −→ M̆ by ğ(t) = f (t)−g(t) for all t ∈ S. (1)

Since M is separable, from Lemma 1.1, g is strongly measurable. But f is strongly measurable,

therefore ğ is strongly measurable and

‖ğ(t)‖ ≤ ‖ğ(t)+ g(t)‖. (2)

Now, we show ‖g‖1 < ∞. For this, consider

‖g(t)‖1 =
∫

S
‖g(t)‖dμ(t) ≤

∫
S
‖ğ(t)+ g(t)‖dμ(t)

=
∫

S
‖ f (t)‖dμ(t)

= ‖ f‖1 < ∞.
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Similarly for N there exists h ∈ L1(S,N) with the same conditions as g.

Now define w = 1
2(g + h). Clearly g ∈ L1(S,M)+ L1(S,N). Now suppose k ∈ L1(S,M)+

L1(S,N), then

‖w− k‖1 =
∫

S
‖1

2
(g(t)+ h(t))− k(t)‖dμ(t)

≤
∫

S
‖1

2
ğ(t)+

1
2

g(t)+
1
2

h̆(t)+
1
2

h(t)− k(t)‖dμ(t)

=
∫

S
‖1

2
f (t)+

1
2

f (t)− k(t)‖dμ(t)

= ‖ f − k‖1.

Then L1(S,M)+ L1(S,N) is coproximinal in L1(S,X).
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