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Abstract. In this article we show that the order of the point value, in the sense of Ło-
jasiewicz, of a tempered distribution and the order of summability of the pointwise Fourier
inversion formula are closely related. Assuming that the order of the point values and cer-
tain order of growth at infinity are given for a tempered distribution, we estimate the order
of summability of the Fourier inversion formula. For Fourier series, and in other cases, it
is shown that if the distribution has a distributional point value of order k, then its Fourier
series is e.v. Cesàro summable to the distributional point value of order k+1. Conversely,
we also show that if the pointwise Fourier inversion formula is e.v. Cesàro summable of
order k, then the distribution is the (k +1)-th derivative of a locally integrable function, and
the distribution has a distributional point value of order k+2. We also establish connections
between orders of summability and local behavior for other Fourier inversion problems.
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1 Introduction

The present article is concerned with the study of summability of the pointwise Fourier
inversion formula for tempered distributions reported in [35, 36].

The study of the relation between the value of a function at a point and the convergence and
summability of Fourier series and Fourier integrals has a long history. Since the convergence
fails in most interesting cases, this study is carry out by means of summability methods.

In the case of Fourier series, it was said by A. Zygmund[46] that the problem of summability
of Fourier Series of classical functions at individual points could be considered as a closed chap-
ter in Mathematics. However, due to the introduction of the so called Generalized Functions,
new problems were opened.

Using the concept of the value of a distribution at a point in the sense of Łojasiewicz[21], one
can extend many results from the classical theory of Fourier series of functions to distributions.
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For example, one of the most basic results in the classical theory says that if f ∈ L1[0,2π] its
(symmetric) Fourier series is (C,1) summable at every Lebesgue point [11,19,46], then, this result
admits extension. The first extension to periodic distributions was given by G. Walter [42],43];
moreover, he implicitly obtained the order of Cesàro summability of the symmetric partial sums
in terms of the order of the distributional point value. Multidimensional problems for the Fourier
transform have been investigated in [12, 38].

A distributional point of view of Fourier series is sometimes more convenient because it
provides new interpretations of summability of trigonometric series that the classical point of
view hides in somehow. For instance, the relationship between existence of the distributional
point value and the Cesàro summability of Fourier series has been achieved in the following
result which completely characterizes distributional point values[16] . It is remarkable that such a
characterization has not been given for classical functions.

Theorem 1.1. Let f ∈ D′(R) be a periodic distribution of period 2π and let
∞

∑
n=−∞

cneinx be

its Fourier series. Let x0 ∈ R. Then f (x0) = γ , in the sense of Łojasiewicz, if and only if there
exists k ∈ N such that

lim
x→∞ ∑

−x<n≤ax
cneinx0 = γ (C,k)

for each a > 0.
Notice that when a = 1, the case of symmetric Cesàro means, the above limit reduces to

the statement of the (C,k) summability of the usual sines and cosines Fourier series of the
distribution.

We emphasize that the use of asymmetric partial sums is fundamental, since the Cesàro
summability of the symmetric partial sums is not enough to conclude the existence of the distri-

butional point value ( f (x) =
∞

∑
n=1

nsinnx at x = 0 is an example).

In the case of Fourier integrals of classical functions the situation is similar to that of Fourier
series, summability methods must be employed as well. One has also a Cesàro summability
version for the Fourier inversion integral formula in a theorem due to Plancherel[27,31] . Other
methods of summability are also studied in classical books [3, 4]. Actually, the approach given
in [3, 4] is very close to distributional point values. Indeed, what they do is to consider pointwise
inversion formulas of the type

lim
x→∞

1
2π

∫ ∞

−∞
f̂ (t)eix0tφ

( t
x

)
dt = φ(0) f (x0) , (1.1)

which is what one usually does in distribution theory when dealing with distributional point
values.

In recent works, the authors have been able to characterize the distributional point values of
tempered distributions by means of a generalized pointwise Fourier inversion formula [35,36]. Let
us state this result; we will explain the notation later in Section 2.

Theorem 1.2. Let f ∈ S′(R). We have f (x0) = γ , in the sense of Łojasiewicz, if and only
if there exists k ∈ N such that

1
2π

e.v.
〈

f̂ (t) ,eix0t〉= γ (C,k) ,
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which in case f̂ is locally integrable means that

1
2π

e.v.

∫ ∞

−∞
f̂ (t)eix0tdt = γ (C,k) .

This result includes Theorem 1.1 as a special case and also includes “trigonometric integrals”
of tempered functions. Theorem 1.2 provides a complete characterization of the distributional
point values of tempered distributions. However, Theorems 1.1 and its extension to tempered
distributions, Theorem 1.2, have a little gap, namely, they do not establish a connection between
the order of summability of the Fourier inversion formula and the order of the point values (see
Section 2 for definitions of these two orders).

Our aim in this work is to establish a relation between these two orders. Among other
results, we show that if a tempered distribution, with certain restrictions of growth at ∞, has
a point value of order k, then the special value of the Fourier inversion formula is summable
(C,k + 1) to the value. In the case of Fourier series, these restrictions of growth do not appear,
hence we have generalized the result from [42] and [45]. We also reformulate the result for
Fourier series and integrals in terms of summability with respect to a family of kernels, and
hence the characterization of distributional point values takes the form of (1.1) for just certain
φ ’s taken from this family of summability kernels.

It is interesting to mention that these ideas are closely related to the classical problem of
(C) summability for Fourier series (see [46, Chapter XI] and references therein). The first
to formulate the problem were Hardy and Littlewood [16,17]. It basically aims to characterize
trigonometric series such that their sines and cosines series,

a0

2
+

∞

∑
n=1

(an cosnx0 + bn sinnx0) ,

are Cesàro summable at a given point x0 and whose coefficients are of slow growth (hence
they are tempered distributions!). If we do not care about the order of (C) summability, then
distributional point values provide an easy and quick solution to this problem[Theorem 6.14.5]. A
classical approach to this problem is presented in [46, Chapter XI], where the problem of (C)
summability of the symmetric partial sums is investigated with the use of generalized symmetric
derivatives of integrated trigonometric series (notion which turns out to be equivalent to work
with symmetric point values as shown in Section 6).

The paper is organized as follows. In Section 2, we explain the notions and results from the
theory of generalized functions (distributions) to be used in this paper. In Section 3, we show
that for certain tempered distributions having a point value of order k at a point, the special
value of the Fourier inversion formula is summable (C,β ) to the point value for any β > k; then,
we apply this result to cases of interest; at the end of the section we calculate a bound for the
order of summability of the Fourier inversion formula in the general case. Section 4 is devoted
to discuss some properties of asymptotically homogeneous functions of degree 0, which will
be a fundamental tool in studying summability of the special value pointwise Fourier inversion
formula for tempered distributions. In Section 5, we study the opposite problem, namely, we
estimate the order of the point value having the order of Cesàro summability of pointwise Fourier
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inversion formula. Section 6 is dedicated to the study of symmetric distributional point values;
we formulate and solve the problem of symmetric (C) summability for tempered distributions,
on the way we recover the classical results for Fourier series[16,14,45] . Finally, we study jumps of
distributions and find the order in various formulas for the jump originally found in [36, 37].

2 Preliminaries and Notation

In this section we explain the spaces of test functions and distributions needed in this paper.
We also give a summary of the notion of the value of a distribution at a point[9,21] , Cesàro
behavior and limits of distributions at infinity[7] and some related concepts[35,36] needed in the
future. All of our functions and distributions are over the real line.

The space of test functions D and S and the corresponding spaces of distributions D′ and S′

are well known[29,41]. Given φ ∈ S, we define its Fourier transform by

F(φ)(x) =
∫ ∞

−∞
φ(t)e−ixt dt;

on S′ the Fourier transform is defined as the transpose of the map φ �−→ F(φ) from S to S. We
will use indistinctly the notations f̂ , F( f ) and F{ f (t);x} to denote the Fourier transform of f .

Denote by Γ the Euler gamma function. Recall the definition of the distributions xβ
+/Γ(β +

1), which are defined for all β ∈ C. For ℜe β > −1, they are regular distributions (locally
Lebesgue integrable functions) supported on [0,∞) , and they are defined by analytic continu-
ation for the other values of β [9,29,40]. Note also that when β = −k, k being a positive integer,
then they reduce to δ (k)(x), where δ (x) is the very well known Dirac delta distribution.

Given a distribution f ∈ D′ supported on the interval [0,∞), we denote its primitive of order
β (in short β -primitive) by the convolution[40,41]

f (−β) = f ∗ xβ−1
+

Γ(β )
.

Note that the β -primitive is nothing else but the fractional derivative[41] of order −β . Since we
will frequently use fractional primitives in long calculations, its convenient to introduce some
additional notation. Thus, we also denote the β -primitive by

Iβ { f (t);x} := f (−β)(x) ,

so that when f is locally integrable,

Iβ { f (t);x} =
1

Γ(β )

∫ x

0
f (t)(x− t)β−1 dt . (2.1)

When f is no longer supported on [0,∞), we cannot in general speak about fractional order
primitives. However, if k ∈ N, we say that F is a k-primitive of f if F(k) = f . When f is locally
integrable (not necessarily supported on [0,∞)), we can still use the k-primitive given by formula
(2.1) with k = β .
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The Cesàro behavior of a distribution at infinity is studied by using the order symbols O(xα)
and o(xα) in the Cesàro sense[7,9] . If f ∈ D′ and α ∈ R\{−1,−2,−3, · · · }, we say that f (x) =
O(xα) as x → ∞ in the Cesàro sense and write

f (x) = O(xα) (C) , as x → ∞ ,

if there exists k ∈ N such that every primitive F of order k of f is an ordinary function (locally
integrable) for positive large arguments and satisfies the ordinary order relation

F(x) = p(x)+ O(xα+k) , as x → ∞ ,

for a suitable polynomial p of degree at most k−1. Note that if α > −1, then the polynomial p
is irrelevant. To emphasize the order of the Cesàro behavior, it is convenient to write

f (x) = O(xα) (C,k) , as x → ∞ .

A similar definition applies to the little o symbol. The definitions when x →−∞ are clear.
Using these ideas, one can define the limit of a distribution at ∞ in the Cesàro sense[7,9]. We

should now extend the definition of limits in the Cesàro sense in order to allow fractional orders.
Definition 2.1. Let f ∈ D′ and β ≥ 0 . We say that f has a limit � at infinity in the Cesàro

sense of order β (in the (C,β ) sense) and write

lim
x→∞

f (x) = � (C,β ) , (2.2)

if for a decomposition f = f− + f+ as sum of two distributions supported on (−∞,0] and [0,∞),
respectively, one has that the β -primitive of f+ is an ordinary function (locally integrable) for
large arguments and satisfies the ordinary asymptotic relation

f (−β)
+ (x) =

� xβ

Γ(β + 1)
+ o
(

xβ
)

, as x → ∞ .

The reader can easily check that the definition does not depend on the decomposition f =
f− + f+. If we do not want to make reference to the order β in (2.2), we simply write

lim
x→∞

f (x) = � (C) .

We now turn our attention to the local behavior of generalized functions[9,26,39,40] . Łojasiewicz[21]

defined the value of a distribution f ∈ D′ at the point x0 as the limit

f (x0) := γ = lim
ε→0

f (x0 + εx) ,

if the limit exists in D′, that is if

lim
ε→0

〈 f (x0 + εx),φ(x)〉 = γ
∫ ∞

−∞
φ(x)dx , (2.3)

for each φ ∈ D. Since (2.3) is only supposed to hold for φ ∈ D, we emphasize this fact saying
that f (x0) = γ in D′, in case that (2.3) is satisfied. Suppose now that f ∈ S′ and f (x0) = γ in D′;
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initially, (2.3) does not have to be true for φ ∈ S. However, it is shown in [8, Corollary 1] and
[39, Section 6] that if (2.3) holds for φ ∈ D, it will remain true for φ ∈ S; so we are in the right
to say f (x0) = γ in S′, and this is equivalent to the existence of f (x0) in D′.

It was shown by Łojasiewicz [21] that the existence of the distributional point value f (x0) = γ
is equivalent to the existence of n ∈ N, and a primitive of order n of f , that is F(n) = f , which is
continuous in a neighborhood of x0 and satisfies

lim
x→x0

n!F(x)
(x− x0)

n = γ . (2.4)

Note that (2.4) says that any n-primitive of f has an nth differential in the sense of Peano [2] (see
also [46, Chapter XI, page 59] in connection with differentiated trigonometric series).

It is convenient to define the order of the value of a tempered distribution at a point. Our
definition differs from that of Łojasiewicz[21]. We should adopt a little variant of Łojasiewicz’s
original definition for the sake of convenience.

Definition 2.2. Let f be a tempered distribution. We say that f has a (distributional) point
value γ at x0 in S′ of order n, and write f (x0) = γ in S′ with order n, if n is the minimum integer
such that there exists a locally bounded measurable function F of polynomial growth at infinity
such that F (n) = f and F satisfies (2.4).

A similar definition has been also adopted in [44, Section 8.3, Definition 8.1] for studying
distributional point values of tempered distributions in relation with orthogonal wavelets and
multiresolution analysis approximations for spaces of tempered distributions.

The final concept we would like to discuss here is that of distributional evaluations in the
e.v. Cesàro sense, as defined by the authors in [35, 36].

Definition 2.3. Let g ∈ D′, φ ∈C∞(R) and β ≥ 0. We say that the evaluation 〈g(x) ,φ (x)〉
exists in the e.v. Cesàro sense (of order β ), and write

e.v. 〈g(x) ,φ (x)〉 = γ (C,β ) , (2.5)

if for some primitive G of gφ and ∀a > 0 we have

lim
x→∞

(G(ax)−G(−x)) = γ (C,β ) .

If g is locally integrable then we write (2.5) as

e.v.

∫ ∞

−∞
g(x)φ (x) dx = γ (C,β ) . (2.6)

If (2.5) exists, we also say that the special value of the evaluation exists in the (C,β ) sense.
Similarly for (2.6), we say that the special value of the integral exists in the (C,β ) sense.

The last definition allows us to make sense out of the Fourier inversion formula; indeed
[35, 36], the authors have shown that f ∈ S′ has a point value γ at x0 if and only if

e.v.
〈

f̂ (x),eix0x〉= 2πγ (C,k) , (2.7)

for some k ∈ N. As we mentioned at the Introduction, this result does not say anything about
the relationship between the order of summability of this inversion formula and the order of the
point value; this will be the main subject of Section 3 and Section 5 in the present article.
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3 Order of Summability

In this section we obtain a bound for the order of summability of the Fourier inversion
formula for tempered distributions in the general case. We also analyze two particular cases, the
case of Fourier series and the case of distributions with compact support; in both cases we obtain
the expected result: if the distribution has a value of order k, then the order of summability of
the Fourier inversion formula is at least k + 1.

Suppose that f ∈ S′ is so that f̂ ∈ L1
loc(R). Denote by θA the characteristic function of a set

A. Then note that (2.7) holds if and only if

lim
x→∞

1
2π

∫ ∞

−∞
f̂ (t)eix0tφβ

a

( t
x

)
dt = f (x0) , (3.1)

where φβ
a is the summability kernel given by

φβ
a (t) = (1+ t)β θ[−1,0](t)+

(
1− t

a

)β
θ[0,a](t) . (3.2)

Indeed, this follows directly from Definition 2.3. Observe that we may consider (3.2) as the
summability kernels of asymmetric (C,β ) means. Notice also that if (3.1) holds for some β ,
then it holds for any β̃ ≥ β . We shall need some properties of these kernels, they are stated in
the next lemma.

Lemma 3.1. Suppose that 0 < β ≤ 1. Then,

∣∣∣φ̂ β
a (t)

∣∣∣≤ 2+ 3β
(
1+ a−1)

tβ+1 , t > 1 .

Moreover,
∫ ∞

−∞
φ̂β

a (t)dt = 2π .

Proof. Suppose the inequality is satisfied, then φ̂ β
a ∈ L1(R)∩L2(R), so the very well known

classical result [4, page 62] implies that the pointwise Fourier inversion formula holds in this

case, and thus we have
∫ ∞

−∞
φ̂β

a (t)dt = 2πφβ
a (0) = 2π . Let us now show the inequality.

∣∣∣φ̂ β
a (t)

∣∣∣= ∣∣∣∣
∫ 1

0
(1−u)β (eitu + ae−iatu)du

∣∣∣∣
=

β
t

∣∣∣∣
∫ 1

0
(1−u)β−1(e−iatu − eitu)du

∣∣∣∣
=

β
tβ+1

∣∣∣∣
∫ t

0
uβ−1(e−iat eiau − eite−iu)du

∣∣∣∣
≤ 2

tβ+1 +
β

tβ+1

∣∣∣∣
∫ t

1
uβ−1(e−iat eiau − eite−iu)du

∣∣∣∣
≤ 2

tβ+1 +
β

tβ+1 (a−1 + 1)
(

1+ tβ−1 +(1−β )
∫ ∞

1
uβ−2du

)
,

where in the last step we have used integration by parts.
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The explicit value of the constant term in the bound from the last lemma is unimportant,
however, we will use the fact that this estimate holds uniformly for a on compact subsets of
(0,∞).

We start to study the pointwise Fourier inversion formula. We first show a proposition con-
cerning the L2(R)-case. The proof of the following proposition is similar to that of [31, Theorem
13], but we include it for the sake of completeness.

Proposition 3.2. Suppose that g ∈ L2(R). If g is continuous at x0, then we have for any
β > 0,

1
2π

e.v.
〈
ĝ(t),eix0t〉= g(x0) (C,β ) ,

or, which amounts to the same,

lim
x→∞

1
2π

∫ ∞

−∞
ĝ(t)eix0tφβ

a

( t
x

)
dt = g(x0) , (3.3)

uniformly for a on compact subsets of (0,∞).
Proof. By considering g(x + x0), we may assume that x0 = 0. We may also assume that

0 < β ≤ 1, because if it holds for those values of β , then it holds for any β > 0.
We have that ∫ ∞

−∞
ĝ(t)φβ

a

( t
x

)
dt = x

∫ ∞

−∞
g(t)φ̂ β

a (xt)dt .

Therefore (3.3) holds if and only if

lim
x→∞

∫ ∞

−∞
g(t)Kβ

a (t,x)dt = g(0) ,

where Kβ
a (t,x) = xφ̂ β

a (xt)/(2π). Now, because of Lemma 3.1 and the boundedness of φ̂ β
a , the

kernel Kβ
a (t,x) satisfies the following properties

∫ ∞

−∞
Kβ

a (t,x)dt = 1,
∣∣∣Kβ

a (t,x)
∣∣∣ ≤ Mx ,

∣∣∣Kβ
a (t,x)

∣∣∣ ≤ N
xβ tβ+1 , (3.4)

for some positive constants M and N, and the last inequality being valid for x |t| ≥ 1. The
estimates are satisfied uniformly for a on compact sets. Pick δ > 0 such that if |t| < δ then
|g(t)−g(0)| < ε ; keep x−1 < min{ε ,δ}, then∣∣∣∣

∫ ∞

−∞
(g(t)−g(0))Kβ

a (t,x)dt
∣∣∣∣

≤ ε
∫ 1

x

− 1
x

∣∣∣Kβ
a (t,x)

∣∣∣dt +
∫
|t|≥ 1

x

|g(t)−g(0)|
∣∣∣Kβ

a (t,x)
∣∣∣dt

≤ 2ε(M + Nβ−1)+
N
xβ

∫ ∞

|t|≥δ

|g(t)−g(0)|
tβ+1 dt

hence,

lim
x→∞

∣∣∣∣ 1
2π

∫ ∞

−∞
ĝ(t)φβ

a

( t
x

)
dt −g(0)

∣∣∣∣ ≤ 2ε(M + Nβ−1) ,



Anal. Theory Appl., Vol. 26, No.1 (2010) 21

since ε is arbitrary, this completes the proof.
Remark 3.3. Proposition 3.2 still holds if one assumes that x0 is a Lebesgue point of

g instead of the continuity at x0. This proposition is also true for kernels φ other than φβ
a ;

in fact, the proposition is valid if K(t,x) = xφ(xt)/(2π) satisfies (3.4), that is K(t,x) satis-

fies
∫ ∞

−∞
K(t,x)dt = 1, |K(t,x)| ≤ Mx for |t|x < B and |K(t,x)| < Nx−αt−α−1, for some pos-

itive constants B,M,N and α . For other related results, the reader can consult Titchmarsh’s
book[31 Chapter 1].

In order to make further progress, we need two formulas. They are stated in the next two
lemmas.

Lemma 3.4. Let h ∈ D′ and m,k ∈ N. Suppose that m ≥ k, then

xkh(m)(x) =
k

∑
j=0

(−1) j k!
(k− j)!

(
m
j

)
dm− j

dxm− j

(
xk− jh(x)

)
.

Proof. It follows directly from the very well known formula[Lemma 1.3], which is valid if
ϕ ∈C∞(R),

ϕh(m) =
k

∑
j=0

(−1) j
(

m
j

)
dm− j

dxm− j

(
ϕ ( j)h

)

applied to ϕ(x) = xk.
Lemma 3.5. Let h be a locally integrable function supported on [0,∞). For any positive

number β and positive integer k

Iβ

{
tkh(t);x

}
=

k

∑
j=0

(−1) j
(

k
j

)
Γ(β + j)

Γ(β )
xk− jh(−β− j)(x) .

Proof. We proceed by induction over k. For k = 1,

Iβ {th(t);x} =
1

Γ(β )

∫ x

0
(x− t)β−1th(t)dt

= xh(−β)(x)− 1
Γ(β )

∫ x

0

(∫ t

0
(x−u)β−1h(u)du

)
dt

= xh(−β)(x)− 1
Γ(β )

∫ x

0
(x−u)β h(u)du

= xh(−β)(x)−βh(−β−1)(x) .

If the formula is true for k, then

Iβ

{
tk+1h(t);x

}
=

k

∑
j=0

(−1) j
(

k
j

)
Γ(β + j)

Γ(β )
xk− jIβ+ j {th(t);x}

=
k

∑
j=0

(−1) j
(

k
j

)
Γ(β + j)

Γ(β )
xk+1− jh(−β− j)(x)
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−
k

∑
j=0

(−1) j
(

k
j

)
Γ(β + j)

Γ(β )
(β + j)xk− jh(−β− j−1)(x)

=
k+1

∑
j=0

(−1) j
(

k + 1
j

)
Γ(β + j)

Γ(β )
xk+1− jh(−β− j)(x) .

We begin to analyze the case of tempered distributions, by first imposing some strong re-
strictions to the behavior of the distribution at infinity.

Theorem 3.6. Let f ∈ S′. Suppose that there exists m ∈ N such that every m-primitive of
f is a locally integrable function for large arguments and satisfies the estimate O

(
|x|m−1

)
, as

x → ∞. If f has a distributional point value f (x0) = γ at x0 in S′, whose order is n, then

1
2π

e.v.
〈

f̂ (x),eix0x〉= γ (C,β ) ,

for any β > k = max{m,n} .

Proof. We can assume that x0 = 0. Take h, a k-primitive of f , such that h is a locally
bounded measurable function and h(x) = O

(
|x|k−1

)
, as |x| → ∞, and h(x) = γxk/k! + o

(
|x|k
)

as x→ 0. Set g(x) = h(x)/xk , then g∈ L2(R) and g is continuous at 0 with g(0) = γ/k! . Consider
ĝ ∈ L2(R). Then,

(ĝ)(k) (x) = (−i)kF
{

tkg(t);x
}

= (−i)kF{h(t);x} = (−i)kĥ(x) .

Thus,
f̂ (x) = F

{
h(k)(t);x

}
= ikxkĥ(x) = (−1)kxk (ĝ)(k) (x) . (3.5)

We now look at a k-primitive of f̂ . Indeed, by (3.5) and Lemma 3.4

F(x) =
k

∑
j=0

(−1)k− j k!
(k− j)!

(
k
j

)
I j

{
tk− jĝ(t)(t);x

}
(3.6)

is a k-primitive of f̂ . Let β > k and a > 0. Set β̃ = β − k. To show the theorem, one should
prove that

F1(x) :=
1

ak−1 F(ax)+ (−1)kF(−x) =
2πγxk−1

(k−1)!
+ o
(

xk−1
)

(C,β − k + 1)

as x → ∞. Therefore, we have to show that

Iβ̃+1 {F1(t);x} =
1

Γ(β̃ + 1)

∫ x

0
(x− t)β̃ F1(t)dt (3.7)

=
2πγxβ

Γ(β + 1)
+ o
(

xβ
)

, as x → ∞ .
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Notice that

a1−kI j

{
tk− j ĝ(t);ax

}
+(−1)kI j

{
tk− j ĝ(at);−x

}
= I j

{
tk− j(aĝ(t)+ ĝ(−t));x

}
,

So, setting g1(t) := aĝ(at)+ ĝ(−t) for t ≥ 0 and g1(t) := 0 for t < 0 we obtain from Lemma 3.4
and (3.6)

F1(x) =
k

∑
j=0

(−1)k− j k!
(k− j)!

(
k
j

)
I j

{
tk− jg1(t);x

}

= (−1)kIk

{
tkg(k)

1 (t);x
}

, for x > 0 ,

then, by Lemma 3.5, for x > 0

Iβ̃+1 {F1(t);x} = (−1)kIβ+1

{
tkg(k)

1 (t);x
}

=
k

∑
j=0

(−1)k− j
(

k
j

)
Γ(β + 1+ j)

Γ(β + 1)
xk− jg(−β̃−1− j)

1 (x) ,

but

g(−β̃−1− j)
1 (x) =

xβ̃+ j

Γ(β̃ + 1+ j)

∫ ∞

−∞
ĝ(t)φβ̃+ j

a

( t
x

)
dt ∼ 2πγxβ̃+ j

k!Γ(β̃ + 1+ j)
,

as x → ∞, where the last asymptotic relation holds in view of Proposition 3.2, the continuity of
g at 0, and the fact g(0) = γ/k!. Therefore,

Iβ̃+1 {F1(t);x} =
2πγ xβ

k!Γ(β + 1)

k

∑
j=0

(−1)k− j
(

k
j

)
Γ(β + 1+ j)

Γ(β − k + 1+ j)
+ o(xβ )

=
2πγ xβ

k!Γ(β + 1)

k

∑
j=0

(
k
j

)
(−1)k− j dk

dtk

(
tβ+ j

)∣∣∣∣
t=1

+ o(xβ )

=
2πγ xβ

k!Γ(β + 1)
dk

dtk

(
tβ

k

∑
j=0

(
k
j

)
(−1)k− jt j

)∣∣∣∣∣
t=1

+ o(xβ )

=
2πγ xβ

Γ(β + 1)

(
1
k!

dk

dtk

(
tβ (t −1)k

)∣∣∣∣
t=1

)
+ o
(

xβ
)

=
2πγ xβ

Γ(β + 1)
+ o
(

xβ
)

as x → ∞ ;

hence, we have established (3.7), as required.
Remark 3.7. It follows from the proof of the last theorem and Proposition 3.2 that (3.7)

holds uniformly for a in compact subsets of (0,∞).
The next corollary follows directly from the equation (3.6).
Corollary 3.8. Under the hypothesis of Theorem 3.6, then f̂ is the kth derivative of a locally

integrable function.
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Although it imposes conditions on the behavior at infinity of the tempered distribution, we
may apply Theorem 3.6 to several cases of special interest. The next two corollaries follow
directly from Theorem 3.6 (for the direct application of Theorem 3.6 in Corollary 3.10 one
should argue that it is enough to assume c0 = 0).

Corollary 3.9. Let f be a distribution with compact support. Suppose that f (x0) = γ in S′

with order k. Then for each a > 0 and β > k,

lim
x→∞

1
2π

∫ ax

−x
f̂ (t)eix0tdt = γ (C,β ) ,

or which is the same
lim
x→∞

1
2π

∫ ∞

−∞
φβ

a

( t
x

)
f̂ (t)eix0tdt = γ . (3.8)

Moreover, the relation (3.8) holds uniformly for a in compact subsets of (0,∞).

Corollary 3.10. Let f be a 2π-periodic distribution, with Fourier series
∞

∑
n=−∞

cneixn. Sup-

pose that f (x0) = γ in S′ with order k ≥ 1. Then for each a > 0 and β > k,

lim
x→∞ ∑

−x≤n≤ax
cneix0n = γ (C,β ) ,

or equivalently
lim
x→∞ ∑

−x≤n≤ax
φβ

a

(n
x

)
cneix0n = γ . (3.9)

Moreover, relation (3.9) holds uniformly for a in compact subsets of (0,∞).
As a particular case of Corollary 3.10, we obtain almost everywhere summability of order

β > 1 for Denjoy integrable functions[13,20] . This result extends that of Privalov (see [20, page
573]) which only considers the symmetric series. The reader should notice that Privalov theorem
is included in the much stronger result of Marcinkiewicz[23],[46,Chapter XI, Theorem 5.4].

Corollary 3.11. Let f be a 2π-periodic function which is Denjoy integrable on [−π,π].

Let β > 1. If its Fourier series is
∞

∑
n=−∞

cneixn, then we have for almost every x0

lim
x→∞ ∑

−x≤n≤ax
φβ

a

(n
x

)
cneix0n = f (x0) , for all a > 0 .

We now consider the case of general behavior at infinity. For that, we need the following
two lemmas.

Lemma 3.12. Let g ∈ L2(R). Suppose that x0 /∈ suppg, then,

lim
x→∞

∫ ax

−x
ĝ(t)eix0tdt = 0 ,

uniformly for a in compact subsets of (0,∞).
Proof. The proof is trivial, just apply Parseval’s relation and then use Riemann-Lebesgue

lemma.
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Lemma 3.13. Let f ∈ S′. Suppose that x0 /∈ supp f and that

f (x) = O(|x|α) (C) , as |x| → ∞ ,

for some α >−1. Let m be the minimum integer such that any m-primitive of f is locally bounded
and O(|x|m+α) as |x| → ∞. Then

e.v.
〈

f (x),eix0x〉= 0 (C,k) ,

where k = [m + α + 1
2 ]+ 1 ( [ · ] stands for the integral part of a number).

Proof. The proof is completely analogous to that of Theorem 3.6. We may assume that
x0 = 0. Let h be an m-primitive of f such that h is 0 in a neighborhood of 0 and

h(x) = O(|x|m+α) as |x| → ∞.

Set g(x) = h(x)/xk , then g satisfies the hypothesis of Lemma 3.12. Define G(x) =
∫ x

0
ĝ(t)dt; by

Lemma 3.4, the following function is a (k + 1)-primitive of f̂

F(x) =
k

∑
j=0

(−1)k− j k!
(k− j)!

(
k + 1

j

)
I j

{
tk− jG(t);x

}
.

Since

1
ak Ij

{
tk− jG(t);ax

}
− (−1)kI j

{
tk− jG(t);−x

}
= I j

{
tk− j

∫ at

−t
ĝ(u)du;x

}
,

we can use Lemma 3.12 to conclude

1
ak F(x)− (−1)kF(−x) =

k

∑
j=0

(−1)k− j k!
(k− j)!

(
k + 1

j

)
I j

{
o(tk− j);x

}

= o
(

xk
)

as x → ∞ ,

uniformly for a on compact subsets of (0,∞).
We now combine Theorem 3.6 and and Lemma 3.13 to obtain a bound for the order of

summability of the Fourier inversion formula of a general tempered distribution. We remark that
every tempered distribution satisfies an estimate of type (3.10).

Theorem 3.14. Let f ∈ S′ have the behavior at infinity

f (x) = O(|x|α) (C,m) , as |x| → ∞ . (3.10)

If f (x0) = γ in S′ with order n, then

1
2π

e.v.
〈

f̂ (x),eix0x〉= γ (C,k + 1),

where k = max
{

m,n, [n+ α + 1
2 ], [m + α + 1

2 ]
}

.
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4 Asymptotically Homogeneous Functions

In this section we discuss some properties of asymptotically homogeneous functions of de-
gree 0, they are a fundamental tool in the study of summability of distributional evaluations in
the e.v. Cesàro sense[6,9,36] . They are also shown to be important in the study of quasiasymptotics
of distributions [33,34,39]. We will apply these properties in the next section.

We say that a measurable function σ , defined in an interval of the form [A,∞) ⊂ (0,∞), is
asymptotically homogeneous of degree 0 if for each a > 0, we have

σ(ax) = σ(x)+ o(1) as x → ∞ . (4.1)

Most of the properties discussed here are already known [9]; however, we will take a different
approach to them, which is based on the concept of slowly varying functions in the sense of
Karamata [30]. Suppose σ satisfies (4.1) for each a > 0, we may assume that σ is real valued,
otherwise we consider its real and imaginary parts separately. Then L(x) = eσ(x) is positive and
measurable on [A,∞) and for each a > 0

lim
x→∞

L(ax)
L(x)

= 1 . (4.2)

Therefore, L is a slowly varying function. It is very well known that (4.2) must hold uniformly
for a in compact subsets of (0,∞) [30], so should (4.1). Actually, if one only assumes that
(4.1) holds in a set of positive measure, then it holds for every a > 0; we will use this property
implicitly sometimes in the future. In addition, there is a very well known representation formula
for slowly varying functions [30, Theorem 1.2], which implies that there exists a number B ≥ A such
that

σ(x) = η(x)+
∫ x

B

τ(t)
t

dt , x ≥ B , (4.3)

where η is a bounded measurable function such that η(x) → c as x → ∞ (|c| < ∞), and τ is
a continuous function on [B,∞) such that τ(x) → 0 as x → ∞. The relation (4.3) implies two
estimates for the growth of σ , first,

σ(x) = o(logx) , as x → ∞ ; (4.4)

secondly, there are two constants A0 and A1 such that

|σ(ax)−σ(x)| ≤ A0 |loga|+ A1, (4.5)

for x ≥ B and ax ≥ B. The last inequality implies the following lemma.
Lemma 4.1. Let σ be an asymptotically homogeneous function of degree 0 defined on

(0,∞). Let g be a function such that g(t)(1+ |log t|) is in L1(0,∞). Suppose that at least one of
the following two condition is satisfied:

i) σ is bounded in each finite subinterval of (0,∞);
ii) σ ∈ L1

loc([0,∞)) and g is bounded near the origin,
then we have ∫ ∞

0
σ(xt)g(t)dt = σ(x)

∫ ∞

0
g(t)dt + o(1) , as x → ∞ .
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Proof. Choose B as in (4.3), we keep x > B. Consider
∫ ∞

0
(σ(xt)−σ(x))g(t)dt = J1(x)+ J2(x)− J3(x) ,

where J1(x)=
∫ ∞

B/x
(σ(xt)−σ(x))g(t)dt, J2(x)=

∫ B/x
0 σ(xt)g(t)dt, and J3(x)= σ(x)

∫ B/x

0
g(t)dt.

Because of (4.5) and the assumption over g, we can apply Lebesgue Dominated Convergence
Theorem to conclude that J1(x) = o(1) as x → ∞. That J2(x) = o(1) as x → ∞ follows easily
from the assumptions. Finally, by using (4.4), we obtain that

|J3(x)| ≤ |σ(x)|
logx+ 1− lnB

∫ ∞

0
(1+ |log t|) |g(t)|dt = o(1) , as x → ∞ .

5 Order of Point Value

In this section we show that if e.v.
〈

f̂ (x),eixx0
〉

= 2πγ (C,k), then f (x0) = γ in D′ and the
order of the point value is less or equal to k + 2.

We begin with a particular case which has its inspiration in Riemann’s theorems on the
formal integration of trigonometrical series[46, Chapter IX, pag 319].

Theorem 5.1. Let f be an element of S′. Suppose that

1
2π

e.v.
〈

f̂ (x),eix0x〉= γ (C,0) ,

then f (x0) = γ in S′; moreover if F1 and F2 are any primitives of order 1 and 2 respectively, then
F1 is locally integrable and F2 possesses a Peano second order differential at x0, with γ as the
second order term, i.e., F2 is differentiable at x0 and as x → x0

F2(x) = F2(x0)+ F ′
2(x0)(x− x0)+

γ
2
(x− x0)2 + o

(
(x− x0)2) .

Hence the point value is at most of order 2.
Proof. We may assume that x0 = 0. We also can assume that 0 /∈ supp f̂ and that f̂ is the

derivative of a locally integrable function. Indeed, otherwise we express f̂ = f̂2 + f̂1, where
f̂2 is the derivative of a distribution with compact support, 0 /∈ supp f̂1 and f̂1 is the first order
derivative of a locally integrable function. Observe that f2 is a C∞-function and 2π f2(0) =〈

f̂2(x),1
〉

= 0; consequently, f1 satisfies the hypothesis of the present theorem and f satisfies
the conclusions of the theorem if and only if f1 does.

The hypothesis implies that if G is a primitive of f , then for each a > 0,

G(ax)−G(−x) = 2πγ + o(1) as x → ∞ .

We choose G such that 0 /∈ supp G. Set σ = G−πγ , then σ is asymptotically homogeneous of
degree 0, and

G(x) = πγ sgn x+ σ (|x|)+ o(1), as |x| → ∞. (5.1)
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By (4.4), σ(x) = o(log x). Therefore, x−1G(x) ∈ L2(R) and x−2G(x) ∈ L1(R)∩L2(R). Set,

h(x) =
1

2π

∫ ∞

−∞
eixt G(t)

t2 dt ,

then h is continuous and h(x) = o(1) as |x| → ∞. We now relate h to f , note that h′′ =−F−1(G),
so ixh′′(x) = f (x). In addition, we have that h′(x) = iF−1

{
t−1G(t);x

} ∈ L2(R). Let F2 be the
following second order primitive of f ,

F2(x) = ixh(x)− 1
π

∫ ∞

−∞
eixt G(t)

t3 dt .

Clearly, F1(x) = F ′
2(x) = ixh′(x)− ih(x), which shows that every first order primitive of f is

locally integrable. We now show that F2 is differentiable at 0,

F2(x)−F2(0)
x

=
1

2π

∫ ∞

−∞

G(t)
t2

(
itxeixt −2eixt + 2

tx

)
dt , (5.2)

we can apply Lebesgue Dominated Convergence Theorem in (5.2) to conclude that

F ′
2(0) = − i

2π

∫ ∞

−∞

G(t)
t2 dt .

We now calculate the Peano second order differential of F2 at 0.

Δ2(x) =
F2(x)−F2(0)− xF ′

2(0)
x2 =

x
2π

∫ ∞

−∞
G(t)K(xt)dt , (5.3)

where K(t) = t−3
(
iteit −2eit + 2+ it

)
. Note that (1 + |log(t)|)K(t) belongs to L1(R)∩L2(R).

Changing variables in (5.3) and applying Lemma 4.1 in combination with (5.1), we obtain that
as x → 0

Δ2(x) =
sgn x
2π

∫ ∞

−∞
G
( t

x

)
K(t)dt

=
γ
2

∫ ∞

−∞
sgn t K(t)dt +

1
2π

sgn(x)σ(|x|−1)
∫ ∞

−∞
K(t)dt + o(1)

=
γ
2

+ o(1) ,

since
∫ ∞

0
(K(t)+ K(−t)dt) = 0 and

∫ ∞

0
(K(t)−K(−t))dt = 1. This completes the proof.

We now use Theorem 5.1 to attack the general problem.
Theorem 5.2. Let f ∈ S′. Suppose that

1
2π

e.v.
〈

f̂ (x),eix0x〉= γ (C,k) ;

then, f (x0) = γ in S′, f is the derivative of order k + 1 of a locally integrable function and the
order of f (x0) = γ is less or equal to k + 2.
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Proof. As in the proof of the last theorem, we can assume that x0 = 0, 0 /∈ supp f̂ and f̂ is
the derivative of order k + 1 of a locally integrable function.

By our assumptions, we can choose G, a locally integrable function, such that Gk+1 = f̂ ,
0 /∈ supp G, and for each a > 0,

a−kG(ax)+ (−1)k+1G(−x) =
2πγ
k!

xk + o
(

xk
)

as x → ∞ .

Let h be the following tempered distribution

h(x) = −ixF−1
{

t−kG(t);x
}

= F−1
{(

t−kG(t)
)′

;x
}

,

note that h satisfies the hypothesis of Theorem 5.1. Therefore, there is a locally integrable
primitive h1 of h such that h1(εx) = γεx/k!+ o(ε) as ε → 0 in S′. Set h2(x) =

∫ x
0 h1(t)dt, then,

by Theorem 5.1,

h2(x) =
γ

2k!
x2 + o

(
x2) as x → 0 , (5.4)

since h′2(0) is equal to the distributional point value of h1 at 0 and h1(0) = 0 in D′. We now
relate h to f . We show that

Fk+1(x) =
k

∑
j=0

(−1)k− jk!
(k− j)!

(
k + 1

j

)
I j

{
tk− jh1(t);x

}
(5.5)

−
k

∑
j=0

(−1)k− jk!
(k− j−1)!

(
k + 1

j

)
I j+1

{
tk− j−1h1(t);x

}

is a (k + 1)-primitive of f . Differentiating (5.5) (k + 1) times, we obtain,

F(k+1)
k+1 (x) =

k

∑
j=0

(−1)k− jk!
(k− j)!

(
k + 1

j

)
dk+1− j

dxk+1− j

(
xk− jh1(x)− (k− j)

∫ x

0
tk− j−1h1(t)dt

)

=
k

∑
j=0

(−1)k− jk!
(k− j)!

(
k + 1

j

)
dk− j

dxk− j

(
xk− jh(x)

)

= −i
k

∑
j=0

(−1)k− jk!
(k− j)!

(
k + 1

j

)
dk− j

dxk− j

(
xk+1− jF−1

{
G(t)/tk;x

})

=
k

∑
j=0

(−i)k− jk!
(k− j)!

(
k + 1

j

)
dk− j

dxk− j

(
F−1

{(
G(t)/tk

)(k+1− j)
;x
})

= F−1

{
k+1

∑
j=0

(
k + 1

j

)
d j

dt j (t
k)
(

G(t)/tk
)(k+1− j)

;x

}

= F−1
{

G(k+1)(t);x
}

= F−1{ f̂ (t);x
}

= f (x)
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Therefore, Fk+1 is a primitive of order k + 1 of f . Since h1 is locally integrable, so is Fk+1. We
integrate (5.5) to obtain a continuous (k + 2)-primitive of f , given by

Fk+2(x) =
k

∑
j=0

(−1)k− jk!
(k− j)!

(
k + 1

j

)
I j

{
tk− jh2(t)− (k− j)

∫ t

0
sk− j−1h2(s)ds;x

}

+
k

∑
j=0

(−1)k− jk!
(k− j−1)!

(
k + 1

j

)
I j+1

{
(k− j−1)

∫ t

0
sk− j−2h2(s)ds− tk− j−1h2(t);x

}
.

By using (5.4), we can conclude that

Fk+2(x) =
γ

2k!

k

∑
j=0

(−1)k− jk!
(k− j)!

(
k + 1

j

)
2I j
{

tk+2− j;x
}

(k + 2− j)(k + 1− j)
+ o
(

xk+2
)

=
γ
k!

xk+2
k

∑
j=0

(−1)k− jk!
(k− j)!

(
k + 1

j

)
(k− j)!
(k + 2)!

+ o
(

xk+2
)

=
γ

k!(k + 2)
xk+2

k

∑
j=0

(−1)k− j
(

k
j

)
1

(k + 1− j)
+ o
(

xk+2
)

=
γ

k!(k + 2)
xk+2(−1)k

∫ 1

0
(t −1)kdt + o(xk+2)

=
γ

(k + 2)!
xk+2 + o

(
xk+2

)
as x → 0,

this shows that f (0) = γ in S′ and the order of the point value is at most k + 2.

6 Symmetric Point Values

This section is devoted to the study of symmetric point values of distributions. They are
studied by means of the symmetric part of a distribution about at given point x = x0, that is, the
distribution

χ f
x0

(x) :=
f (x+ x0)+ f (x0 − x)

2
(6.1)

Notice that χ f
x0 is an even distribution.

Definition 6.1. Let f ∈D′ and x0 ∈ R. We say that f has a (distributional) symmetric point
value γ at x = x0 if its symmetric part about x0 has a point value at x = 0, that is, χ f

x0(0) = γ in
D′. In this case we write fsym(x0) = γ in D′.

Of course, the existence of the symmetric value at x0 is equivalent to have

lim
ε→0+

1
2ε

〈
f (x),φ

(
x− x0

ε

)
+ φ

(
x0 − x

ε

)〉
= γ

∫ ∞

−∞
φ(x)dx , (6.2)

for each φ ∈D′. We may use Łojasiewicz characterization of distributional point values (2.4) to
characterize symmetric point values.
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Theorem 6.2. Let f ∈ D′ and x0 ∈ R. We have that fsym(x0) = γ in D′ if and only if there
exists n ∈ N and an n-primitive F of f such that F(x0 +x)+(−1)nF(x0−x) is locally integrable
in a neighborhood of the origin and

F(x0 + h)+ (−1)nF(x0 −h) = 2γ
hn

n!
+ o(hn), h → 0 . (6.3)

Most of the results for symmetric point values can be obtained from those of distributional
point values. Let us discuss an example.

Example 6.3. Let f ∈ D′ have a distributional point value γ at x0. Let U be a harmonic
representation [1] of f on ℑm z > 0, that is, U(z) is harmonic for ℑm z > 0 and limy→0+ U(x +
iy) = f (x) in the weak topology of D′. It is shown in [8] by studying the Poisson kernel and in
[34] by Fourier transform methods that

lim
z→x0

U(z) = γ , non-tangentially from the upper half-plane.

We can use this result applied to the symmetric distribution to obtain a radial version of this
result in the case of symmetric point values. Indeed, suppose now that fsym(x0) = γ in D′. If
U is a harmonic representation of f . Then U1(z) = (U(x0 + z) +U(x0 − z̄))/2 is a harmonic
representation of χ f

x0 , hence U1(z) = γ + o(1) as z approaches 0 from the upper half-plane in a
non-tangential manner. Therefore,

lim
y→0+

U(x0 + iy) = lim
y→0+

U1(iy) = γ .

In particular, if f is a 2π-periodic distribution with sines and cosines series f (x) = a0/2 +
∞

∑
n=1

an cosnx+ bn sinnx, then

a0

2
+

∞

∑
n=1

(an cosnx0 + bn sinnx0) = γ (A) ,

where (A) stands for Abel summability [15]. This recovers the main result from [43].
We say that fsym(x0) = γ in S′ if χ f

x0 ∈ S′ and (6.2) holds for each φ ∈ S. It is then obvious
that if χ f

x0 ∈ S′, we have that fsym(x0) = γ in D′ if and only if fsym(x0) = γ in S′ .
In the same manner as for distributional point values, we define the order of symmetric point

values.
Definition 6.4. Let f ∈ D′. Suppose that χ f

x0 ∈ S′. We say that f has a (distributional)
symmetric point value γ at x0 in S′ of order n, and write fsym(x0) = γ in S′ with order n, if n
is the minimum integer such that there exists a distribution F such that F(n) = f , F(x0 + x)+
(−1)nF(x0 − x) is a locally bounded measurable function of polynomial growth at infinity and
F satisfies (6.3).

We can also describe distributional symmetric point values in terms of de la Vallée Poussin
derivatives[32], [46, Chapter XI]. Given a distribution f define its jump distribution at x = x0 by

ψ f
x0

(x) =
f (x0 + x)− f (x0 − x)

2
. (6.4)
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Then, in the case that n is even in Theorem 6.2, we obtain that χF
x0

(h) = γhn/n!+ o(hn); but on
the other hand when n is odd ψF

x0
(h) = γhn/n! + o(hn). Let now F1 be an arbitrary n-primitive

of f , then we obtain that F1 is de la Vallée Poussin n-differentiable at x = x0, that is, either

χF1
x0

(h) = a0 + a2h2 + · · ·+ γhn/n!+ o(hn), as h → 0 ,

for some constants a0,a2 . . . , when n is even, or

ψF1
x0

(h) = b1h+ b3h3 + · · ·+ γhn/n!+ o(hn), as h → 0 ,

for some constants b1,b3 . . . , when n is odd.
Our main goal in this section is to formulate and solve the problem of (C) symmetric summa-

bility for tempered distributions. We will do this with the aid of symmetric point values. Let us
first discuss a known case, namely, Fourier series.

Example 6.5. Suppose that f is a 2π-periodic distribution with sines and cosines Fourier

series f (x) = a0/2+
∞

∑
n=1

(an cosnx+bn sinnx). Then the solution to the (C) problem (see the In-

troduction) can be formulated in terms of symmetric point values. Indeed, [9, Theorem 6.14.4],
[16],

f (x) =
a0

2
+

∞

∑
n=1

(an cos nx0 + bn sinnx0) = γ (C)

if and only if fsym(x0) = γ in D′. In [14, 45], using the language of de la Vallée Poussin deriva-
tives the order of summability is estimated upon knowledge of the order of the point value; the
opposite problem was investigated in [46, Chapter XI, Theorem 2.1] (the original source is [45]).

The natural extension of the Hardy-Littlewood (C) summability problem is then to charac-
terize symmetric point values of tempered distributions by summability of the Fourier transform.
In order to characterize symmetric point values in terms of the Fourier transform, we need to
choose the correct notion of summability. It turns out the right notion is that of principal value
distributional evaluations in the (C) sense, which we now proceed to define.

Definition 6.6. Let g ∈ D′, φ ∈C∞(R) and β ≥ 0. We say that the evaluation 〈g(x) ,φ (x)〉
exists in the p.v. Cesàro sense (at order β ), and write

p.v. 〈g(x) ,φ (x)〉 = γ (C,β ) , (6.5)

if for some primitive G of gφ we have

lim
x→∞

(G(x)−G(−x)) = γ (C,β ) .

If (6.5) exits, we also say that the principal value of the evaluation exists in the (C,β ) sense.
Suppose that g is locally integrable, then we write (6.5) as

p.v.

∫ ∞

−∞
g(x)φ (x) dx = γ (C,β ) . (6.6)

and we say that the principal value of the integral exists. Notice that (6.6) exactly means

lim
x→∞

∫ x

−x
g(t)φ(t)

(
1− |t|

x

)β
dt = γ .
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For numerical series, let {cn}∞
n=−∞ be a sequence of complex numbers, we say that the

principal value of the series exits in the (C,β ) sense and write

p.v.
∞

∑
n=−∞

cnφ(n) = γ (C,β ) , (6.7)

if

c0 +
∞

∑
n=1

(cn + c−n)φ(n) = γ (C,β ) ,

where in the last equation (C,β ) stands for Cesàro summability but in the sense of numerical
series [15]. Because of the equivalence between Cesàro means and Riesz typical means [15, 18,
28], it means that

lim
x→∞ ∑

−x<n<x
cnφ(n)

(
1− |n|

x

)β
= γ ;

thus, (6.7) is equivalent to have (6.5) with g(x) =
∞

∑
n=−∞

cnδ (x−n).

We easily obtain a version of Theorem 3.6 for symmetric point values.
Theorem 6.7. Let f ∈ D′. Suppose that there exists an m ∈ N, such that every m-primitive

of χ f
x0 is a locally bounded measurable function for large arguments and satisfies an estimate

O
(
|x|m−1

)
, as x → ∞. If fsym(x0) = γ in S′ with order n, then

1
2π

p.v.
〈
χ̂ f

x0
(x),1

〉
= γ (C,β ) ,

for any β > k = max{m,n} . When f ∈ S′, we obtain

1
2π

p.v.
〈

f̂ (x),eix0x〉= γ (C,β ) ,

for any β > k = max{m,n} .

Proof. Our hypotheses imply that χ f
x0 ∈ S′, thus we can apply Theorem 3.6 to χ f

x0 . Since,
χ f

x0(0) = γ in S′ with order n, then

e.v.
〈
χ̂ f

x0
(x),1

〉
= 2πγ (C,β ) ,

for any β > k = max{m,n}, in particular the last relation holds in the p.v. sense. If we assume
that f ∈ S′, then

χ̂ f
x0

(x) =
1
2
(
eix0x f̂ (x)+ e−ix0x f̂ (−x)

)
,

so, if F is first order primitive of eix0x f̂ (x), then G(x) = (F(x)−F(−x))/2 is a first order primi-
tive of χ̂ f

x0(x), and hence

lim
x→∞

(G(x)−G(−x)) = lim
x→∞

(F(x)−F(−x)) = 2πγ (C,β ) .

When f has compact support we obtain the following result.
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Corollary 6.8. Let f be a distribution with compact support. Suppose that fsym(x0) = γ in
S′ with order k. Then for any β > k,

1
2π

p.v.
∫ ∞

−∞
f̂ (t)eix0tdt = γ (C,β ) ,

or which is the same

lim
x→∞

1
2π

∫ x

−x

(
1− |t|

x

)β
f̂ (t)eix0tdt = γ .

For Fourier series, we obtain the result of A. Zygmund [45] mentioned in Example 6.5.
Obviously, our language differers from that of Zygmund’s original statement.

Corollary 6.9. Let f be a 2π-periodic distribution, with sines and cosines Fourier series

f (x) =
a0

2
+

∞

∑
n=1

(an cosnx+ bn sinnx) .

Suppose that fsym(x0) = γ in S′ with order k ≥ 0. Then for any β > k,

a0

2
+

∞

∑
n=1

(an cosnx0 + bn sin nx0) = γ (C,β ) ,

or equivalently

lim
x→∞

a0

2
+ ∑

0<n<x

(
1− |n|

x

)β
(an cosnx0 + bn sin nx0) = γ .

Proof. If k ≥ 1, we can assume that a0 = 0 and proceed to apply Theorem 6.7. For k = 0,
then f is a bounded 2π-periodic function which is continuous at x0, and hence the conclusion
follows from the classical result [19, 46].

As in the proof of Theorem 6.7, one can apply the result for distributional point values,
Theorem 3.14, to the distribution χ f

x0 to easily obtain the next bound for the order of summability
in the case of the principal value of Fourier inversion formula for general tempered distributions.

Theorem 6.10. Let f ∈ D′. Suppose that

χ f
x0

(x) = O(|x|α) (C,m) , as |x| → ∞ .

If fsym(x0) = γ in S′ with order n, then

1
2π

p.v.
〈
χ̂ f

x0
(x),1

〉
= γ (C,k + 1) ,

where k = max
{

m,n, [n+ α + 1
2 ], [m + α + 1

2 ]
}

. If we assume f ∈ S′, then we obtain

1
2π

p.v.
〈

f̂ (x),eix0x〉= γ (C,k + 1) .

Finally, we estimate the order of the symmetric point value in terms of the order of summa-
bility of the principal value Fourier inversion formula. We need the following lemma.
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Lemma 6.11. Let g ∈ D′ be an even distribution, that is, g(−x) = g(x), then

e.v. 〈g(x),1〉 = γ (C,β ) (6.8)

if and only if

p.v. 〈g(x),1〉 = γ (C,β ) . (6.9)

In fact the above relations are equivalent to

lim
x→∞

G(x) =
γ
2

(C,β ) , (6.10)

where G is the unique odd first order primitive of g.
Proof. That (6.9) and (6.10) are equivalent is clear. Relation (6.8) obviously implies (6.9).

We now show that (6.10) implies (6.8). Let G be the odd first order primitive of g, so we have
that G(x) = γ/2+ o(1) (C,β ) as x → ∞, hence we also have that G(ax) = γ/2+ o(1) (C,β ) as
x → ∞, and thus for each a > 0

lim
x→∞

(G(ax)−G(−x)) = 2 lim
x→∞

(G(ax)+ G(x)) = γ (C,β ) .

Therefore, on combining Lemma 6.11 and Theorem 5.2, we immediately obtain the follow-
ing result. Notice that, as a corollary, we obtain the classical result[46, Chapter XI, Theorem 2.1] for
Fourier series.

Theorem 6.12. Let f ∈ S′. Suppose that

1
2π

p.v.
〈

f̂ (x),eix0x〉= γ (C,k) ,

then, fsym(x0) = γ in S′, χ f
x0 is the derivative of order k + 1 of a locally integrable function and

the order of fsym(x0) is less or equal to k + 2.
The solution of the (C) symmetric problem for “trigonometric integrals” of distributions is

summarized in the last theorem of this section, which extends Hardy and Littlewood character-
ization [16] of (symmetric) (C) summability at a point from Fourier series to general tempered
distributions.

Theorem 6.13. Let f ∈ D′. Suppose that χ f
x0 ∈ S′. Then

1
2π

p.v.
〈
χ̂ f

x0
,1
〉

= γ (C) (6.11)

if and only if fsym(x0) = γ in D′. If in addition f ∈ S′, then (6.11) is the same as

1
2π

p.v.
〈

f̂ (x),eix0x〉= γ (C) .
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7 The Order of Jumps and Symmetric Jumps

In this last section we study the order of summability in several characterizations the author
have obtained for the jump behavior and symmetric jump behavior of distributions[35,36,37,10] .
Let us define these two concepts.

Definition 7.1. A distribution f ∈D′ is said to have a distributional jump behavior (or jump
behavior) at x = x0 ∈ R if it satisfies the following distributional asymptotic relation

f (x0 + εx) = γ−H(−x)+ γ+H(x)+ o(1) , (7.1)

as ε → 0+ in D′, where H is the Heaviside function, i.e., the characteristic function of (0,∞),
and γ± are constants. The jump (or saltus) of f at x = x0 is defined then as the number [ f ]x=x0

=
γ+ − γ− .

The meaning of (7.1) is in the weak topology of D′, in the sense that for each φ ∈ D,

lim
ε→0+

〈 f (x0 + εx),φ(x)〉 = γ−
∫ 0

−∞
φ(x)dx+ γ+

∫ ∞

0
φ(x)dx . (7.2)

If f ∈ S′, then it is shown in [39] that (7.2) remains true for all φ ∈ S′. Furthermore, from the
results of [39], a structural characterization of the jump behavior of distributions can be given
explicitly, that is, a distribution f ∈ D′ has the jump behavior (7.1) if and only if there exist
n ∈ N and a function F , locally integrable on a neighborhood of x0, such that F(n) = f near x0

and

lim
x→x±0

n!F(x)
(x− x0)n = γ± . (7.3)

So we can define the order of the jump behavior in S′ of a tempered distribution.
Definition 7.2. Let f ∈ S′. Suppose that f has jump behavior at x0. The order of the

jump behavior in S′ is defined as the minimum integer n such that there exists a locally bounded
measurable function F of polynomial growth at infinity satisfying F(n) = f and (7.3).

Recall the definition of the jump distribution of f at x = x0, it is given by (6.4).
Definition 7.3. A distribution f ∈D′ is said to have a distributional symmetric jump behav-

ior (or symmetric jump behavior) at x = x0 ∈ R if the jump distribution ψ f
x0 has jump behavior

at 0 . In such a case, we define the symmetric jump (or saltus) of f at x = x0 as the number
[ f ]x=x0

=
[
ψ f

x0

]
x=0

. We say that f has a jump behavior in S′ with order n if ψ f
x0 ∈ S′ and it has

a jump behavior at x = 0 of order n.
Since the jump distribution is odd, it is easy to see that the jump behavior of the jump

distribution in Definition 7.3 must be of the form

ψx0 (εx) =
1
2

[ f ]x=x0
sgn x+ o(1) as ε → 0+ in D′ ,

where sgnx is the signum function, i.e., H(x)−H(−x) . Notice that a distribution f has jump
behavior (7.1) at x = x0 if and only if it has symmetric point value and symmetric jump behavior
at x = x0 and fsym(x0) = (γ− + γ+)/2 and [ f ]x=x0 = γ+− γ−.
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We now add information about the order to the characterization of the jump behavior given
in [35, 36].

Theorem 7.4. Let f ∈ S′ have the distributional jump behavior (7.1) at x = x0 of order
n. Suppose that there exists an m ∈ N such that every m-primitive of f is a locally integrable
function for large arguments and satisfies an estimate O

(
|x|m−1

)
, as x → ∞. Let F be a fist

order primitive of eix0x f̂ , then if β > k = max{m,n},

1
2π

lim
x→∞

(F(ax)−F(−x)) = fsym(x0)+
[ f ]x=x0

2πi
log a (C,β ) ,

uniformly for a in compact subsets of (0,∞).
Proof. Define the distribution

v = −θ[−1,0] + θ[0,1] .

Then the distribution
h(x) = f (x)− 1

2
[ f ]x=0 v(x− x0)

satisfies the hypothesis of Theorem 3.6 and h(x0) = fsym(x0) in S′ with order n. Therefore,

e.v.
〈
ĥ(x),eix0x〉= 2π fsym(x0) (C,β ),

whenever β > k = max{m,n}. Observe that

eix0xF{v(t − x0);x} = v̂(x) =
2−2cosx

ix
.

Let G be a first order primitive of eix0xĥ(x), hence

F(x) = G(x)+
[ f ]x=x0

i

∫ x

0

1− cos t
t

dt

satisfies F ′(x) = eix0x f̂ (x). Then, we obtain as x → ∞

F(ax)−F(−x) = G(ax)−G(−x)+
[ f ]x=x0

i

∫ ax

−x

1− cos t
t

dt

= 2π fsym(x0)+
[ f ]x=x0

i

∫ ax

x

1− cos t
t

dt + o(1)

= 2π fsym(x0)+
[ f ]x=x0

i
log a+ o(1) (C,β ) .

We obtain immediately from Theorem 7.4 the corresponding results for compactly supported
distributions and Fourier series. Here we only state the result for Fourier series and leave the
corresponding statement for compactly supported distributions to the reader.

Corollary 7.5. Let f be a 2π-periodic distribution, with Fourier series
∞

∑
n=−∞

cneixn. Sup-

pose that f has the distributional jump behavior (7.1) at x = x0 in S′ with order k ≥ 1. Then for
each a > 0 and β > k,

lim
x→∞ ∑

−x≤n≤ax
cneix0n = fsym(x0)+

[ f ]x=x0

2πi
loga (C,β ) ,
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or equivalently

lim
x→∞ ∑

−x≤n≤ax
φβ

a

(n
x

)
cneix0n = fsym(x0)+

[ f ]x=x0

2πi
loga . (7.4)

Moreover, the relation (7.4) holds uniformly for a in compact subsets of (0,∞).
Using the same procedure as in the proof of Theorem 7.4, we obtain from Theorem 3.14 and

Theorem 5.2.
Theorem 7.6. Let f ∈ S′ have the distributional jump behavior (7.1) at x = x0 of order n.

Suppose that
f (x) = O(|x|α) (C,m) , as |x| → ∞ .

Let F be a first order primitive of eix0x f̂ (x). Then we have, uniformly for a in compact subset of
(0,∞),

1
2π

lim
x→∞

(F(ax)−F(−x)) = fsym(x0)+
[ f ]x=x0

2πi
log a (C,k + 1) ,

where k = max
{

m,n, [n+ α + 1
2 ], [m + α + 1

2 ]
}

.
Theorem 7.7. Let f ∈ S′. Let F be a first order primitive of f . Suppose that for some

constants d1 and d2

1
2π

lim
x→∞

(F(ax)−F(−x)) = d1 + d2 log a (C,k) ,

for a in a subset of positive measure of the interval (0,∞). Then, f has the distributional jump
behavior (7.1) at x0 with constants γ± = d1 ± iπd2, f is the derivative of order k +1 of a locally
integrable function and the order of the jump behavior is less or equal to k + 2.

It is possible to formulate analogous results for the symmetric jump behavior in terms of the
jump distribution; however, we choose only to do it for the case of Fourier series.

Theorem 7.8. Let f be a 2π-distribution with Fourier series

f (x) =
a0

2
+

∞

∑
n=1

(an cosnx+ bn sinnx) .

Suppose that f has a symmetric jump behavior at x = x0 of order k ≥ 1. Then for any β > k

lim
x→∞ ∑

x<n≤ax
(an sinnx0 −bn cos nx0) = − [ f ]x=x0

π
log a (C,β ) ,

uniformly for a in compact subsets of [1,∞).
Proof. The jump distribution has Fourier transform

ψ f
x0

(x) = −
∞

∑
n=1

(an sinnx0 −bn cos nx0)sinnx ,

it has Fourier transform

ψ̂ f
x0

(x) = πi
∞

∑
n=1

(an sin nx0 −bn cosnx0)(δ (x−n)−δ (x+ n)) .
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Therefore,
Ψ(x) = πi ∑

1≤n<|x|
(an sinnx0 −bn cosnx0)

is a first order primitive of the ψ̂ f
x0 . Since it has a jump behavior at x = 0 with jump [ f ]x=x0 ,

Theorem 7.4 implies the result.
Reasoning as in Theorem 7.8, we can prove using Theorem 7.7 the following result.
Theorem 7.9. Let f be a 2π-distribution with Fourier series

f (x) =
a0

2
+

∞

∑
n=0

(an cosnx+ bn sinnx) .

Suppose that
lim
x→∞ ∑

x<n≤ax
(an sinnx0 −bn cos nx0) = d log a (C,k) ,

for a in a subset of positive measure of the interval [1,∞). Then, f has the distributional sym-
metric jump behavior at x0 with jump [ f ]x=x0 = −πd, ψ f

x0 is the derivative of order k + 1 of a
locally integrable function and the order of the jump behavior is less or equal to k + 2.

We may use Theorems 7.8, Theorem 7.9 and Corollary 6.9 to characterize the distributional
jump behavior of a 2π-periodic distribution from its sines and cosines Fourier series and its
conjugate series.

Theorem 7.10. Let f be a 2π-distribution with Fourier series

f (x) =
a0

2
+

∞

∑
n=0

(an cosnx+ bn sinnx) .

Then f has distributional jump behavior at x = x0 if and only if there exists β ≥ 0 such that for
some constants d1 and d2

a0

2
+

∞

∑
n=0

(an cosnx0 + bn sin nx0) = d1 (C,β ) ,

and
lim
x→∞ ∑

x<n≤ax
(an sinnx0 −bn cos nx0) = d2 loga (C,β ) ,

for a in a subset of positive measure of the interval [1,∞). In such case fsym(x0) = d1 and
[ f ]x=x0 = −πd2.

The last results we want to comment are in relation with the classical formula of F. Lukács
for the jump of a function [22, 24, 25]. Indeed, exactly the same arguments given in [37] now in
combination with the information about the order from Theorem 7.4, Corollary 7.5 and Theorem
7.6 yield the following series of results.

Theorem 7.11. Let f ∈ S′ have the distributional jump behavior at x = x0 of order n.
Suppose that there exists a m∈N, such that every m-primitive of f is a locally integrable function
for large arguments and satisfies an estimate O

(
|x|m−1

)
, as x → ∞. Then for any decomposition
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f̂ = f̂− + f̂+, where supp f̂− ⊆ (−∞,0] and supp f̂+ ⊆ [0,∞), and for any β > max{n,m}, we
have that the following convolutions are locally bounded functions and

(
e±ix0t f̂±(±t)∗ tβ

+

)
(x) ∼±[ f ]x=x0

|x|β
i

log x , as x → ∞ ,

in the ordinary sense.

Theorem 7.12. Let f be a 2π-periodic distribution, with Fourier series
∞

∑
n=−∞

cneixn. Sup-

pose it has distributional jump behavior at x = x0 of order k ≥ 1. Then for any β > k

lim
x→∞

1
logx ∑

0≤n≤x
c±ne±inx0

(
1− n

x

)β
= ± [ f ]x=x0

2πi
.

Theorem 7.13. Let f ∈ S′ have the distributional jump behavior at x = x0 of order n.
Suppose that

f (x) = O(|x|α) (C,m) , as |x| → ∞ .

Then for any decomposition f̂ = f̂− + f̂+, where supp f̂− ⊆ (−∞,0] and supp f̂+ ⊆ [0,∞). We
have that the following convolutions are locally bounded functions and

(
e±ix0t f̂±(±t)∗ tk+1

+

)
(x) ∼±[ f ]x=x0

|x|k+1

i
logx , as x → ∞ ,

in the ordinary sense, where k = max
{

m,n, [n+ α + 1
2 ], [m + α + 1

2 ]
}

.
For the case of symmetric jumps of Fourier series we have the following result.
Theorem 7.14. Let f ∈ S′ be a 2π-periodic distribution having the following Fourier series

a0

2
+

∞

∑
n=1

(an cosnx+ bn sinnx) .

If f has a symmetric jump behavior at x = x0 of order k ≥ 1, then for any β > k

lim
x→∞

1
logx

∞

∑
n=1

(an sinnx0 −bn cos nx0)
(

1− n
x

)β
= − 1

π
[ f ]x=x0

.
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[26] Pilipović, S., Stanković, B. and Takači, A., Asymptotic Behaviour and Stieltjes Transformation of Distribu-

tions, Teubner-Texte zur Mathematik, Leipzig, 1990.
[27] Plancherel, M., Sur la Convergence et sur la Sommation par les Moyennes de Cesàro de

limz→∞
∫ z

a f (x)cosxydx, Math. Annalen, 76(1915), 315-326.
[28] Riesz, M., Une méthode de Sommation équivalente à la méthode des Moyennes Arithmétiques, C. R. Acad.

Sci. Paris, (1911), 1651-1654.
[29] Schwartz, L., Théorie des Distributions, Hermann, Paris, 1966.
[30] Seneta, E., Regularly Varying Functions, Lecture Notes in Mathematics, 598, Springer Verlag, Berlin, 1976.
[31] Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals, Second Edition, Clarendon Press, Oxford,

1948.
[32] de la Vallée Poussin, Ch. J., Sur L’approximation des Fonctions D’une Variable réelle et Leurs dérivées par les

polynômes et les Suites limitées de Fourier, Bull. de l’Acd. Royale de Belgique, (1908), 193-254.
[33] Vindas, J., Structural Theorems for Quasiasymptotics of Distributions at Infinity, Pub. Inst. Math. (Beograd)

(N.S.), 84(2008), 159-174.



42 Jasson Vindas et al : On the Order of Summability of Fourier Inversion Formula

[34] Vindas, J., The Structure of Quasiasymptotics of Schwartz Distributions, Linear and non-linear Theory of
Generalized Functions and its Applications, Banach Center Publ. 88, Polish Acad. Sc. Inst. Math., Warsaw,
2010.

[35] Vindas, J. and Estrada, R., Distributionally Regulated Functions, Studia. Math., 181(2007), 211-236.
[36] Vindas, J. and Estrada, R., Distributional Point Values and Convergence of Fourier Series and Integrals, J.

Fourier Anal. Appl., 13(2007), 551-576.

[37] Vindas, J. and Estrada, R., On the Jump Behavior and Logarithmic Averages, J. Math. Anal. Appl., 347(2008),
597-606.

[38] Vindas, J. and Estrada, R., On the Support of Tempered Distributions, Proc. Edinb. Math. Soc., 53:1(2010),
255-270.
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