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Abstract. In this paper, the authors establish L p boundedness for several classes of mul-
tiple singular integrals along surfaces of revolution with kernels satisfying rather weak size
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obtained. The main results essentially improve and extend some known results.
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1 Introduction

Let RN(N = m or n), N ≥ 2, be the N-dimensional Euclidean space and SN−1 be the unit
sphere in RN equipped with normalized Lebesgue measure dσ = dσ(·). For a nonzero point
w ∈ RN , we denote w′ = w/|w|. For m ≥ 2, n ≥ 2, let Ω be a homogeneous function of degree
zero, integrable on Sm−1 ×Sn−1 and satisfy∫

Sm−1
Ω(u′, v′)dσ(u′) =

∫
Sn−1

Ω(u′, v′)dσ(v′) = 0. (1.1)

For suitable functions φ and ψ on [0, ∞), we let Γφ and Λψ be the surfaces of revolution given
by Γφ = {(x, φ(|x|); x ∈ Rm} and Λψ = {(y, ψ(|y|); y ∈ Rn}. Define the associated singular
integral operator Tφ ,ψ (initially for C∞

0 (Rm+1 ×Rn+1)) by

Tφ ,ψ( f )(x, y) = p.v.

∫
Rm×Rn

K(u,v) f (x−Φ(u), y−Ψ(v))dudv (1.2)

and the corresponding maximal truncated singular integral operator T∗φ ,ψ by

T ∗
φ ,ψ( f )(x, y) = sup

ε1>0,ε2>0

∣∣∣∣∫|v|≥ε2

∫
|u|≥ε1

K(u,v) f (x−Φ(u), y−Ψ(v))dudv

∣∣∣∣ , (1.3)

where K(u,v) = Ω(u′,v′)|u|−m|v|−n, Φ(u) = (u,φ(|u|)), Ψ(v) = (v,ψ(|v|)), x = (x,xm+1) ∈
Rm+1 = Rm ×R and y = (y,yn+1) ∈ Rn+1 = Rn ×R. If φ = ψ ≡ 0, we shall let T = T0,0 and
T ∗ = T ∗

0,0.
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Lp boundedness of the operators T and T∗ first were established by R. Fefferman and E. M.
Stein [1, 2] provided Ω satisfies certain Lipschitz conditions. Subsequently, J. Duoandikoetxea[3]

proved T is bounded on Lp for 1 < p < ∞ if Ω ∈ Lq(Sm−1 ×Sn−1) for q > 1. Later on, the above
results were improved by many authors (see [4-10], among others). In particular, it follows from
[7, 8] that T and T∗ are bounded on Lp for 1 < p < ∞ if Ω ∈ L(log+L)2 (Sm−1 ×Sn−1), which is
nearly optimal in the sense that the exponent 2 in L(log+L)2 can not be replaced by any smaller
number.

The other weaker condition on Ω is that for α > 0,

sup
ξ ′∈Sm−1,η ′∈Sn−1

∫ ∫
Sm−1×Sn−1

|Ω(u′, v′)|
(

log
1

|ξ ′ ·u′| log
1

|η ′ · v′|
)α

dσ(u′)dσ(v′) < ∞. (1.4)

Y. Ying [10] proved that if Ω satisfies (1.4) for α > 1, then T is bounded on Lp for 2α/(2α −1) <
p < 2α .

It is worth pointing out that the condition (1.4) in one-parameter case was originally defined
in Walsh’s paper [11] and developed by Grafakos and Stefanov [12] for α > 1. For the sake of
simplicity, we denote for α > 0,

Gα(Sm−1 ×Sn−1) = {Ω ∈ L1(Sm−1 ×Sn−1) : Ω satisfies (1.4)}.
Employing the ideas in [12], ones easily see that L(log+L)2(Sm−1×Sn−1) and Gα(Sm−1 ×Sn−1)
for any α > 0 do not contain each other, and

⋃
q>1 Lq(Sm−1 × Sn−1) is a proper subset of

Gα(Sm−1 ×Sn−1) for any α > 0, also, of L(log+L)2(Sm−1 ×Sn−1).
For the general operators Tφ ,ψ and T ∗

φ ,ψ , A. Al-Salman[13] (resp., A. Al-Qassem[14]) showed

that Tφ ,ψ and T ∗
φ ,ψ are bounded on Lp(Rm+1 ×Rn+1) for 1 < p < ∞ if φ , ψ are C2, convex in-

creasing and Ω ∈ L(log+L)2(Sm−1 ×Sn−1) (resp., Ω belongs to certain block spaces). The main
purpose of this paper is to investigate Lp bondedness of the general operators Tφ ,ψ and T ∗

φ ,ψ when
Ω ∈ Gα(Sm−1 ×Sn−1) for α > 0. Our main results can be formulated as follows.

Theorem 1.1. Let Ω be a homogeneous function of degree zero and satisfy (1.1). Suppose
that φ ∈ C1([0, ∞), φ ′ is convex and increasing (or φ is a polynomial), ψ ∈ C1([0, ∞), ψ ′ is
convex and increasing (or ψ is a polynomial). If Ω ∈ Gα(Sm−1 ×Sn−1) for α > 1 and one of the
following conditions holds, then Tφ ,ψ is bounded on Lp(Rm+1 ×Rn+1) for 2α/(2α − 1) < p <
2α .

(i) m = n = 2.
(ii) m ≥ 3, n = 2 and φ ′(0) = 0.
(iii) m = 2, n ≥ 3 and ψ′(0) = 0.
(iv) m ≥ 3, n ≥ 3 and φ ′(0) = ψ ′(0) = 0.
Moreover, the bounds are independent of the coefficients of φ , ψ when φ , ψ are polynomials.

Theorem 1.2. Let φ , ψ be given as in Theorem 1. Let Ω is a homogeneous function of degree
zero and satisfies (1.1). Suppose that Ω ∈ Gα(Sm−1 ×Sn−1) for α > 3/2. Then under the same
conditions of Theorem 1, T∗

φ ,ψ is bounded on Lp(Rm+1×Rn+1) for 1+1/(2α −2) < p < 2α−1.
Moreover, the bounds are independent of the coefficients of φ , ψ when φ , ψ are polynomials.

This paper is organized as follows. In Section 2 we shall introduce some notations and give
some technical lemmas. The proof of Theorem 1 will be given in Section 3. Finally, we shall
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prove Theorem 2 in Section 4. We remark that some ideas in the proofs of our main results are
taken from [3, 6, 15, 16], but our methods and techniques are more delicate and complex than
that of [3, 6, 15, 16].

Throughout this paper, we always use the letter C to denote positive constants that may vary
at each occurrence but are independent of the essential variables.

2 Main Lemmas

Let φ , ψ , Ω be as in Theorem 1 or 2. For j, k ∈ Z we denote

Bj,k =
{
(u, v) ∈ Rm ×Rn : 2 j < |u| ≤ 2 j+1, 2k < |v| ≤ 2k+1

}
.

Define the measures σ j,k and λ j,k on Rm+1 ×Rn+1 by letting their Fourier transforms be

σ̂ j,k(ξ , η) =
∫ ∫

Bj,k

Ω(u′, v′)
|u|m|v|n e−i[ξ ·u+ξm+1φ(|u|)+η ·v+ηn+1ψ(|v|)]dudv (2.1)

and

λ̂ j,k(ξ , η) =
∫ ∫

Bj,k

|Ω(u′ v′)|
|u|m|v|n e−i[ξ ·u+ξm+1φ(|u|)+η ·v+ηn+1ψ(|v|)]dudv, (2.2)

where ξ = (ξ , ξm+1) ∈ Rm ×R and η = (η , ηn+1) ∈ Rn ×R. Then we have

Tφ ,ψ( f )(x,y) = ∑
j,k∈Z

σ j,k ∗ f (x,y). (2.3)

It is easy to see that ‖σ̂ j,k‖∞ ≤C, ‖λ̂ j,k‖∞ ≤C uniformly for j, k ∈ Z.
Also, we define the maximal operator σ∗ by

σ ∗( f )(x,y) = sup
j,k∈Z

∣∣λ j,k ∗ f (x,y)
∣∣ .

Lemma 2.1. For 1 < p < ∞, σ∗ is bounded on Lp(Rm+1×Rn+1),and the bound is indepen-
dent of the coefficients of φ , ψ when φ , ψ are polynomials.

Proof. By using spherical coordinate, we have

σ ∗( f )(x,y) ≤ sup
j,k∈Z

∫ 2 j+1

2 j

∫ 2k+1

2k

∫ ∫
Sm−1×Sn−1

|Ω(u′,v′)|s−1t−1

×| f (x− su′,xm+1 −φ(s);y− tv′,yn+1 −ψ(t))|dσ(u′)dσ(v′)dsdt

≤
∫ ∫

Sm−1×Sn−1
|Ω(u′,v′)|Mu′,v′( f )(x,y)dσ(u′)dσ(v′),

where

Mu′,v′( f )(x,y) = sup
r,h>0

1
rh

∫ r

0

∫ h

0
| f (x− su′,xm+1 −φ(s);y− tv′,yn+1 −ψ(t))|dsdt.
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By Lp-boundedness results in [17, Corollary 5] (or [18, Proposition 1, p.477]), using iterated
integration, it is easy to see that

‖Mu′,v′( f )‖p ≤C‖ f‖p,

where C is independent of (u′,v′) and the coefficients of φ , ψ when φ , ψ are polynomials. Thus

‖σ ∗( f )‖p ≤
∫ ∫

Sm−1×Sn−1
|Ω(u′,v′)|‖Mu′,v′( f )‖pdσ(u′)dσ(v′) ≤C‖ f‖p,

which completes the proof of Lemma 2.1.

Lemma 2.2. For arbitrary functions {gj,k}, 1 < p0 < ∞,∥∥∥∥∥∥
(

∑
j,k∈Z

∣∣σ j,k ∗gj,k
∣∣2)1/2

∥∥∥∥∥∥
p0

≤C

∥∥∥∥∥∥
(

∑
j,k∈Z

|gj,k|2
)1/2

∥∥∥∥∥∥
p0

where C is independent of the coefficients of φ , ψ when φ , ψ are polynomials.

Applying Lemma 2.1, the proof of Lemma 2.2 follows by using the similar arguments as the
proof of Lemma in [17, p.544]. Here we omit the details.

Lemma 2.3 [17]. Let φ : [0, ∞)−→ R be a function in C1 such that φ ′ is convex, increasing
and satisfies φ′(0) = 0. Then there exists C > 0 such that∣∣∣∣∫ b

1
ei[2 j ar+ρφ(2 jr)]dr

∣∣∣∣≤C|2 ja|−1/2

holds for all b ≥ 1, a, ρ ∈ R, and j ∈ Z.

Lemma 2.4 [19]. Let μ(y) = ∑|β |≤d bβ yβ where bβ ∈ R. Then

∣∣∣∣∫[0,1]n
eiμ(y)dy

∣∣∣∣≤Cd,n

(
∑

0<|β |≤d

|bβ |
)−1/d

.

Moreover, Cd,1 ≤Cd for an absolute constant C.

Lemma 2.5. Let j, k ∈ Z, and φ , ψ be as in Theorem 1. If Ω ∈ Gα(Sm−1 ×Sn−1) for α > 1
and satisfies (1.1). Then for ξ = (ξ , ξm+1) ∈ Rm ×R, η = (η , ηn+1) ∈ Rn ×R, there exists
C > 0 such that

(i) |σ̂ j,k(ξ ,η)| ≤C|2 jξ ||2kη |, for all ξ ∈ Rm, η ∈ Rn;

(ii) |σ̂ j,k(ξ ,η)| ≤C|2 jξ |(log|2kη |)−α , for all ξ ∈ Rm, |2kη |> 2α ;

(iii) |σ̂ j,k(ξ ,η)| ≤C(log|2 jξ |)−α |2kη |, for all η ∈ Rm, |2 jξ | > 2α ;

(iv) |σ̂ j,k(ξ ,η)| ≤C(log|2 jξ |)−α(log|2kη |)−α , for all |2 jξ | > 2α , |2kη | > 2α .

Proof. (i) is obvious by (1.1). In what follows, we will prove (ii)–(iv) in the following four
cases.

Case 1. φ , ψ ∈C1([0, ∞)), φ ′, ψ ′ is convex and increasing.
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To prove (ii), we write

σ̂ j,k(ξ , η) =
∫ ∫

Sm−1×Sn−1
Ω(u′,v′)

∫ 2

1
e−i[2 j s|ξ |ξ ′ ·u′+φ(2 j s)ξm+1] ds

s

×
∫ 2

1
e−i[2kt|η |η ′·v′+ψ(2kt)ηn+1] dt

t
dσ(u′)dσ(v′)

=
∫ ∫

Sm−1×Sn−1
Ω(u′,v′)

[∫ 2

1

(
e−i[2 j s|ξ |ξ ′ ·u′+φ(2 js)ξm+1]− e−iφ(2 j s)ξm+1

) ds
s

]
×
[∫ 2

1
ei[2k |η |(η ′·v′+ψ ′(0)ηn+1|η |−1)+(ψ(2kt)−ψ ′(0)2kt)ηn+1] dt

t

]
dσ(u′)dσ(v′).

It is easy to see that the integral in the first brackets is bounded by C|2jξ |. By Lemma 2.3, the
integral in the secondary brackets is bounded by

C
(

2k|η | ∣∣η ′ · v′ + ψ ′(0)|η |−1ηn+1
∣∣)−1/2

.

Let δ = min{|ψ ′(0)ηn+1||η |−1, 2}sgn(ψ ′(0)ηn+1). By combining the preceding inequality
with the trivial estimate ∣∣∣∣∫ 2

1
e−i[2kt|η |η ′·v′+ψ(2kt)ηn+1] dt

t

∣∣∣∣≤ 1,

we have ∣∣∣∣∫ 2

1
e−i[2kt|η |η ′ ·v′+ψ(2kt)ηn+1] dt

t

∣∣∣∣≤C min

{
1,

(
2α |η ′ · v′ + δ |−1

|2kη |
)1/2

}
.

Since t/logat is increasing in (2a, +∞) for any a > 0, we can deduce that for α > 0,∣∣∣∣∫ 2

1
e−i[2kt|η |η ′·v′+ψ(2kt)ηn+1] dt

t

∣∣∣∣≤C
logα(2α |η ′ · v′ + δ |−1)

logα |2kη | , if |2kη | > 2α . (2.4)

Therefore, when n ≥ 3, by the additional assumption ψ′(0) = 0, i.e. δ = 0, we get

|σ̂ j,k(ξ , η)| ≤C|2 jξ |(log|2kη |)−α
∫ ∫

Sm−1×Sn−1
|Ω(u′,v′)|

(
log

2
|η ′ · v′|

)α
dσ(u′)dσ(v′)

≤C|2 jξ |(log|2kη |)−α
, if |2kη | > 2α .

When n = 2, by the similar arguments as those in [15, pp. 167-168], we may assume that δ > 0
and set δ ′ = min{δ , 1}. Let θ = arcsin(δ ′), and let e+, e− denote the vectors obtained by
rotating η′ by angles θ and −θ , respectively. Then there is a constant c0 ∈ (0, 1) such that

|η ′ · v′ + δ | ≥ c0 min{|e+ · v′|2, |e− · v′|2}

for v′ ∈ S1. Thus

|σ̂ j,k(ξ ,η)| ≤C|2 jξ |
(

log|2kη |
)−α

also holds when n = 2 and |2kη | > 2α (without the additional assumption ψ′(0) = 0). This
completes the proof of Lemma (ii).
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Similar to (2.4), we can conclude (iii) (without the additional assumption φ′(0) = 0 when
m = 2).

It remains to prove (iv). We write

σ̂ j,k(ξ , η) =
∫ ∫

Sm−1×Sn−1
Ω(u′,v′)

∫ 2

1
e−i[2 j s|ξ |ξ ′ ·u′+φ(2 j s)ξm+1] ds

s

×
∫ 2

1
e−i[2kt|η |η ′·v′+ψ(2kt)ηn+1] dt

t
dσ(u′)dσ(v′)

=
∫ ∫

Sm−1×Sn−1
Ω(u′,v′)

[∫ 2

1
e−i[2 j s|ξ |(ξ ′·u′+φ ′(0)ξm+1|ξ |−1)+(φ(2 js)−φ ′(0)2 j s)ξm+1] ds

s

]
×
[∫ 2

1
ei[2k |η |(η ′·v′+ψ ′(0)ηn+1|η |−1)+(ψ(2kt)−ψ ′(0)2kt)ηn+1] dt

t

]
dσ(u′)dσ(v′).

Similar to (2.4), we have∣∣∣∣∫ 2

1
e−i[2 j s|ξ |ξ ′ ·u′+ψ(2 js)ξm+1] ds

s

∣∣∣∣≤C
logα(2α |ξ ′ ·u′ + ρ |−1)

logα |2 jξ | , if |2 jξ | > 2α , (2.5)

where ρ = min{|φ ′(0)ξm+1|/|ξ |, 2}sgn(φ ′(0)ξm+1). By (2.4)–(2.5) and the similar arguments
as those in proving (ii), we get

|σ j,k(ξ , η)| ≤C(log|2 jξ |)−α(log|2kη |)−α , if |2 jξ | > 2α and |2kη | > 2α ,

without the additional assumption φ′(0) = 0 or ψ ′(0) = 0 when m = 2 or n = 2. (iv) is proved.

Case 2. φ , ψ are polynomials. Precisely, φ(s) =
d

∑
μ=0

aμsμ , ψ(t) =
l

∑
ν=0

bν tν .

We need only to prove (iv) since the proofs of (ii)-(iii) are similar or even simpler. By
spherical coordinate, we write

σ̂ j,k(ξ ,η) =
∫ ∫

Sm−1×Sn−1
Ω(u′,v′)

∫ 2

1
e−i[2 j(|ξ |ξ ′ ·u′+a1ξm+1)s+a0ξm+1+∑d

μ=2 aμ ξm+12μ j sμ ] ds
s

×
∫ 2

1
e−i[2k(|η |η ′·v′+b1ηn+1)s+b0ηn+1+∑l

ν=2 bν ηn+12νktν ] dt
t

dσ(u′)dσ(v′)

:=
∫ ∫

Sm−1×Sn−1
Ω(u′,v′)I j(ξ ,ξm+1,u

′)Ik(η ,ηn+1,v
′)dσ(u′)dσ(v′).

By Lemma 2.4,
|I j(ξ ,ξm+1,u

′)| ≤C|2 j(|ξ |ξ ′ ·u′ +a1ξm+1)|−1/d, (2.6)

|Ik(η ,ηn+1,v
′)| ≤C|2k(|η |η ′ · v′ +b1ηn+1)|−1/l. (2.7)

Let δ1 = min{|a1ξm+1|/|ξ |, 2}, δ2 = min{|b1ηn+1|/|η |, 2}. By (2.6), (2.7) and the trivial
estimates

|I j(ξ ,ξm+1,u
′)| ≤ 1, |Ik(η ,ηn+1,v

′)| ≤ 1,

we obtain

|I j(ξ ,ξm+1,u
′)| ≤C

(
log(2α/|ξ ′ ·u′ + δ1|)

log(2 j|ξ |)
)α

, if |2 jξ | > 2α , (2.8)
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|Ik(η ,ηn+1,v
′)| ≤C

(
log(2α/|η ′ · v′ + δ2|)

log(2k|η |)
)α

, if |2kη | > 2α . (2.9)

By the similar arguments as those in Case 1, we can obtain the desirable estimates.
Case 3. φ ∈C1([0, ∞)), φ ′ is convex, increasing and ψ is a polynomial.
By (2.5) and (2.9), using the similar arguments as those in Case 1, we can get (ii)–(iv). The

details are omitted.
Case 4. φ is a polynomial, ψ ∈C1([0, ∞)), ψ ′ is convex and increasing:
By (2.8) and (2.4), using the similar arguments as those in Case 1, we can obtain the desirable

conclusions.
This completes the proof of Lemma 2.5.

Remark 1. In the proof of Lemma 2.5, we do not use the condition φ′(0) = 0 when m = 2
and the condition ψ′(0) = 0 when n = 2. In these case, (1.4) implies that for α > 1,

sup
ξ ′∈Sm−1 ,η′∈Sn−1 ,

δ ,ρ∈R

∫
Sm−1×Sn−1

|Ω(u′,v′)|
(

log
1

|ξ ′ ·u′ + δ | log
1

|η ′ · v′ + ρ |
)α

dσ(u′)dσ(v′) < ∞.

However, this is no longer true when m≥ 3 or n≥ 3. For example (see [15,p.168]), let m = n = 3
and define ω on S2 by

ω(z1,z2,z3) =
χ(1/2,

√
3/2)(z3)

(z3 −1/2)[log(1/(z3 −1/2))]2
,

when z3 ≥ 0, and ω(z1,z2,z3)=−ω(z1,z2,−z3) when z3 < 0. For u′ = (u′1,u
′
2,u

′
3), v′ = (v′1,v

′
2,v

′
3)∈

S2, let Ω(u′,v′) = ω(u′1,u
′
2,u

′
3)ω(v′1,v

′
2,v

′
3). Then for α > 1

sup
ξ ′,η ′∈S2

∫ ∫
S2×S2

|Ω(u′,v′)|
(

log
1

|ξ ′ ·u′| log
1

|η ′ · v′|
)α

dσ(u′)dσ(v′) < ∞

and ∫ ∫
S2×S2

|Ω(u′,v′)|
(

log
1

|u′3 −1/2| log
1

|v′3 −1/2|
)α

dσ(u′)dσ(v′) = ∞.

3 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. By duality, we may assume p ∈ [2, 2α).
Take two radial Schwartz functions ψ1 ∈ S (Rm), ψ2 ∈ S (Rn) such that
(i) 0 ≤ ψi ≤ 1, i = 1, 2;
(ii) supp(ψ1) ⊂ {x ∈ Rm : 1/4 ≤ |x| ≤ 4}, supp(ψ2) ⊂ {y ∈ Rn : 1/4 ≤ |y| ≤ 4};
(iii) ∑

d∈Z

[ψ1(2ds)]2 = ∑
l∈Z

[ψ2(2lt)]2 = 1, for all s > 0, t > 0.

For d, l ∈ Z, define the multiplier operator Sd,l in Rm+1 ×Rn+1 by

Ŝd,l( f )(ξ ,η) = ψ1(2d |ξ |)ψ2(2l|η |) f̂ (ξ ,η),
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where ξ = (ξ , ξm+1) ∈ Rm+1 = Rm ×R, η = (η , ηn+1) ∈ Rn+1 = Rn ×R. Then by checking
the Fourier transforms, it is easy to see that for any test function f ,

f (x,y) = ∑
d∈Z

∑
l∈Z

S2
d,l( f )(x,y).

Consequently, by (2.3) we can write

Tφ ,ψ( f )(x,y) = ∑
j,k∈Z

∑
d,l∈Z

Sj−d,k−l(σ j,k ∗Sj−d,k−l( f ))(x,y) := ∑
d,l∈Z

Td,l( f )(x,y). (3.1)

By Plancherel’s theorem we have

‖Td,l( f )‖2
L2(Rm+1×Rn+1) =

∫ ∫
Rm+1×Rn+1

∣∣∣∣∣ ∑
j,k∈Z

Sj−d,k−l(σ j,k ∗Sj−d,k−l( f ))(x,y)

∣∣∣∣∣
2

dxdy

≤C
∫ ∫

R×R
∑

j,k∈Z

∫ ∫
Bj−d,k−l

|σ̂ j,k(ξ ,η)|2| f̂ (ξ ,η)|2dξ dηdξm+1dηn+1,

where

Bj−d,k−l =
{

(ξ ,η) ∈ Rm ×Rn : 2− j+d−2) ≤ |ξ | ≤ 2− j+d+2), 2−k+l−2) ≤ |η | ≤ 2−k+l+2)
}

.

Thus, by Lemma 2.5 (iv) we get that for d, l > α + 20,

‖Td,l( f )‖2
L2(Rm+1×Rn+1) ≤C

∫ ∫
R×R

∑
j,k∈Z

∫ ∫
Bj−d,k−l

(
log|2 jξ |)−2α

(
log|2kη |

)−2α

×| f̂ (ξ ,η)|2dξ dηdξm+1dηn+1

≤C(dl)−2α‖ f‖2
L2(Rm+1×Rn+1),

which implies
‖Td,l( f )‖L2(Rm+1×Rn+1) ≤C(dl)−α‖ f‖L2(Rm+1×Rn+1). (3.2)

On the other hand, by the Littlewood-Paley theory and Lemma 2.2 we obtain that for any p0 ∈
(1, ∞),

‖Td,l( f )‖Lp0 (Rm+1×Rn+1) ≤C

∥∥∥∥∥∥
(

∑
j,k∈Z

|σ j,k ∗Sj−d,k−l( f )|2
)1/2

∥∥∥∥∥∥
Lp0 (Rm+1×Rn+1)

≤C

∥∥∥∥∥∥
(

∑
j,k∈Z

|Sj−d,k−l( f )|2
)1/2

∥∥∥∥∥∥
Lp0 (Rm+1×Rn+1)

≤C‖ f‖Lp0 (Rm+1×Rn+1).

(3.3)

Noting that 2 ≤ p < 2α , by interpolating between (3.2) and (3.3), we can obtain a θ > 1 such
that

‖Td,l( f )‖Lp(Rm+1×Rn+1) ≤C(dl)−θ‖ f‖Lp(Rm+1×Rn+1) d, l > α + 2 (3.4)

Similarly, by using Lemma 2.5 (i), we can get ε > 0 such that

‖Td,l( f )‖Lp(Rm+1×Rn+1) ≤C2(d+l)ε‖ f‖Lp(Rm+1×Rn+1), d, l ≤ α + 2. (3.5)
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By using Lemma 2.5 (ii) and (iii), it is easy to deduce that

‖Td,l( f )‖Lp(Rm+1×Rn+1) ≤C2dε l−θ‖ f‖Lp(Rm+1×Rn+1), d < α + 2, l ≥ α + 2, (3.6)

and

‖Td,l( f )‖Lp(Rm+1×Rn+1) ≤Cd−θ 2lε‖ f‖Lp(Rm+1×Rn+1), d ≥ α + 2, l < α + 2, (3.7)

where θ > 1 and ε > 0 are the same as that in (3.4) and (3.5), respectively.
Therefore, it follows from (3.1) and (3.4)–(3.7)

‖Tφ ,ψ( f )‖Lp(Rm+1×Rn+1) ≤ ∑
d,l∈Z

‖Td,l( f )‖Lp(Rm+1×Rn+1)

≤C

{
∑

d, l≤0

2(d+l)ε + ∑
d≤0, l>0

2dε l−θ + ∑
d>0, l≤0

d−θ 2lε + ∑
d, l>0

(dl)−θ

}
×‖ f‖Lp(Rm+1×Rn+1)

≤C‖ f‖Lp(Rm+1×Rn+1),

which completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2 by employing the techniques developed in [6]. Let
us begin by introducing some notations. Let T ∞

0 (Rm+1 ×Rn+1) be the subspace of C∞
0 (Rm+1 ×

Rn+1) generated by functions of the form f1
⊗

f2, where f1 ∈ C∞
0 (Rm+1) and f2 ∈ C∞

0 (Rn+1).
Let {σ j,k} j,k∈Z be as before. Define τ j,k and τ∗ by

τ j,k( f )(x,y) =
∞

∑
d= j

∞

∑
l=k

σd,l ∗ f (x,y)

and
τ∗( f )(x,y) = sup

j,k∈Z

|τ j,k( f )(x,y)|.

To prove Theorem 1.2, we first establish the following two lemmas.

Lemma 4.1. Let Ω be as in Theorem 1, {σ j,k} j,k as before. Then for α > 1 and 2α/(2α −
1) < p < 2α ,

‖S1( f )‖Lp(Rm+1×Rn+1) ≤C‖ f‖Lp(Rm+1×Rn+1)

and
‖S2( f )‖Lp(Rm+1×Rn+1) ≤C‖ f‖Lp(Rm+1×Rn+1),

where

S1( f )(x,y) = sup
d∈Z

∣∣∣∣∣ ∞

∑
l=−∞

σd,l ∗ f (x,y)

∣∣∣∣∣ , S2( f )(x,y) = sup
l∈Z

∣∣∣∣∣ ∞

∑
d=−∞

σd,l ∗ f (x,y)

∣∣∣∣∣ .
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Proof. First, we consider the case: f ∈ T ∞
0 (Rm+1 ×Rn+1). In this case, it is easy to verify

that ∫
2d≤|u|<2d+1

lim
ε2→0

∫
|v|>ε2

Ω(u′,v′)
|u|m|v|n f (x−Φ(u),y−Ψ(v))dudv

= lim
ε2→0

∫
|v|>ε2

∫
2d≤|u|<2d+1

Ω(u′,v′)
|u|m|v|n f (x−Φ(u),y−Ψ(v))dudv,

(4.1)

and ∫
2l≤|v|<2l+1

lim
ε1→0

∫
|u|>ε1

Ω(u′,v′)
|u|m|v|n f (x−Φ(u),y−Ψ(v))dudv

= lim
ε1→0

∫
|u|>ε1

∫
2l≤|v|<2l+1

Ω(u′,v′)
|u|m|v|n f (x−Φ(u),y−Ψ(v))dudv.

(4.2)

Thus, by (4.1) we have

S1( f )(x,y) = sup
d∈Z

∣∣∣∣∫
2d≤|u|<2d+1

p.v.
∫

Rn+1

Ω(u′,v′)
|u|m|v|n f (x−Φ(u),y−Ψ(v))dudv

∣∣∣∣
≤C

∫
Sm−1

sup
d∈Z

∣∣∣∣∣
∫ 2d+1

2d
Tψ ,u′( f (x− su′,xm+1 −φ(s), ·))(y)ds

s

∣∣∣∣∣dσ(u′),

where

Tψ ,u′(g)(y) = p.v.
∫

Rn+1

Ω(u′,v′)
|v|n g(y−Ψ(v))dv.

Hence,

S1( f )(x,y) ≤
∫

Sm+1
Mφ ,u′(Tψ ,u′( f )(·,y))(x)dσ(u′),

where

Mφ ,u′(h)(x) = sup
d∈Z

∫ 2d+1

2d
|h(x− su′,xm+1 −φ(s))|ds

s
.

Then by Minkowski’s inequality, Theorem 1 in [20] and Theorems 1-2 in [15] together with [17,
p.558,Corollary 5.3] and [18, p.477, Proposition 1], we get that for α > 1 and 2α/(2α −1) <
p < 2α ,

‖S1( f )‖Lp(Rm+1×Rn+1) ≤C‖ f‖Lp(Rm+1×Rn+1), f ∈ T ∞
0 (Rm+1 ×Rn+1).

Note that T ∞
0 (Rm+1 ×Rn+1) is dense in Lp(Rm+1 ×Rn+1), we obtain

‖S1( f )‖Lp(Rm+1×Rn+1) ≤C‖ f‖Lp(Rm+1×Rn+1), f ∈ Lp(Rm+1 ×Rn+1).

Similarly, by (4.2) we have

‖S2( f )‖Lp(Rm+1×Rn+1) ≤C‖ f‖Lp(Rm+1×Rn+1), f ∈ Lp(Rm+1 ×Rn+1),

which completes the proof of Lemma 4.1.

Lemma 4.2. Let φ , ψ and Ω be as in Theorem 2. Then for α > 3/2 and 1+ 1/(2α −2) <
p < 2α −1,

‖τ∗( f )‖Lp(Rm+1×Rn+1) ≤C‖ f‖Lp(Rm+1×Rn+1).
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By Lemma 2.5, Lemma 4.1 and the similar arguments as those in proving Theorem 22 of
[6], we can easily prove Lemma 4.2. Here we omit the details.

Proof of Theorem 1.2. For any ε1 > 0, ε2 > 0, there exist j, k ∈Z such that 2j ≤ ε1 < 2 j+1,
2k ≤ ε2 < 2k+1. Then we have

T ∗
φ ,ψ( f )(x,y) = sup

ε1,ε2>0

∣∣∣∣∫ ∫|u|>ε1, |v|>ε2

K(u,v) f (x−Φ(u),y−Ψ(v)dudv

∣∣∣∣
≤ sup

j,k∈Z

∫
2 j≤|u|<2 j+1

∫
2k≤|v|<2k+1

|Ω(u′,v′)|
|u|m|v|n | f (x−Φ(u),y−Ψ(v))|dudv

+ sup
j,k∈Z

∫
2k≤|v|<2k+1

1
|v|n

∣∣∣∣∫|u|≥2 j+1

Ω(u′,v′)
|u|m f (x−Φ(u),y−Ψ(v))du

∣∣∣∣dv

+ sup
j,k∈Z

∫
2 j≤|u|<2 j+1

1
|u|m

∣∣∣∣∫|v|≥2k+1

Ω(u′,v′)
|v|n f (x−Φ(u),y−Ψ(v))dv

∣∣∣∣du

+ sup
j,k∈Z

∣∣∣∣∣ ∞

∑
d= j

∞

∑
l=k

σd,l ∗ f (x,y)

∣∣∣∣∣
:= σ∗(| f |)(x,y)+T1( f )(x,y)+T2( f )(x,y)+ τ∗( f )(x,y),

where Φ(u) = (u,φ(|u|)), Ψ(v) = (v,ψ(|v|)), x = (x, xm+1), y = (y, yn+1).
Thus, by Lemma 2.2 and Lemma 4.2, we need only to estimate ‖T1( f )‖p and ‖T2( f )‖p.

Notice that

T1( f )(x,y) = sup
j,k∈Z

∫
2k≤|v|<2k+1

1
|v|n

∣∣∣∣∫|u|≥2 j+1

Ω(u′,v′)
|u|m f (x−Φ(u),y−Ψ(v))du

∣∣∣∣dv

≤C
∫

Sn−1
Mv′(T ∗

v′ ( f )(x, ·))(y)dσ(v′),

where

T ∗
φ ,v′(g)(x) = sup

j∈Z

∣∣∣∣∫|u|>2 j+1

Ω(u′,v′)
|u|m g(x−Φ(u))du

∣∣∣∣ ,
and

Mψ ,v′(h)(y) = sup
k∈Z

∫ 2k+1

2k
|h(y− tv′, yn+1 −ψ(t))|dt

t
.

Then, by Minkowski’s inequality, it follows from Theorem 2 in [20] and Theorem 3 in [15]
together with [17, p.558, Corollary 5.3] and [18, p.477, Proposition 1] that for α > 3/2 and
p ∈ (1+ 1/(2α −2), 2α −1),

‖T1( f )‖Lp(Rm+1×Rn+1) ≤C‖ f‖Lp(Rm+1×Rn+1).

Similarly, for α > 3/2 and 1+ 1/(2α −2) < p < 2α −1, we have

‖T2( f )‖Lp(Rm+1×Rn+1) ≤C‖ f‖Lp(Rm+1×Rn+1).

This completes the proof of Theorem 1.2.
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