TIME DECAY FOR SCHRÖDINGER EQUATION WITH ROUGH POTENTIALS

Shijun Zheng (*Georgia Southern University, USA)*

Received Oct. 9, 2007

Abstract. We obtain certain time decay and regularity estimates for 3D Schrödinger equation with a potential in the Kato class by using Besov spaces associated with Schrödinger operators.

Key words: *functional calculus, Schrödinger operator, Littlewood-Paley theory*

AMS (2000) subject classification: 35J10, 42B25

1 Introduction

The Schrödinger equation $i\mu = -\Delta u$ describes the waves of a free particle in a non-relativistic setting. It is physically important to consider a perturbed dispersive system in the presence of interaction between fields.

Let $H = -\Delta + V$, where Δ is the Laplacian and V is a real-valued function on \mathbb{R}^n . In this note we are concerned with the time decay of Schrödinger equation with a potential

$$
iu_t = Hu,
$$

$$
u(x, 0) = u_0,
$$

where the solution is given by $u(x,t) = e^{-itH}u_0$. For simple exposition we consider the three dimensional case for *V* in the Kato class [9, 4]. Recall that *V* is said to be in the *Kato class* K_n , $n \geq 3$ provided

$$
\lim_{\delta \to 0+} \sup_{x \in \mathbb{R}^n} \int_{|x-y| < \delta} \frac{|V(y)|}{|x-y|^{n-2}} \mathrm{d}y = 0.
$$

Throughout this article we assume that $V = V_+ - V_-, V_\pm \geq 0$ so that $V_+ \in K_{n, loc}$ and $V_- \in K_n$, where $V \in K_{n,loc}$ if and only if $V \chi_B \in K_n$ for any characteristic function χ_B of the balls *B* centered at 0 in \mathbb{R}^n .

We seek to find minimal smoothness condition on the initial data $u_0 = f$ so that $u(x,t)$ has certain global time decay and regularity estimates. The idea is to combine the results of Jensen-Nakamura and Rodnianski-Schlag [4, 7] for short and long time decay by using Besov space method.

In [1, 4, 3, 6, 13] several authors introduced and studied the Besov spaces and Triebel-Lizorkin spaces associated with *H*. Let $\{\varphi_j\}_{j=0}^{\infty} \subset C_0^{\infty}(\mathbb{R})$ be a dyadic system satisfying

(i) suppϕ⁰ ⊂ {*x* : |*x*| ≤ 1}, suppϕ*^j* ⊂ {*x* : 2*j*−² ≤ |*x*| ≤ 2*^j* }, *j* ≥ 1, (ii) $|\varphi_j^{(k)}(x)| \le c_k 2^{-kj}, \qquad \forall k \ge 0, j \ge 0,$ (iii) ∞ ∑ *j*=0 $|\varphi_j(x)| = 1, \quad \forall x.$

Let $\alpha \in \mathbb{R}$, $1 \le p \le \infty$, $1 \le q \le \infty$. The (inhomogeneous) *Besov space associated with H*, denoted by $B_{p}^{\alpha,q}(H)$, is defined to be the completion of $\mathscr{S}(\mathbb{R}^{n})$, the Schwartz class, with respect to the norm

$$
||f||_{B_{p}^{\alpha,q}(H)} = \left(\sum_{j=0}^{\infty} 2^{j\alpha q} ||\varphi_{j}(H)f||_{L^{p}}^{q}\right)^{1/q}.
$$

Similarly, the (inhomogeneous) Triebel-Lizorkin space associated with *H*, denoted by $I_{p}^{\alpha,q}(H)$, $\alpha \in \mathbb{R}, 1 \leq p < \infty, 1 \leq q \leq \infty$ is defined by the norm

$$
||f||_{F_p^{\alpha,q}(H)} = ||(\sum_{j=0}^{\infty} 2^{j\alpha q} |\varphi_j(H)f|^{q})^{1/q}||_{L^p}.
$$

The main result is the following theorem. Let $||V||_K$ denote the Kato norm

$$
||V||_K := \sup_{x \in \mathbb{R}^3} \int_{\mathbb{R}^3} \frac{|V(y)|}{|x - y|} dy.
$$

Let $\beta := \beta(p) = n \left| \frac{1}{p} - \frac{1}{2} \right|$ be the critical exponent.

Theorem 1.1. *Let* $1 \leq p \leq 2$ *. Suppose* $V \in K_n$ *, n* = 3 *so that* $||V||_K < 4\pi$ *and*

$$
\int_{\mathbb{R}^6} \frac{|V(x)| \, |V(y)|}{|x - y|^2} \, \mathrm{d}x \mathrm{d}y < (4\pi)^2. \tag{1}
$$

The following statements hold: $a)$ *If* $0 < t \leq 1$ *, then*

$$
||e^{-itH}f||_{p'} \lesssim ||f||_{p'} + t^{\beta}||f||_{B_{p'}^{\beta,1}(H)}.
$$
\n(2)

b) If in addition, $|\partial_x^{\alpha} V(x)| \leq c_{\alpha}$, $|\alpha| \leq 2n$, $n = 3$, then for all $t > 0$

$$
||e^{-itH}f||_{L^{p'}} \lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} ||f||_{B_{p}^{2\beta,1}(H)},
$$
\n(3)

where $p' = p/(p-1)$ *is the conjugate of p and* $\langle t \rangle = (1+t^2)^{1/2}$ *.*

Remark 1.2. The short time estimate in (2) is an improvement upon^[4] since we only demand smoothness order being $β$ rather than $2β$.

It is well known that if *V* satisfies (1), then $\sigma(H) = \sigma(H_{ac}) = [0, \infty)$. Note that by Hardy-Littlewood-Sobolev inequality, $V \in L^{3/2}$ implies the finiteness of the L.H.S of (1). Moreover, *V* ∈ $L^{3/2+} ∩ L^{3/2-}$ implies $||V||_K < ∞$ [3, Lemma 4.3]. In particular, if $||V||_{L^{3/2+} ∩ L^{3/2-}}$ is sufficiently small, then the conditions of Theorem 1.1 (a) are satisfied.

The proof of the main theorem is a careful modification of that of the one dimensional result for a special potential in [6]. For short time we obtain (2) by modifying the proof of [4, Theorem 4.6]. The long time estimates simply follows from the $L^p \to L^{p'}$ estimates for e^{-itH} , $1 \le p \le 2$, a result of [7, Theorem 2.6], and the embedding $B_p^{\varepsilon,q}(H) \hookrightarrow L^p$, $\varepsilon > 0$, $1 \le p, q \le \infty$.

Note that from the definitions of $B(H)$ and $F(H)$ spaces we have

$$
B_p^{\alpha, \min(p,q)}(H) \hookrightarrow F_p^{\alpha,q}(H) \hookrightarrow B_p^{\alpha, \max(p,q)}(H)
$$
 (4)

for $1 \le p < \infty$, $1 \le q \le \infty$, where \hookrightarrow means continuous embedding.

2 Proof of Theorem 1.1

The following lemma is proved in [4, Theorem 2, Remark 2.2].

Lemma 2.1 ^[4]. *Let* $1 \leq p \leq \infty$ *. Suppose* $V \in K_n$, $n = 3$ *and* $\phi \in C_0^{\infty}(\mathbb{R})$ *. Then there exists a constant* $c > 0$ *independent* of $\theta \in (0,1]$ *so that*

$$
\|\phi(\theta H)e^{-it\theta H}f\|_{p}\leq c\langle t\rangle^{\beta}\|f\|_{p}.
$$

Remark 2.2. We can also give a simple proof of this lemma based on the fact that the heat kernel of *H* satisfies an upper Gaussian bound in short time. The interested reader is referred to [13] and [4, 9].

The long time decay has been studied quite extensively under a variety of conditions on *V* [5, 7, 8, 11, 12]. The following $L^p \to L^{p'}$ estimates follow via interpolation between the L^2 conservation and the $L^1 \rightarrow L^\infty$ estimate for e^{-itH} that was proved in [7, Theorem 2.6].

Lemma 2.3. *Let* $1 \leq p \leq 2$ *. Suppose* $||V||_K < 4\pi$ *and*

$$
\int_{\mathbb{R}^6} \frac{|V(x)|\,|V(y)|}{|x-y|^2} \, \mathrm{d}x \mathrm{d}y < (4\pi)^2.
$$

Then $||e^{-itH}f||_{L^{p'}} \lesssim |t|^{-n(\frac{1}{p}-\frac{1}{2})}||f||_{L^p}.$

Proof of Theorem 1.1. (a) Let $0 < t \leq 1$. Let $\{\varphi_j\}_{j=0}^{\infty}$ be a smooth dyadic system as given in Section 1. For $f \in \mathscr{S}$ we write

$$
e^{-itH}f = \sum_{2i_{\ell} \leq 1} \varphi_j(H)e^{-itH}f + \sum_{2i_{\ell} > 1} \varphi_j(H)e^{-itH}f.
$$
 (5)

According to Lemma 2.1, if $j \ge j_t := [-\log_2 t] + 1$,

$$
\|\varphi_j(H)e^{-itH}f\|_{p'}\leq c\langle t2^j\rangle^{\beta}\|\varphi_j(H)f\|_{p'}
$$

where we noted that $\varphi_j(H) = \psi_j(H)\varphi_j(H)$, $\psi_j = \psi(2^{-j}x)$ if taking $\psi \in C_0^{\infty}$ so that $\psi(x) \equiv 1$ on $[-1, -\frac{1}{4}] \cup [\frac{1}{4}]$ $\frac{1}{4}$, 1]. It follows that

$$
\sum_{2^{j}t>1} \|\varphi_{j}(H)e^{-itH}f\|_{p'}\le ct^{\beta}\sum_{2^{j}t>1} 2^{j\beta}\|\varphi_{j}(H)f\|_{p'}.
$$

For the first term in the R.H.S. of (5), similarly we have by applying Lemma 2.1 again,

$$
\|\sum_{2^{j}t\leq 1}\varphi_{j}(H)e^{-itH}f\|_{p'}\leq c\langle t2^{j_{t}}\rangle^{\beta}\|\eta(2^{-j}H)f\|_{p'}\leq c\|f\|_{p'}
$$

where we take $\eta \in C_0^{\infty}$ with $\eta(x) \equiv 1$ on $[-1, 1]$ so that

$$
\eta(2^{-j_t}H)\sum_{2j_t\leq 1}\varphi_j(H)=\sum_{2j_t\leq 1}\varphi_j(H).
$$

Therefore we obtain that if $0 < t \leq 1$,

$$
\|e^{-itH}f\|_{p'}\lesssim \|f\|_{p'}+t^{\beta}\|f\|_{B^{\beta,1}_{p'}(H)},
$$

which proves part (a).

(b) Inequality (3) holds for $t > 1$ in virtue of Lemma 2.3 and the remarks below Theorem 1.1. For $0 < t \le 1$, (3) follows from the Besov embedding $B_p^{2\beta,1}(H) \hookrightarrow B_{p'}^{\beta,1}(H)$, which is valid because of the condition $|\partial_x^{\alpha} V(x)| \leq c_{\alpha}$, $|\alpha| \leq 2n$; cf. e.g. [10, 13].

Remark 2.4. It seems from the proof that the smoothness order 2β in (3) is optimal for the initial data *f* .

Remark 2.5. If working a little harder, we can show that

$$
||e^{-itH}f||_{L^{p'}} \lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} ||f||_{B_{p'}^{2\beta,2}(H)},
$$
\n(6)

if assuming the upper Gaussian bound for the gradient of heat kernel of *H* in short time, in addition to the conditions in Theorem 1.1 (a). The proof of (6) is based on the embedding $B_{p'}^{0,2}(H) \hookrightarrow F_{p'}^{0,2}(H) = L^{p'}, p' \ge 2$ which follows from a deeper result by applying the gradient estimates for e^{-tH} ; see [13] and [2].

Corollary 2.6. *Let* $1 \leq p \leq 2$, $\alpha \in \mathbb{R}$ *and* $\beta = \beta(p)$ *. Suppose V satisfies the same conditions as in Theorem* 1.1 *(b). The following estimates hold*

a) If $1 \leq q \leq \infty$ *, then*

$$
||e^{-itH}f||_{B_p^{\alpha,q}(H)} \lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} ||f||_{B_p^{\alpha+2\beta,q}(H)}.
$$
\n
$$
(7)
$$

b) *If* 1 ≤ *q* ≤ *p*, *then*

$$
||e^{-itH}f||_{F_p^{\alpha,q}(H)} \lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} ||f||_{B_p^{\alpha+2\beta,q}(H)}.
$$
\n(8)

Proof. Substituting $\varphi_i(H)$ *f* for *f* in (3) we obtain

$$
\|\varphi_j(H)e^{-itH}f\|_{L^{p'}} \lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} \|\varphi_j(H)f\|_{B^{2\beta,1}_p(H)}
$$

$$
\approx \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} 2^{2\beta j} \|\varphi_j(H)f\|_{L^p}
$$

where we used $\|\varphi_i(H)g\|_p \le c \|g\|_p$ by applying Lemma 2.1 with $\theta = 2^{-j}$ and $t = 0$. Now multiplying $2^{j\alpha}$ and taking l^q norms in the above inequality gives (7). The estimate in (8) follows from the embedding $B_p^{\alpha,q}(H) \hookrightarrow F_p^{\alpha,q}(H)$ if $q \leq p$, according to (4).

References

- [1] Beals, M. and Strauss, W., *L^p* Estimates for the Wave Equation with a Potential Comm. P.D.E., 18:7-8(1993), 1365-1397.
- [2] Coulhon, T. and Sikora, A., Gaussian Heat Kernel Upper Bounds via Phragmén-Lindelöf Theorem. http://xxx.lanl.gov/abs/math/0609429, (2006).
- [3] D'Ancona, P. and Pierfelice, V., On the Wave Equation with a Large Rough Potential, J. Funct. Anal., 227:1(2005), 30-77.
- [4] Jensen, A. and Nakamura, S., Mapping Properties of Functions of Schrödinger Operators Between *LP* Spaces and Besov Spaces, in Spectral and Scattering Theory and Applications, Advanced Studies in Pure Math., 23(1994), 187-209.
- [5] Journé, J. L., Soffer, A. and Sogge, C., Decay Estimates for Schrödinger Operators, Comm. Pure Appl. Math., XLIV (1991), 573-604.
- [6] Ólafsson, G. and Zheng, S., Function Spaces Associated with Schrödinger Operators: the Pöschl-Teller potential, J. Fourier Anal. Appl., 12:6(2006), 653-674.
- [7] Rodnianski, I. and Schlag, W., Time Decay for Solutions of Schrödinger Equations with Rough and Time-Dependent Potentials, Invent. Math., 155:3(2004), 451-513.
- [8] Schlag, W., Dispersive Estimates for Schrödinger Operators: A survey, http://lanl.arXiv.org/math.AP/0501037, (2005).
- [9] Simon, B., Schrödinger Semigroups, Bull. Amer. Math. Soc., 7:3(1982), 447-526.
- [10] Triebel, H., Theory of Function Spaces, Birkhäuser Verlag, 1983.
- [11] Vodev, G., Dispersive Estimates of Solutions to the Schrödinger Equation in Dimensions $n \geq 4$, Asymptot. Anal., 49:1-2(2006), 61-86.
- [12] Yajima, K., The W^{k, p}-Continuity of Wave Operators for Schrödinger Operators, J. Math. Soc. Japan, 47 (1995), 551-581.
- [13] Zheng, S., Littlewood-Paley Theorem for Schrödinger Operators, Anal. Theory. Appl., 22:4(2006), 353-361.
- [14] Zheng, S., Spectral Calculus, Function Spaces and Dispersive Equation with a Critical Potential, In preparation.

Department of Mathematical Sciences Georgia Southern University Statesboro GA 30460-8093 USA

E-mail: szheng@georgiasouthern.edu