TIME DECAY FOR SCHRÖDINGER EQUATION WITH ROUGH POTENTIALS

Shijun Zheng (Georgia Southern University, USA)

Received Oct. 9, 2007

Abstract. We obtain certain time decay and regularity estimates for 3D Schrödinger equation with a potential in the Kato class by using Besov spaces associated with Schrödinger operators.

Key words: functional calculus, Schrödinger operator, Littlewood-Paley theory

AMS (2000) subject classification: 35J10, 42B25

1 Introduction

The Schrödinger equation $iu_t = -\Delta u$ describes the waves of a free particle in a non-relativistic setting. It is physically important to consider a perturbed dispersive system in the presence of interaction between fields.

Let $H = -\Delta + V$, where Δ is the Laplacian and V is a real-valued function on \mathbb{R}^n . In this note we are concerned with the time decay of Schrödinger equation with a potential

$$iu_t = Hu,$$

$$u(x,0) = u_0$$

where the solution is given by $u(x,t) = e^{-itH}u_0$. For simple exposition we consider the three dimensional case for *V* in the Kato class [9, 4]. Recall that *V* is said to be in the *Kato class K_n*, $n \ge 3$ provided

$$\lim_{\delta \to 0+} \sup_{x \in \mathbb{R}^n} \int_{|x-y| < \delta} \frac{|V(y)|}{|x-y|^{n-2}} dy = 0.$$

Throughout this article we assume that $V = V_+ - V_-$, $V_{\pm} \ge 0$ so that $V_+ \in K_{n,loc}$ and $V_- \in K_n$, where $V \in K_{n,loc}$ if and only if $V \chi_B \in K_n$ for any characteristic function χ_B of the balls *B* centered at 0 in \mathbb{R}^n .

We seek to find minimal smoothness condition on the initial data $u_0 = f$ so that u(x,t) has certain global time decay and regularity estimates. The idea is to combine the results of Jensen-Nakamura and Rodnianski-Schlag [4, 7] for short and long time decay by using Besov space method.

In [1, 4, 3, 6, 13] several authors introduced and studied the Besov spaces and Triebel-Lizorkin spaces associated with *H*. Let $\{\varphi_j\}_{j=0}^{\infty} \subset C_0^{\infty}(\mathbb{R})$ be a dyadic system satisfying (i) supp $\varphi_0 \subset \{x : |x| \le 1\}$, supp $\varphi_j \subset \{x : 2^{j-2} \le |x| \le 2^j\}$, $j \ge 1$, (ii) $|\varphi_j^{(k)}(x)| \le c_k 2^{-kj}$, $\forall k \ge 0, j \ge 0$, (iii) $\sum_{j=0}^{\infty} |\varphi_j(x)| = 1$, $\forall x$.

Let $\alpha \in \mathbb{R}$, $1 \le p \le \infty, 1 \le q \le \infty$. The (inhomogeneous) *Besov space associated with H*, denoted by $B_p^{\alpha,q}(H)$, is defined to be the completion of $\mathscr{S}(\mathbb{R}^n)$, the Schwartz class, with respect to the norm

$$\|f\|_{B_p^{\alpha,q}(H)} = \Big(\sum_{j=0}^{\infty} 2^{j\alpha q} \|\varphi_j(H)f\|_{L^p}^q\Big)^{1/q}$$

Similarly, the (inhomogeneous) Triebel-Lizorkin space associated with *H*, denoted by $F_p^{\alpha,q}(H)$, $\alpha \in \mathbb{R}$, $1 \le p < \infty$, $1 \le q \le \infty$ is defined by the norm

$$\|f\|_{F^{lpha,q}_p(H)} = \|ig(\sum_{j=0}^\infty 2^{jlpha q} |arphi_j(H)f|^qig)^{1/q}\|_{L^p}.$$

The main result is the following theorem. Let $||V||_{K}$ denote the Kato norm

$$\|V\|_K := \sup_{x \in \mathbb{R}^3} \int_{\mathbb{R}^3} \frac{|V(y)|}{|x-y|} \mathrm{d}y.$$

Let $\beta := \beta(p) = n |\frac{1}{p} - \frac{1}{2}|$ be the critical exponent.

Theorem 1.1. Let $1 \le p \le 2$. Suppose $V \in K_n$, n = 3 so that $||V||_K < 4\pi$ and

$$\int_{\mathbb{R}^6} \frac{|V(x)| |V(y)|}{|x-y|^2} \mathrm{d}x \mathrm{d}y < (4\pi)^2.$$
(1)

The following statements hold: a) If $0 < t \le 1$ *, then*

$$\|e^{-itH}f\|_{p'} \lesssim \|f\|_{p'} + t^{\beta} \|f\|_{B^{\beta,1}_{p'}(H)}.$$
(2)

b) If in addition, $|\partial_x^{\alpha} V(x)| \le c_{\alpha}$, $|\alpha| \le 2n$, n = 3, then for all t > 0

$$\|e^{-itH}f\|_{L^{p'}} \lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} \|f\|_{B^{2\beta,1}_{p}(H)},\tag{3}$$

where p' = p/(p-1) is the conjugate of p and $\langle t \rangle = (1+t^2)^{1/2}$.

Remark 1.2. The short time estimate in (2) is an improvement upon^[4] since we only demand smoothness order being β rather than 2β .

It is well known that if V satisfies (1), then $\sigma(H) = \sigma(H_{ac}) = [0, \infty)$. Note that by Hardy-Littlewood-Sobolev inequality, $V \in L^{3/2}$ implies the finiteness of the L.H.S of (1). Moreover, $V \in L^{3/2+} \cap L^{3/2-}$ implies $||V||_K < \infty$ [3, Lemma 4.3]. In particular, if $||V||_{L^{3/2+} \cap L^{3/2-}}$ is sufficiently small, then the conditions of Theorem 1.1 (a) are satisfied.

The proof of the main theorem is a careful modification of that of the one dimensional result for a special potential in [6]. For short time we obtain (2) by modifying the proof of [4, Theorem Note that from the definitions of B(H) and F(H) spaces we have

$$B_p^{\alpha,\min(p,q)}(H) \hookrightarrow F_p^{\alpha,q}(H) \hookrightarrow B_p^{\alpha,\max(p,q)}(H)$$
(4)

for $1 \le p < \infty$, $1 \le q \le \infty$, where \hookrightarrow means continuous embedding.

2 **Proof of Theorem 1.1**

The following lemma is proved in [4, Theorem 2, Remark 2.2].

Lemma 2.1 ^[4]. Let $1 \le p \le \infty$. Suppose $V \in K_n$, n = 3 and $\phi \in C_0^{\infty}(\mathbb{R})$. Then there exists a constant c > 0 independent of $\theta \in (0, 1]$ so that

$$\|\phi(\theta H)e^{-it\theta H}f\|_p \leq c\langle t\rangle^{\beta}\|f\|_p$$

Remark 2.2. We can also give a simple proof of this lemma based on the fact that the heat kernel of H satisfies an upper Gaussian bound in short time. The interested reader is referred to [13] and [4, 9].

The long time decay has been studied quite extensively under a variety of conditions on V [5, 7, 8, 11, 12]. The following $L^p \to L^{p'}$ estimates follow via interpolation between the L^2 conservation and the $L^1 \to L^{\infty}$ estimate for e^{-itH} that was proved in [7, Theorem 2.6].

Lemma 2.3. Let $1 \le p \le 2$. Suppose $||V||_K < 4\pi$ and

$$\int_{\mathbb{R}^6} \frac{|V(x)| \, |V(y)|}{|x-y|^2} \mathrm{d}x \mathrm{d}y < (4\pi)^2$$

Then $||e^{-itH}f||_{L^{p'}} \lesssim |t|^{-n(\frac{1}{p}-\frac{1}{2})}||f||_{L^p}.$

Proof of Theorem 1.1. (a) Let $0 < t \le 1$. Let $\{\varphi_j\}_{j=0}^{\infty}$ be a smooth dyadic system as given in Section 1. For $f \in \mathscr{S}$ we write

$$e^{-itH}f = \sum_{2^{j}t \le 1} \varphi_{j}(H)e^{-itH}f + \sum_{2^{j}t > 1} \varphi_{j}(H)e^{-itH}f.$$
 (5)

According to Lemma 2.1, if $j \ge j_t := [-\log_2 t] + 1$,

$$\|\varphi_j(H)e^{-itH}f\|_{p'} \le c\langle t2^j\rangle^\beta \|\varphi_j(H)f\|_{p'}$$

where we noted that $\varphi_j(H) = \psi_j(H)\varphi_j(H)$, $\psi_j = \psi(2^{-j}x)$ if taking $\psi \in C_0^{\infty}$ so that $\psi(x) \equiv 1$ on $[-1, -\frac{1}{4}] \cup [\frac{1}{4}, 1]$. It follows that

$$\sum_{2^{j}t>1} \|\varphi_{j}(H)e^{-itH}f\|_{p'} \leq ct^{\beta} \sum_{2^{j}t>1} 2^{j\beta} \|\varphi_{j}(H)f\|_{p'}.$$

For the first term in the R.H.S. of (5), similarly we have by applying Lemma 2.1 again,

$$\|\sum_{2^{j_{t}}\leq 1}\varphi_{j}(H)e^{-itH}f\|_{p'}\leq c\langle t2^{j_{t}}\rangle^{\beta}\|\eta(2^{-j}H)f\|_{p'}\leq c\|f\|_{p'}$$

where we take $\eta \in C_0^{\infty}$ with $\eta(x) \equiv 1$ on [-1,1] so that

$$\eta(2^{-j_t}H)\sum_{2^{j_t}\leq 1}\varphi_j(H) = \sum_{2^{j_t}\leq 1}\varphi_j(H).$$

Therefore we obtain that if $0 < t \le 1$,

$$\|e^{-itH}f\|_{p'} \lesssim \|f\|_{p'} + t^{\beta} \|f\|_{B^{\beta,1}_{p'}(H)},$$

which proves part (a).

(b) Inequality (3) holds for t > 1 in virtue of Lemma 2.3 and the remarks below Theorem 1.1. For $0 < t \le 1$, (3) follows from the Besov embedding $B_p^{2\beta,1}(H) \hookrightarrow B_{p'}^{\beta,1}(H)$, which is valid because of the condition $|\partial_x^{\alpha} V(x)| \le c_{\alpha}$, $|\alpha| \le 2n$; cf. e.g. [10, 13].

Remark 2.4. It seems from the proof that the smoothness order 2β in (3) is optimal for the initial data f.

Remark 2.5. If working a little harder, we can show that

$$\|e^{-itH}f\|_{L^{p'}} \lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} \|f\|_{B^{2\beta,2}_{p}(H)},\tag{6}$$

if assuming the upper Gaussian bound for the gradient of heat kernel of *H* in short time, in addition to the conditions in Theorem 1.1 (a). The proof of (6) is based on the embedding $B_{p'}^{0,2}(H) \hookrightarrow F_{p'}^{0,2}(H) = L^{p'}, p' \ge 2$ which follows from a deeper result by applying the gradient estimates for e^{-tH} ; see [13] and [2].

Corollary 2.6. Let $1 \le p \le 2$, $\alpha \in \mathbb{R}$ and $\beta = \beta(p)$. Suppose V satisfies the same conditions as in Theorem 1.1 (b). The following estimates hold

a) If $1 \le q \le \infty$, then

$$|e^{-itH}f||_{B_p^{\alpha,q}(H)} \lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} ||f||_{B_p^{\alpha+2\beta,q}(H)}.$$
(7)

b) If $1 \le q \le p$, then

$$\|e^{-itH}f\|_{F_{p}^{\alpha,q}(H)} \lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} \|f\|_{B_{p}^{\alpha+2\beta,q}(H)}.$$
(8)

Proof. Substituting $\varphi_i(H) f$ for f in (3) we obtain

$$\begin{split} \|\varphi_{j}(H)e^{-itH}f\|_{L^{p'}} &\lesssim \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} \|\varphi_{j}(H)f\|_{B^{2\beta,1}_{p}(H)} \\ &\approx \langle t \rangle^{-n(\frac{1}{p}-\frac{1}{2})} 2^{2\beta j} \|\varphi_{j}(H)f\|_{L^{p}} \end{split}$$

where we used $\|\varphi_j(H)g\|_p \leq c \|g\|_p$ by applying Lemma 2.1 with $\theta = 2^{-j}$ and t = 0. Now multiplying $2^{j\alpha}$ and taking ℓ^q norms in the above inequality gives (7). The estimate in (8) follows from the embedding $B_p^{\alpha,q}(H) \hookrightarrow F_p^{\alpha,q}(H)$ if $q \leq p$, according to (4).

References

- [1] Beals, M. and Strauss, W., *L^p* Estimates for the Wave Equation with a Potential Comm. P.D.E., 18:7-8(1993), 1365-1397.
- [2] Coulhon, T. and Sikora, A., Gaussian Heat Kernel Upper Bounds via Phragmén-Lindelöf Theorem. http://xxx.lanl.gov/abs/math/0609429, (2006).
- [3] D'Ancona, P. and Pierfelice, V., On the Wave Equation with a Large Rough Potential, J. Funct. Anal., 227:1(2005), 30-77.
- [4] Jensen, A. and Nakamura, S., Mapping Properties of Functions of Schrödinger Operators Between L^p Spaces and Besov Spaces, in Spectral and Scattering Theory and Applications, Advanced Studies in Pure Math., 23(1994), 187-209.
- [5] Journé, J. L., Soffer, A. and Sogge, C., Decay Estimates for Schrödinger Operators, Comm. Pure Appl. Math., XLIV (1991), 573-604.
- [6] Ólafsson, G. and Zheng, S., Function Spaces Associated with Schrödinger Operators: the Pöschl-Teller potential, J. Fourier Anal. Appl., 12:6(2006), 653-674.
- [7] Rodnianski, I. and Schlag, W., Time Decay for Solutions of Schrödinger Equations with Rough and Time-Dependent Potentials, Invent. Math., 155:3(2004), 451-513.
- [8] Schlag, W., Dispersive Estimates for Schrödinger Operators: A survey, http://lanl.arXiv.org/math.AP/0501037, (2005).
- [9] Simon, B., Schrödinger Semigroups, Bull. Amer. Math. Soc., 7:3(1982), 447-526.
- [10] Triebel, H., Theory of Function Spaces, Birkhäuser Verlag, 1983.
- [11] Vodev, G., Dispersive Estimates of Solutions to the Schrödinger Equation in Dimensions $n \ge 4$, Asymptot. Anal., 49:1-2(2006), 61-86.
- [12] Yajima, K., The W^{k,p}-Continuity of Wave Operators for Schrödinger Operators, J. Math. Soc. Japan, 47 (1995), 551-581.
- [13] Zheng, S., Littlewood-Paley Theorem for Schrödinger Operators, Anal. Theory. Appl., 22:4(2006), 353-361.
- [14] Zheng, S., Spectral Calculus, Function Spaces and Dispersive Equation with a Critical Potential, In preparation.

Department of Mathematical Sciences Georgia Southern University Statesboro GA 30460-8093 USA

E-mail: szheng@georgiasouthern.edu