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Abstract. We obtain certain time decay and regularity estimates for 3D Schrödinger equa-
tion with a potential in the Kato class by using Besov spaces associated with Schrödinger
operators.
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1 Introduction

The Schrödinger equation iut =−Δu describes the waves of a free particle in a non-relativistic
setting. It is physically important to consider a perturbed dispersive system in the presence of
interaction between fields.

Let H = −Δ +V , where Δ is the Laplacian and V is a real-valued function on R
n. In this

note we are concerned with the time decay of Schrödinger equation with a potential

iut = Hu,

u(x,0) = u0,

where the solution is given by u(x, t) = e−itHu0. For simple exposition we consider the three
dimensional case for V in the Kato class [9, 4]. Recall that V is said to be in the Kato class Kn,
n ≥ 3 provided

lim
δ→0+

sup
x∈Rn

∫
|x−y|<δ

|V (y)|
|x− y|n−2 dy = 0.

Throughout this article we assume that V = V+ −V−, V± ≥ 0 so that V+ ∈ Kn,loc and V− ∈ Kn,
where V ∈Kn,loc if and only if V χB ∈Kn for any characteristic function χB of the balls B centered
at 0 in R

n.
We seek to find minimal smoothness condition on the initial data u0 = f so that u(x, t) has

certain global time decay and regularity estimates. The idea is to combine the results of Jensen-
Nakamura and Rodnianski-Schlag [4, 7] for short and long time decay by using Besov space
method.

In [1, 4, 3, 6, 13] several authors introduced and studied the Besov spaces and Triebel-
Lizorkin spaces associated with H . Let {ϕj}∞

j=0 ⊂C∞
0 (R) be a dyadic system satisfying
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(i) supp ϕ0 ⊂ {x : |x| ≤ 1}, supp ϕ j ⊂ {x : 2 j−2 ≤ |x| ≤ 2 j}, j ≥ 1,

(ii) |ϕ(k)
j (x)| ≤ ck2−k j , ∀k ≥ 0, j ≥ 0,

(iii)
∞

∑
j=0

|ϕ j(x)| = 1, ∀x.

Let α ∈ R, 1 ≤ p ≤ ∞,1 ≤ q ≤ ∞. The (inhomogeneous) Besov space associated with H ,
denoted by Bα ,q

p (H), is defined to be the completion of S (Rn), the Schwartz class, with respect
to the norm

‖ f‖Bα,q
p (H) =

( ∞

∑
j=0

2 jαq‖ϕ j(H) f‖q
Lp

)1/q
.

Similarly, the (inhomogeneous) Triebel-Lizorkin space associated with H , denoted by Fα ,q
p (H),

α ∈ R, 1 ≤ p < ∞,1 ≤ q ≤ ∞ is defined by the norm

‖ f‖Fα,q
p (H) = ‖( ∞

∑
j=0

2 jαq|ϕ j(H) f |q)1/q‖Lp .

The main result is the following theorem. Let ‖V‖K denote the Kato norm

‖V‖K := sup
x∈R3

∫
R3

|V (y)|
|x− y|dy.

Let β := β (p) = n|1
p
− 1

2
| be the critical exponent.

Theorem 1.1. Let 1 ≤ p ≤ 2. Suppose V ∈ Kn, n = 3 so that ‖V‖K < 4π and

∫
R6

|V (x)| |V (y)|
|x− y|2 dxdy < (4π)2. (1)

The following statements hold: a) If 0 < t ≤ 1, then

‖e−itH f‖p′ � ‖ f‖p′ + tβ‖ f‖
Bβ ,1

p′ (H). (2)

b) If in addition, |∂α
x V (x)| ≤ cα , |α | ≤ 2n, n = 3, then for all t > 0

‖e−itH f‖Lp′ � 〈t〉−n( 1
p− 1

2 )‖ f‖
B2β ,1

p (H), (3)

where p′ = p/(p−1) is the conjugate of p and 〈t〉 = (1+ t2)1/2.

Remark 1.2. The short time estimate in (2) is an improvement upon[4] since we only demand
smoothness order being β rather than 2β .

It is well known that if V satisfies (1), then σ(H) = σ(Hac) = [0,∞). Note that by Hardy-
Littlewood-Sobolev inequality, V ∈ L3/2 implies the finiteness of the L.H.S of (1). Moreover,
V ∈ L3/2+ ∩ L3/2− implies ‖V‖K < ∞ [3, Lemma 4.3]. In particular, if ‖V‖L3/2+∩L3/2− is suffi-
ciently small, then the conditions of Theorem 1.1 (a) are satisfied.

The proof of the main theorem is a careful modification of that of the one dimensional result
for a special potential in [6]. For short time we obtain (2) by modifying the proof of [4, Theorem
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4.6]. The long time estimates simply follows from the Lp → Lp′ estimates for e−itH , 1 ≤ p ≤ 2,
a result of [7, Theorem 2.6], and the embedding Bε ,q

p (H) ↪→ Lp, ε > 0, 1 ≤ p,q ≤ ∞.
Note that from the definitions of B(H) and F(H) spaces we have

Bα ,min(p,q)
p (H) ↪→ Fα ,q

p (H) ↪→ Bα ,max(p,q)
p (H) (4)

for 1 ≤ p < ∞, 1 ≤ q ≤ ∞, where ↪→ means continuous embedding.

2 Proof of Theorem 1.1

The following lemma is proved in [4, Theorem 2, Remark 2.2].

Lemma 2.1 [4]. Let 1 ≤ p ≤ ∞. Suppose V ∈ Kn, n = 3 and φ ∈C∞
0 (R). Then there exists a

constant c > 0 independent of θ ∈ (0,1] so that

‖φ(θH)e−itθH f‖p ≤ c〈t〉β‖ f‖p .

Remark 2.2. We can also give a simple proof of this lemma based on the fact that the heat
kernel of H satisfies an upper Gaussian bound in short time. The interested reader is referred to
[13] and [4, 9].

The long time decay has been studied quite extensively under a variety of conditions on V
[5, 7, 8, 11, 12]. The following Lp → Lp′ estimates follow via interpolation between the L2

conservation and the L1 → L∞ estimate for e−itH that was proved in [7, Theorem 2.6].

Lemma 2.3. Let 1 ≤ p ≤ 2. Suppose ‖V‖K < 4π and
∫

R6

|V (x)| |V (y)|
|x− y|2 dxdy < (4π)2.

Then ‖e−itH f‖Lp′ � |t|−n( 1
p− 1

2 )‖ f‖Lp .

Proof of Theorem 1.1. (a) Let 0 < t ≤ 1. Let {ϕj}∞
j=0 be a smooth dyadic system as given

in Section 1. For f ∈ S we write

e−itH f = ∑
2 jt≤1

ϕ j(H)e−itH f + ∑
2 jt>1

ϕ j(H)e−itH f . (5)

According to Lemma 2.1, if j ≥ jt := [− log2 t]+ 1,

‖ϕ j(H)e−itH f‖p′ ≤ c〈t2 j〉β‖ϕ j(H) f‖p′

where we noted that ϕ j(H) = ψ j(H)ϕ j(H), ψ j = ψ(2− jx) if taking ψ ∈C∞
0 so that ψ(x) ≡ 1 on

[−1,−1
4
]∪ [

1
4
,1]. It follows that

∑
2 jt>1

‖ϕ j(H)e−itH f‖p′ ≤ ctβ ∑
2 jt>1

2 jβ‖ϕ j(H) f‖p′ .

For the first term in the R.H.S. of (5), similarly we have by applying Lemma 2.1 again,

‖ ∑
2 j t≤1

ϕ j(H)e−itH f‖p′ ≤ c〈t2 jt 〉β‖η(2− jH) f‖p′ ≤ c‖ f‖p′
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where we take η ∈C∞
0 with η(x) ≡ 1 on [−1,1] so that

η(2− jt H) ∑
2 jt≤1

ϕ j(H) = ∑
2 jt≤1

ϕ j(H).

Therefore we obtain that if 0 < t ≤ 1,

‖e−itH f‖p′ � ‖ f‖p′ + tβ‖ f‖
Bβ ,1

p′ (H) ,

which proves part (a).
(b) Inequality (3) holds for t > 1 in virtue of Lemma 2.3 and the remarks below Theorem

1.1. For 0 < t ≤ 1, (3) follows from the Besov embedding B2β ,1
p (H) ↪→ Bβ ,1

p′ (H), which is valid
because of the condition |∂α

x V (x)| ≤ cα , |α | ≤ 2n; cf. e.g. [10, 13].

Remark 2.4. It seems from the proof that the smoothness order 2β in (3) is optimal for the
initial data f .

Remark 2.5. If working a little harder, we can show that

‖e−itH f‖Lp′ � 〈t〉−n( 1
p− 1

2 )‖ f‖
B2β ,2

p (H), (6)

if assuming the upper Gaussian bound for the gradient of heat kernel of H in short time, in
addition to the conditions in Theorem 1.1 (a). The proof of (6) is based on the embedding
B0,2

p′ (H) ↪→ F0,2
p′ (H) = Lp′ , p′ ≥ 2 which follows from a deeper result by applying the gradient

estimates for e−tH ; see [13] and [2].

Corollary 2.6. Let 1 ≤ p≤ 2, α ∈R and β = β (p). Suppose V satisfies the same conditions
as in Theorem 1.1 (b). The following estimates hold

a) If 1 ≤ q ≤ ∞, then

‖e−itH f‖Bα,q
p (H) � 〈t〉−n( 1

p− 1
2 )‖ f‖

Bα+2β ,q
p (H) . (7)

b) If 1 ≤ q ≤ p, then

‖e−itH f‖Fα,q
p (H) � 〈t〉−n( 1

p− 1
2 )‖ f‖

Bα+2β ,q
p (H) . (8)

Proof. Substituting ϕ j(H) f for f in (3) we obtain

‖ϕ j(H)e−itH f‖Lp′ � 〈t〉−n( 1
p− 1

2 )‖ϕ j(H) f‖
B2β ,1

p (H)

≈〈t〉−n( 1
p− 1

2 ) 22β j‖ϕ j(H) f‖Lp

where we used ‖ϕ j(H)g‖p ≤ c‖g‖p by applying Lemma 2.1 with θ = 2− j and t = 0. Now
multiplying 2 jα and taking �q norms in the above inequality gives (7). The estimate in (8)
follows from the embedding Bα ,q

p (H) ↪→ Fα ,q
p (H) if q ≤ p, according to (4).
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