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Abstract. Let

P(z) =
n

∑
ν=0

cνzν

be a polynomial of degree n and let M( f ,r) = max
|z|=r

| f (z)| for an arbitrary entire function

f (z). If P(z) has no zeros in |z| < 1 with M(P,1) = 1, then for |α| ≤ 1, it is proved by
Jain[Glasnik Matematički, 32(52) (1997), 45−51] that∣∣∣∣P(Rz)+ α

(
R + 1

2

)n

P(z)
∣∣∣∣ ≤ 1

2

{∣∣∣∣1 + α
(

R + 1
2

)n∣∣∣∣
+

∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣
}

, R ≥ 1, |z| = 1.

In this paper, we shall first obtain a result concerning minimum modulus of polynomials
and next improve the above inequality for polynomials with restricted zeros. Our result
improves the well known inequality due to Ankeny and Rivlin[1] and besides generalizes
some well known polynomial inequalities proved by Aziz and Dawood[3].
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1 Introduction and Statement of Results

If P(z) is a polynomial of degree n, then[6, p.158, problem III, p.269]

M(P,R)≤ RnM(P,1) for R ≥ 1. (1.1)

The result is best possible and the equality holds for polynomials having zeros at the origin.
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Inequality (1.1) was generalized by Jain[4] who proved that if P(z) is a polynomial of degree
n, then for |z| = 1 and |α | ≤ 1,∣∣∣∣P(Rz)+ α

(
R + 1

2

)n

P(z)
∣∣∣∣ ≤

∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣M(P,1), R ≥ 1. (1.2)

It was shown by Ankeny and Rivlin[1] that if P(z) �= 0 in |z| < 1, then (1.1) can be replaced
by

M(P,R)≤ Rn + 1
2

M(P,1) for R ≥ 1. (1.3)

Inequality (1.3) is sharp and the equality holds for P(z) = β + γzn, where |β | = |γ | = 1/2.
In the same manner the inequality (1.3) was generalized by Jain[5] for polynomials having

no zeros in |z| < 1 with |α | ≤ 1 and |z| = 1,∣∣∣∣P(Rz)+ α
(

R + 1
2

)n

P(z)
∣∣∣∣

≤ 1
2

{∣∣∣∣1+ α
(

R + 1
2

)n∣∣∣∣+
∣∣∣∣Rn + α

(
R + 1

2

)n∣∣∣∣
}

M(P,1), R ≥ 1. (1.4)

The result is best possible and the equality holds for P(z) = β + γzn, where |β | = |γ | = 1/2.

In this paper, we firstly obtain an interesting result concerning minimum modulus of poly-
nomials P(z) which is analogous to the inequality (1.2).

Theorem 1. If P(z) is a polynomial of degree n, having all its zeros in |z| < 1, then for

every real or complex number α with |α | ≤ 1 and R ≥ 1,

min
|z|=1

∣∣∣∣P(Rz)+ α
(

R + 1
2

)n

P(z)
∣∣∣∣ ≥

∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣min
|z|=1

|P(z)| . (1.5)

The result is best possible and the equality holds for P(z) = meiβ zn,m > 0.
If we take α = 0 in Theorem 1, then the inequality (1.5) reduces to the following result

proved by Aziz and Dawood[3].
Corollary 1. Let P(z) be a polynomial of degree n, having all its zeros in |z| < 1, then for

|z| = 1
|P(Rz)| ≥ Rn min

|z|=1
|P(z)| f or R ≥ 1.

We next improve the inequality (1.4), by using Theorem 1. More precisely, we prove the
following

Theorem 2. If P(z) is a polynomial of degree n, having no zeros in |z| < 1, then for every

real or complex number α with |α | ≤ 1, R ≥ 1 and |z| = 1,∣∣∣∣P(Rz)+ α
(

R + 1
2

)n

P(z)
∣∣∣∣ ≤ 1

2

[{∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣ +
∣∣∣∣1+ α

(
R + 1

2

)n∣∣∣∣
}

M(P,1)

−
{∣∣∣∣Rn + α

(
R + 1

2

)n∣∣∣∣ −
∣∣∣∣1+ α

(
R + 1

2

)n∣∣∣∣
}

min
|z|=1

|P(z)|
]
.

(1.6)
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Inequality (1.6) is sharp and the equality holds for P(z) = β + γzn, where |β | = |γ | = 1/2.
For α = 0, Theorem 2 reduces to the following result proved by Aziz and Dawood[3].
Corollary 2. Let P(z) is a polynomial of degree n, having no zeros in |z| < 1, then for

|z| = 1

|P(Rz)| ≤
(

Rn + 1
2

)
M(P,1)−

(
Rn −1

2

)
min
|z|=1

|P(z)| .

2 Lemmas

For the proof of these theorems, we need the following lemmas.
Lemma 1. If P(z) is a polynomial of degree n, having all its zeros in the disk |z| ≤ k, k ≤ 1,

then for R ≥ 1

|P(Rz)| ≥
(

R + k
1+ k

)n

|P(z)| f or |z| = 1. (2.1)

The above Lemma is due to Aziz[2].
Lemma 2. Let F(z) be a polynomial of degree n, having all its zeros in the disk |z| ≤ 1. If

P(z) is a polynomial of degree at most n such that

|P(z)| ≤ |F(z)| f or |z| = 1,

then for |α | ≤ 1 and R ≥ 1,
∣∣∣∣P(Rz)+ α

(
R + 1

2

)n

P(z)
∣∣∣∣ ≤

∣∣∣∣F(Rz)+ α
(

R + 1
2

)n

F(z)
∣∣∣∣ f or |z| = 1. (2.2)

The above Lemma is due to Jain[4].
Lemma 3. If P(z) is a polynomial of degree n, then for |z| = 1 and |α | ≤ 1,

∣∣∣∣P(Rz)+ α
(

R + 1
2

)n

P(z)
∣∣∣∣+

∣∣∣∣Q(Rz)+ α
(

R + 1
2

)n

Q(z)
∣∣∣∣

≤
{∣∣∣∣Rn + α

(
R + 1

2

)n∣∣∣∣+
∣∣∣∣1+ α

(
R + 1

2

)n∣∣∣∣
}

M(P,1). (2.3)

where Q(z) = znP(1/z).
The above Lemma is due to Jain[4].

3 Proof of Theorems

Proof of Theorem 1. For R = 1 the result is obvious. Therefore we shall prove the result
for R > 1. If P(z) has a zero on |z| = 1, then the inequality (1.5) is trivial. So we suppose
that P(z) has all its zeros in |z| < 1. If m = min|z|=1 |P(z)|, then 0 < m ≤ |P(z)| for |z| = 1.
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Therefore, if λ is a complex number such that |λ |< 1, then it follows by Rouche’s Theorem that
the polynomial G(z) = P(z)−λmzn of degree n, has all its zeros in |z| < 1. Applying Lemma 1
to the polynomial G(z) with k = 1 and R > 1, we get

|G(Rz)| ≥
(

R + 1
2

)n

|G(z)| for |z| = 1.

Since G(Rz) has all its zeros in |z| ≤ 1/R < 1, again applying Rouche’s Theorem for real or com-

plex number α with |α | ≤ 1, one can show that the polynomial T (z) = G(Rz)+α
(

R + 1
2

)n

G(z)

has all its zeros in |z| < 1. That is,

T (z) = G(Rz)+ α
(

R + 1
2

)n

G(z) �= 0 for |z| ≥ 1, R > 1.

Substituting for G(z), we conclude that for every α , λ with |λ | < 1, |α | ≤ 1, |z| ≥ 1 and R > 1

T (z) =
[

P(Rz)+ α
(

R + 1
2

)n

P(z)
]
−λ

[
mRnzn + α

(
R + 1

2

)n

mzn
]
�= 0. (3.1)

This implies for every α with |α | ≤ 1, |z| ≥ 1 and R > 1,∣∣∣∣P(Rz)+ α
(

R + 1
2

)n

P(z)
∣∣∣∣ ≥

∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣m |z|n . (3.2)

If this inequality is not true , then there is a point z = z0 with |z0| ≥ 1 such that for R > 1∣∣∣∣P(Rz)+ α
(

R + 1
2

)n

P(z)
∣∣∣∣ <

∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣m |z|n .

We take

λ =
P(Rz0)+ α

(R+1
2

)n
P(z0)[

Rn + α
(R+1

2

)n
]

mzn
0

,

then |λ | < 1 and with this choice of λ , we have from (3.1), T (z0) = 0 for |z0| ≥ 1. But this
contradicts the fact that T (z) �= 0 for |z| ≥ 1. Hence in particular, (3.2) gives for every α with
|α | ≤ 1 and R > 1,

min
|z|=1

∣∣∣∣P(Rz)+ α
(

R + 1
2

)n

P(z)
∣∣∣∣ ≥

∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣min
|z|=1

|P(z)| .

This completes the proof of Theorem 1.
Proof of Theorem 2. For R = 1 there is nothing to prove. Therefore we assume that R > 1.

By hypothesis,the polynomial P(z) �= 0 in |z| < 1, therefore if m = min|z|=1 |P(z)|, then m ≤
|P(z)| for |z| ≤ 1. Therefore, for a given complex number β with |β | ≤ 1, it follows by Rouche’s
Theorem that the polynomial G(z) = P(z)−βm has no zero in |z| < 1. Now if

H(z) = znG(1/z) = Q(z)−mβzn,



Anal. Theory Appl., Vol. 26, No.1 (2010) 5

then all the zeros H(z) lie in |z| < 1 and |G(z)| = |F(z)| for |z| = 1. Therefore by Lemma 2, we
have for |α | ≤ 1 and |z| = 1,∣∣∣∣{P(Rz)−βm}+ α

(
R + 1

2

)n

{P(z)−βm}
∣∣∣∣

≤
∣∣∣∣
{

Q(Rz)−βmRnzn
}

+ α
(

R + 1
2

)n {
Q(z)−βmzn

}∣∣∣∣ .
This implies∣∣∣∣

{
P(Rz)+ α

(
R + 1

2

)n

P(z)
}
−βm

{
1+ α

(
R + 1

2

)n}∣∣∣∣
≤

∣∣∣∣
{

Q(Rz)+ α
(

R + 1
2

)n

Q(z)
}
−βmzn

{
Rn + α

(
R + 1

2

)n}∣∣∣∣ . (3.3)

Since all zeros of Q(z) lie in |z| < 1, we have by Theorem 1 for |z| = 1 and |α | ≤ 1∣∣∣∣Q(Rz)+ α
(

R + 1
2

)n

Q(z)
∣∣∣∣ ≥

∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣min
|z|=1

|Q(z)| ,

=
∣∣∣∣Rn + α

(
R + 1

2

)n∣∣∣∣m.

Now choosing the argument of β in (3.3) and letting |β | → 1, we get for |z| = 1 and |α | ≤ 1,∣∣∣∣P(Rz)+ α
(

R + 1
2

)n

P(z)
∣∣∣∣−m

∣∣∣∣1+ α
(

R + 1
2

)n∣∣∣∣
≤

∣∣∣∣Q(Rz)+ α
(

R + 1
2

)n

Q(z)
∣∣∣∣−m

∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣ .
Equivalently∣∣∣∣P(Rz)+ α

(
R + 1

2

)n

P(z)
∣∣∣∣

≤
∣∣∣∣Q(Rz)+ α

(
R + 1

2

)n

Q(z)
∣∣∣∣−

{∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣−
∣∣∣∣1+ α

(
R + 1

2

)n∣∣∣∣
}

m,

which implies for every real or complex number α with |α | ≤ 1, R > 1 and |z| = 1,

2
∣∣∣∣P(Rz)+ α

(
R + 1

2

)n

P(z)
∣∣∣∣ ≤

∣∣∣∣P(Rz)+ α
(

R + 1
2

)n

P(z)
∣∣∣∣

+
∣∣∣∣Q(Rz)+ α

(
R + 1

2

)n

Q(z)
∣∣∣∣−

{∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣−
∣∣∣∣1+ α

(
R + 1

2

)n∣∣∣∣
}

m.

This in conjunction with Lemma 3 gives for |α | ≤ 1, R > 1 and |z| = 1,

2
∣∣∣∣P(Rz)+ α

(
R + 1

2

)n

P(z)
∣∣∣∣ ≤

{∣∣∣∣Rn + α
(

R + 1
2

)n∣∣∣∣ +
∣∣∣∣1+ α

(
R + 1

2

)n∣∣∣∣
}

M(P,1)

−
{∣∣∣∣Rn + α

(
R + 1

2

)n∣∣∣∣ −
∣∣∣∣1+ α

(
R + 1

2

)n∣∣∣∣
}

m,

and the theorem follows.
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