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1 Introduction

It is very well known that interpolation by polynomials is a basic and useful method to

approximate functions. But in order to obtain better approximation by interpolation polynomials

to an approximated function, it is of much importance to select good nodes for the approximated

function. Before showing examples, we give a theorem.

Theorem A. (see Theorem 2 in p.337 in Kincaid and Cheney[2]) Let f be an n times con-

tinuously differentiable function on [−1,1] and let p be the polynomial of degree at most n that

interpolates the function f at n + 1 distinct nodes x0, . . . ,xn in [−1,1], i.e., p(xi) = f (xi), i =

0, . . . ,n. To each x ∈ [−1,1] there exists a point ξx ∈ (−1,1) such that

f (x)− p(x) =
1

(n+ 1)!
f (n+1)(ξx)

n

∏
i=0

(x− xi).

Here we give two examples.

Example 1. Let f (x) = sinπx, x ∈ [−1,1]. Let

Xn : (−1 �)x(n)
0 < x(n)

1 < · · · < x(n)
kn

(� 1), n ∈ N
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be any prescribed system of nodes, where lim
n→∞

kn = ∞ and let pf ,Xn(x),n ∈ N be the polynomials

of degree at most kn that interpolates the function f at nodes of Xn. By Theorem A, we have

| f (x)− pf ,Xn(x)| �
1

(kn + 1)!
πkn+1

∣∣∣∣∣
kn

∏
i=0

(x− x(n)
i )

∣∣∣∣∣ � 2kn+1πkn+1

(kn + 1)!
for all x ∈ [−1,1].

Hence, we obtain

lim
n→∞

‖ f − pf ,Xn‖∞ = 0,

where ‖ · ‖∞ denotes the supremum norm on [−1,1].

Example 2. Let g(x) =
1

1+ 25x2 , x ∈ [−1,1]. Let

Xn : x(n)
0 = −1,x(n)

1 = −1+
1
n
, · · · ,x(n)

n = 0, · · · ,x(n)
2n = 1, n ∈ N

be the system of equally spaced nodes and let pg, Xn(x),n ∈ N be the polynomials of degree at

most 2n that interpolates the function g at nodes of Xn. Though g is an analytic function on

[−1,1], it is known that

lim
n→∞

‖ f − pf , Xn‖∞ = +∞.

This example is called Runge example.

In this note, we seek for functions which have the same property as the function of Exam-

ple 1. Before precisely stating the purpose of this note, we shall explain some definitions and

notations.

Let M[−1,1] be the space of all real-valued bounded functions on the interval [−1,1] of R.

M[−1,1] is endowed with the supremum norm ‖ · ‖∞. If

Xn : (−1 �)x(n)
0 < x(n)

1 < · · · < x(n)
kn

(� 1), n ∈ N

is any prescribed system of nodes, where lim
n→∞

kn = ∞, then it is said that the system has (∗)-
property.

In this note, we consider a class of functions f in M[−1,1] such that lim
n→∞

‖ f − pf , Xn‖∞ = 0

for any system Xn,n ∈ N of nodes with (∗)-property. For convenience, we write A for this class

of functions.

Definition. Let n be a nonnegative integer. For n+1 distinct nodes X : x0, . . . ,xn in [−1,1]

and f ∈ M[−1,1], we put

pf ,X (x) = a0 + a1x+ · · ·+ anxn.

Then we denote by f [x0, . . . ,xn] the coefficient an.
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Remark 1. f [x0, . . . ,xn] is obtained by the equations

f [xi] = f (xi) , f [xi,xi+1, . . . ,xi+ j] =
f [xi+1, . . . ,xi+ j]− f [xi, . . . ,xi+ j−1]

xi+ j − xi
.

Hence, we see that f [x0, . . . ,xn] is determined only by the values f (x0), f (x1), . . . , f (xn) (see

pp.353-354 in Kincaid and Cheney[2]).

We need the following two lemmas to proceed our argument.

Lemma 1. (cf. Theorem 4 in p.357 in Kincaid and Cheney[2]) If f is n times continu-

ously differentiable on [−1,1] and if x0, . . . ,xn are distinct nodes, then f [x0, . . . ,xn] converges to
f (n)(c)

n!
as each xi, i = 0, . . . ,n converges to c.

Lemma 2. (see Markoff’s inequality in p.91 in Cheney[1]) Let k,n be nonnegative integers

with k � n. For any polynomial p on [−1,1] of degree at most n, it holds that

‖p(k)‖∞ � Mn,k‖p‖∞,

where Mn,k = (n · · · (n− k + 1))2 and p(0) = p.

Now we state the following

Theorem. If a function f ∈M[−1,1] belongs to A, then f is an analytic function on [−1,1]

and the radiuses of convergence of the Taylor series about −1, 1 for f are at least 2.

Proof. Let f be a function in A. For a system Xn,n ∈ N of nodes with (∗)-property, since

the sequence pf ,Xn ,n ∈ N uniformly converges to f , f is a continuous function on [−1,1].

We shall verify that f is continuously differentiable on [−1,1]. First we show what to prove

in order to show that f is differentiable on [−1,1] and f ′ is continuous on [−1,1].

Suppose on the contrary that f is not differentiable at a point a ∈ [−1,1]. Then, there exist a

positive number ε1 and two sequences {αn}, {βn} which converge to a such that
∣∣∣∣ f (αn)− f (a)

αn −a
− f (βn)− f (a)

βn −a

∣∣∣∣ > ε1, n = 1,2, . . . , (1)

where a, αn, βn, n = 1,2, . . . are distinct from each other.

Suppose that f is differentiable on [−1,1] and suppose on the contrary that f ′ is not contin-

uous at a point a ∈ [−1,1]. Then, there exist a positive number δ1 and three sequences {αn},

{βn} and {zn} which converge to a such that
∣∣∣∣ f (αn)− f (zn)

αn − zn
− f (βn)− f (a)

βn −a

∣∣∣∣ > δ1, n = 1,2, . . . , (2)

where a, αn, βn, zn, n = 1,2, . . . are distinct from each other.



10 K. Kitahara: Functions Approximated by Any Sequence of Interpolation Polynomials

Since any condition of (1) and (2) analogously lead to a contradiction, we show a contradic-

tion under the condition (2). Without loss of generality, we can assume that

max{a,αn,βn,zn}−min{a,αn,βn,zn} <
δ1

n ·Mn+2,2
, n = 1,2, . . . (3)

and set a system Xn,n ∈ N of nodes such that

Xn : a,αn,βn,z1, . . . ,zn.

Since f belongs to A, lim
n→∞

‖ f − pf ,Xn‖∞ = 0 and we put a positive number L1 such that

sup
n∈N

‖pf ,Xn‖∞ < L1.

From Mean Value Theorem and (2), we have

δ1 <

∣∣∣∣ f (αn)− f (zn)
αn − zn

− f (βn)− f (a)
βn −a

∣∣∣∣ =
∣∣∣∣ pf ,Xn(αn)− pf ,Xn(zn)

αn − zn
− pf ,Xn(βn)− pf ,Xn(a)

βn −a

∣∣∣∣
=

∣∣∣p′f ,Xn
(σ (1)

n )− p′f ,Xn
(τ (1)

n )
∣∣∣ ,

where σ (1)
n is a point between αn and zn, and τ (1)

n is a point between βn and a. Again from Mean

Value Theorem and (3), since |σ (1)
n − τ (1)

n | < δ1

n ·Mn+2,2
, we obtain

|p′′f ,Xn
(ξ (1)

n )| =
∣∣∣∣∣

p′f ,Xn
(σ (1)

n )− p′f ,Xn
(τ (1)

n )

σ (1)
n − τ (1)

n

∣∣∣∣∣ > n ·Mn+2,2,

where ξ (1)
n is a point between σ (1)

n and τ (1)
n . For sufficiently large n it holds that

‖p′′f ,Xn
‖∞ � |p′′f ,Xn

(ξ (1)
n )| > n ·Mn+2,2 � L1 ·Mn+2,2,

which contradicts Lemma 2. Hence, f is continuously differentiable on [−1,1].

Next we shall verify that f is k(� 2) times continuously differentiable on [−1,1] under the

condition that f is k − 1 times continuously differentiable on [−1,1]. To do this, we have to

prove that f is k times differentiable on [−1,1] and further f (k) is continuous on [−1,1]. By the

same reason as the proof of continuously differentiability of f , we devote ourself to proving that

f (k) is continuous on [−1,1].

Suppose that f (k−1) is differentiable on [−1,1] and suppose on the contrary that f (k) is not

continuous at a point a ∈ [−1,1]. Then, there exist a positive number δk and three sequences

{αn}, {βn} and {zn} which converge to a such that
∣∣∣∣∣

f (k−1)(αn)− f (k−1)(zn)
αn − zn

− f (k−1)(βn)− f (k−1)(a)
βn −a

∣∣∣∣∣ > δk, n = 1,2, . . . . (4)
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For each αn,βn,zn,n = 1,2, . . . and a, by Lemma 1, there exist α(n)
1 , . . . ,α(n)

k , β (n)
1 , . . . ,β (n)

k ,

z(n)
1 , . . . ,z(n)

k and a(n)
1 , . . . ,a(n)

k satisfying that

D :=

∣∣∣∣∣
f [α(n)

1 , . . . ,α(n)
k ]− f [z(n)

1 , . . . ,z(n)
k ]

αn − zn
− f [β (n)

1 , . . . ,β (n)
k ]− f [a(n)

1 , . . . ,a(n)
k ]

βn −a

∣∣∣∣∣ >
δk

2(k−1)!
(5)

Furthermore, without loss of generality, we assume that 4k + n points α(n)
i , β (n)

i , z(n)
i , a(n)

i ,

i = 1, · · · ,k and z1, · · · ,zn are distinct from each other, and assume that

max{α(n)
1 , · · · ,α(n)

k , β (n)
1 , · · · ,β (n)

k ,z(n)
1 , · · · ,z(n)

k ,a(n)
1 , · · · ,a(n)

k }
−min{α(n)

1 , · · · ,α(n)
k , β (n)

1 , · · · ,β (n)
k ,z(n)

1 , · · · ,z(n)
k ,a(n)

1 , · · · ,a(n)
k } <

δk

4n ·Mn+4k−1,k+1
. (6)

We set a system Xn,n ∈ N of nodes such that

Xn : α(n)
1 , . . . ,α(n)

k ,β (n)
1 , . . . ,β (n)

k ,z(n)
1 , . . . ,z(n)

k ,a(n)
1 , . . . ,a(n)

k ,z1, . . . ,zn.

Since f belongs to A and the system Xn,n ∈ N has (∗)-property, lim
n→∞

‖ f − pf ,Xn‖∞ = 0 and we

put a positive number Lk such that sup
n∈N

‖pf ,Xn‖∞ < Lk. From Lemma 1, we have

D =

∣∣∣∣∣
pf ,Xn [α

(n)
1 , . . . ,α(n)

k ]− pf ,Xn [z
(n)
1 , . . . ,z(n)

k ]
αn − zn

− pf ,Xn [β
(n)
1 , . . . ,β (n)

k ]− pf ,Xn [a
(n)
1 , . . . ,a(n)

k ]
βn −a

∣∣∣∣∣
=

1
(k−1)!

∣∣∣∣∣∣
p(k−1)

f ,Xn
(α ′

n)− p(k−1)
f ,Xn

(z′n)
αn − zn

− p(k−1)
f ,Xn

(β ′
n)− p(k−1)

f ,Xn
(a′)

βn −a

∣∣∣∣∣∣ >
δk

2(k−1)!
.

Here we note that max{|p(k−1)
f ,Xn

(α ′
n)|, |p(k−1)

f ,Xn
(z′n)|, |p(k−1)

f ,Xn
(β ′

n)|, |p(k−1)
f ,Xn

(a′)|} � ‖ f (k−1)‖∞.

Moreover, we assume that α(n)
i , z(n)

i , β (n)
i and a(n)

i , i = 1, . . . ,k are sufficiently close to αn, zn, βn

and a respectively such that∣∣∣∣∣∣
p(k−1)

f ,Xn
(α ′

n)− p(k−1)
f ,Xn

(z′n)
α ′

n − z′n
− p(k−1)

f ,Xn
(β ′

n)− p(k−1)
f ,Xn

(a′)
β ′

n −a′

∣∣∣∣∣∣ >
δk

4
.

From Mean Value Theorem, we have∣∣∣∣∣∣
p(k−1)

f ,Xn
(α ′

n)− p(k−1)
f ,Xn

(z′n)
α ′

n − z′n
− p(k−1)

f ,Xn
(β ′

n)− p(k−1)
f ,Xn

(a′)
β ′

n −a′

∣∣∣∣∣∣ =
∣∣∣p(k)

f ,Xn
(σ (k)

n )− p(k)
f ,Xn

(τ (k)
n )

∣∣∣ >
δk

4
,

where σ (k)
n is a point between α ′

n and z′n, and τ (k)
n is a point between β ′

n and a′. Again from Mean

Value Theorem and (6), it follows that there exists a point ξ (k)
n between σ (k)

n and τ (k)
n and

|p(k+1)
f ,Xn

(ξ (k)
n )| =

∣∣∣∣∣∣
p(k)

f ,Xn
(σ (k)

n )− p(k)
f ,Xn

(τ (k)
n )

σ (k)
n − τ (k)

n

∣∣∣∣∣∣ >
δk

4(σn − τn)
> n ·Mn+4k−1,k+1.

Hence, for sufficiently large n it holds that

‖p(k+1)
f ,Xn

‖∞ � |p(k+1)
f ,Xn

(ξn)| > n ·Mn+4k−1,k+1 � Lk ·Mn+4k−1,k+1,
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which contradicts Lemma 2. Hence, f is k times continuously differentiable on [−1,1].

Now we are in position to state that any f ∈ A is infinitely differentiable on [−1,1]. For any

f ∈ A and any c ∈ [−1,1], we can consider a system Xn : x(n)
0 , . . . ,x(n)

n ,n ∈ N with (∗)-property

such that ∥∥∥∥∥pf ,Xn −
n

∑
p=0

f (p)(c)
p!

(x− c)p

∥∥∥∥∥
∞

<
1
n
, n = 1,2, . . . . (7)

Since lim
n→∞

‖ f − pf ,Xn‖∞ = 0, by (7), f is expressed as

f (x) =
∞

∑
p=0

f (p)(c)
p!

(x− c)p, x ∈ [−1,1].

This means that the radiuses of the Taylor series about −1, 1 for f are at least 2.

Remark 2. Let f be an analytic function on [−1,1] and suppose that the radiuses of con-

vergence of the Taylor series about −1, 1 for f are more than 2. Then we can regard f (z) as a

regular function on a simply connected region D(⊃ [−1,1]) in the complex plane. Furthermore,

D contains a simple, closed, rectifiable curve C such that

|z−a| > |x−a| for all z ∈C and all a,x ∈ [−1,1].

Let X : x0,x1, . . . ,xn be any distinct nodes in [−1,1]. Then, from the formula (4.10.6) in p.165

in Mori[3], we have

f (x)− pf ,X (x) =
1

2πi

∮
C

(x− x0) · · · (x− xn)
(z− x)(z− x0) · · · (z− xn)

f (z)dz, x ∈ [−1,1].

Hence, we see f ∈ A without difficulty.
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