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Abstract. LetD(U,V,W) be an oriented 3-partite graph with |U| = p,|V| =qgand |W|=r.
For any vertex x in D(U,V,W), let d; and d, be the outdegree and indegree of x respec-
tively. Define ay, (or simply &) = q-+r +dj —d;, by, (or simply bj) = p+r+d*vj— d\jj
and ¢y, (or simply cx) = p+q+dy, —dj, as the scores of u; in U,vj inV and wy in W
respectively. The set A of distinct scores of the vertices of D(U,V,W) is called its score set.
In this paper, we prove that if a; is a non-negative integer, ai(2 <i < n—1) are even posi-
tive integers and ayn is any positive integer, then for n > 3, there exists an oriented 3-partite

2 n
graph with the score set A= < &y, Z a, -, Z a ¢, exceptwhen A= {0,2,3}. Some more
i=1 i=1

results for score sets in oriented 3-partite graphs are obtained.
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1 Introduction

An oriented graph is a digraph with no symmetric pairs of directed arcs and without loops.
Let D be an oriented graph with the vertex setV = {w,v,---,vp}, and let df and d, denote
the outdegree and indegree of the vertex v respectively. Avery [1] defined g, (or simply &) =
p— 1+d\jir —d\;, the score of v, so 0 < a, <2p—2. The sequence [a,ap, - ,ap] in non-
decreasing order is called the score sequence of D.

Avery obtained the following criterion for score sequences in oriented graphs.

Theorem 1.1 M. A non-decreasing sequence of non-negative integers [a,ay, - - - ,ap] isthe
score sequence of an oriented graph if and only if

k
Ya>k(k—=1), for 1<k<p,
i=1
with equality when k = p.
The set A of distinct scores of the vertices of an oriented graph D is called its score set.
Pirzada and Naikool*! obtained the following results.
Theorem 1.2 . Let A= {a,ad,ad?,--- ,ad"}, where a and d are positive integers with
d > 1. Then there exists an oriented graph with the score set A, except fora=1,d=2,n>0
andfora=1,d=3,n>0.
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Theorem 1.3, If ay,a,--- ,a, are non-negative integers with & < ap < --- < a,. Then

there exists an oriented graph with the score set A= {d,&,,-- , &}, where
_ { a_1+a+1, for i>1,
&= a;, for i=1.

Various results regarding score sets in complete oriented graphs (tournaments) can be found
in[2,5, 8,9, 10].

An oriented bipartite graph is the result of assigning a direction to each edge of a simple
bipartite graph. Suppose U = {ug,Up,--- ,Up} andV = {v1,Vs,--- ,Vq} be the parts of an oriented
bipartite graph D(U,V). For any vertex x in D(U,V), let df and d; be the outdegree and
indegree of x respectively. Define &, (or simply &) = g+ d; —d;, and by, (or simply bj) = p+
djj' —d\,‘j as the scores of u in U and v; inV respectively. Clearly, 0 <a; <2gand 0 < h/,- <2p.
The sequences [ag,a,--- ,8p] and [by,by,---,by] in non-decreasing order are called the score
sequences of D(U,V).

The following result due to Pirzada, Merajuddin and Yin[®! is the bipartite version of Theo-
rem1.1.

Theorem 1.4 81, Two non-decreasing sequences [ay, ap, -+ ,ap] and [by, by, -+, bg] of non-
negative integers are the score sequences of some oriented bipartite graph if and only if

m

|
Ya+Yb>2m 1<I<p, 1<m<q,
i=1 j=1

with equality when| = pand m=q.

The set A of distinct scores of the vertices of an oriented bipartite graph D(U,V) is called its
score set. In [7], Pirzada, Naikoo and Chishti proved that every set A of positive integers is the
score set of an oriented bipartite graph when |A| = 1,2,3 or when A is a geometric or arithmetic
progression.

An oriented 3-partite graph is the result of assigning a direction to each edge of a simple
3-partite graph. Suppose U = {uy, Uz, - ,Up},V ={v1,Vo,--- ,Vq} and W = {wy,wo,...,w; } be
the parts of an oriented 3-partite graph D(U,V,W). For any vertex xin D(U,V,W), letd{ and d,
be the outdegree and indegree of x respectively. Define a; (or simply &) =q+r+dj —dy, by,
(or simply bj) = p+r+dj —d, and cy, (or simply o) = p+q-+dg, — dy, as the scores of
Ui inU,vj in V and wg in W respectively. Clearly, 0 < a; <2(q+r),0 <h,, <2(p+r) and
0 <cw <2(p+0q). The sequences [a,ap,--,ap|,[b1,bp, -+ ,bg] and [c1,Co,--- ,¢] in non-
decreasing order are called the score sequences of D(U,V,W).

The next result is the 3-partite version of Theorem 1.1 given by Pirzada, and Merajuddirt®],

Theorem 1.5 Bl. Three non-decreasing sequences [ay, @, -+ ,ap], [b1,b,,- -+, bg] and
[c1,Co,- -+ ,Cr] Of NON-negative integers are the score sequences of some oriented 3-partite graph
if and only if

| m n
Ya+Ybj+Ya>2(mtm+n), 1<I<pl<m<g, 1<n<r,

i=1 j=1 k=1

with equality when| = pm=qgandn=r.
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The set A of distinct scores of the vertices of an oriented 3-partite graph D(U,V,W) is called
its score set.

For any nonempty vertex sets X and Y, X — Y means that each vertex of X dominates every
vertex of Y. Also for any two vertices x and y, X — y means that there is an arc from x to y, and
X Tyory T xmeans that neither x — y nory — x.

2 Results

We give the following results.

Theorem 2.1. Every singleton set of positive integer, except {1}, is the score set of some
oriented 3-partite graph.

Proof. Let A= {a}, where a> 1 is a positive integer.

There are the following three cases:

(i)a=2r wherer > 1, (ii) a=4r —1 wherer > 1, (iii) a= 4r — 3 wherer > 2.

Now we give the proofs.

(i) a=2r wherer > 1.

Consider an oriented 3-partite graph D(U,V,W) with [U| = |V| = |W|=r,andU —V;V —
W, and W — U. Then the scores of the vertices of D(U,V,W) are

ay=ay=ay=|V|+W|+r—r=r+r=2r=a

forallueU,veV,weW.

Therefore, the score set of D(U,V,W) is A= {a}.

(i) a=4r —1wherer > 1.

Consider an oriented 3-partite graph D(U,V,W) withU = {u, U, ,Ug2_o },V = {Vv1,V0, -,V }
and W = {V;11,Vr42,---,Vor } in which

Uirj — V1,Va, - ,Viog,Vigg, -, Vor  forall i, j,

where 1 <i < 2r,j € {0,2r,4r,--- ,6r> —4r} = Sso that |S| = 3r — 1. Then the scores of the
vertices of D(U,V,W) are

2r 2r
VI + W[+ Vgl ~0=r+rg+ 1

g=1 g=1

g#i g#i

= 2r+(2r—1)=4r—-1=a

Ay

forall u;; €U, where 1 <i<2rjcSand

2r
ay, = |Ul+W[+0=3 3 |uij|
718
2r 2r
= Bri-2r+r—y Y 1=6r"—r—>(3r—1)
7 1< 0

2r

= 6rP—r—(3r—1)Y 1=6r"—r—(3r—1)(2r - 1)
i=1
70

= 4r—-1=a
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for all vy € VUW, where 1 < g < 2r.

Therefore, the score set of D(U,V,W) is A= {a}.

(iii) a=4r — 3 where r > 2.

Consider an oriented 3-partite graph D(U,V,W) withU = {u, Uz, - ,Up2_5 },V ={Vv1,Vo,--- Vi }
and W = {V;11,Vr42,---,Vor } in which

ui+j — V1,V2,- -, Vic1, Vigs, -, Vor, ia ja

where 1 <i < 2r,j € {0,2r,4r,--- ,2r> —4r} = T so that |T| =r — 1. Then the scores of the
vertices of D(U,V,W) are

2r

an+j = ’V|+|W‘+ Z ‘V9’_0
g%i,?ill.wz
2r 2r
= r+r+ (Z |vg|> — (Vi + Vig1] + [Vigz]) = 2r + (Z ) -3
g=1 g=1
= 2r+2r—3a

forall uj €U , where 1 <i<2rjeT. Note that vor 1 and Voo are treated v, and v,
respectively, and

2r

a, = [U[+W[+0— 3 > |uy]
=l JeT
i#9-2.0-19
2r 2r
= 2'=2r+r— Y NYi1=2%—r— Y (r—-1)
=l JeT =l
i#0-29-19 i#9-29-10
2r
= 2%—r—(r—-1) Y 1
i#gjié—l-g

2r

= 22 —r—(r=1)X1— (Jug-2| + |ug-1| + |vg]))
i=1

= 2% r—(r—1)(2r-3)=4r-3=a

for all vy € VUW, where 1 < g < 2r, and note that Ly and u_; are treated as Uy2 5 and Upr2 5, 4
respectively. Therefore, the score set of D(U,V,W) is A= {a}.

Theorem 2.2. Let A= {a;,a}, where & > 0 is an even integer and & is any positive
integer such that &3 < a,. Then, there exists an oriented 3-partite graph with the score set A
except for gy =0, = 1,2.

Proof. First assume that 3y = 0 and a, > 2 so that ap — 2 > 0. Consider an oriented 3-
partite graph D(U,V,W) with U| =1,|V|=|W|=a —2,andV — U and W — U. Then, the
scores of the vertices of D(U,V,W) are

ag = V|[+W+0—-(p—2+ap—-2)=ap—2+a—2—a+2—a+2
0=a, ueU,
ay = U[+W|+1-0=1+a—2+1=ay, vev,
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and
ay=|U|+|V|+1-0=1+a—2+1=ay, weW.

Therefore, the score set of D(U,V,W) is A= {a,ay}.
Now, assume a; = 2r where r > 1. Since a; < ay, then a, —a; > 0. Construct an oriented
3-partite graph D(U,V,W) as follows.
Let
U=X,V=Y1UYo,, W=27;, Y1NYr = 0, ‘Xl‘ = ’Yﬂ = ’Zl‘ =, |Y2’ = —a.
Let X1 — Y1;Y1 — Z3, and Z; — X, so that we get the oriented 3-partite graph D(U,V,W) with
U|=Xi|=rV|=M|+ V2| =r+a—a, |W|=[Zi] =T,

and the scores of vertices

a, = |MN|+W|+r—r=r+a—a+r=2r+ap—a
= aita—a =a, X E€X,
ay, = |[U|+W|+r—r=r+r=2r=a, yieY,
a, = |U|+W[+0-0=r+r+2r=a, YeY,
and
a, = U|+NV|+r—r=r+r+am-a=2r+ay—a

= ata—aa=a&, Z<€Z.

Therefore, the score set of D(U,V,W) is A= {a,ay}.
The following result shows that every set of three non-negative integers in arithmetic pro-
gression, except {0,1,2}, is a score set of some oriented 3-partite graph.

Theorem 2.3. Let A= {a,a+d,a+ 2d}, where a and d are non-negative integers with
d > 0. Then there exists an oriented 3-partite graph with the score set A, except for a=0,d = 1.

Proof. First assume that a= 0 and d = 2. Consider an oriented 3-partite graph D(U,V,W)
with U] = |V|=|W|=1,and V — U and W — U,V. Then the scores of the vertices of
D(U,V,W) are

a, = |V[+W|[+0-2+1+1-2=0=a, ueU,
ay U+ W|+1-1+1+1=2=a+d, veV,

and
ay=U|+|V|[+2-0=1+1+2=4=a+2d, weW.

Therefore, the score set of D(U,V,W) is A= {a,a+d,a+ 2d}.

Now, assume that a= 0 and d > 2 so that d — 2 > 0. Consider an oriented 3-partite graph
D(U,V,W) with U|=1,V|=d—-2,|W|=2d—-2,andV — U and W — U, V. Then the scores
of the vertices of D(U,V,W) are

as = |V[+W|+0—-(d-2+2d—-2)=d—-2+2d—-2—-d+2—-2d+2
= 0=a, ueU,
a = U|+W|+1-0=14+2d-2+1=2d=a+2d, veV,
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and
ay=|U|+|V[+1-0=14+d-2+1=d=a+d, weW.

Therefore, the score set of D(U,V,W) is A= {a,a+d,a+ 2d}.
Finally, assume that a > 0. Consider an oriented 3-partite graph D(U,V,W) with |U| =
d,|V|=|W|=a,and W — U. Then the scores of the vertices of D(U,V,W) are

a, = |V|+W|+0—-a=a+a—-a=a, uel,
a = [U[+|W|+0-0=d+a=a+d, veV,

and
ay=|U|+|V|[+d-0=d+a+d=a+2d, weW.

Therefore, the score set of D(U,V,W) is A= {a,a+d,a-+2d}.
The next result shows that every set of four non-negative integers in arithmetic progression,
except {0,1,2,3}, is a score set of some oriented 3-partite graph.

Theorem 2.4. Let A= {a,a+d,a+ 2d,a+ 3d}, where a and d are non-negative integers
with d > 0. Then there exists an oriented 3-partite graph with the score set A, except for a =
0,d=1.

Proof.  First assume that a= 0 and d = 2. Construct an oriented 3-partite graph D(U,V,W)
as follows.

LetU =X,,V=Y1UYL,,W=2Z;,1NY, = 0,|X1| = |Y1| = |Y2| = 1,|Z]_| =2. LetY, —
X1,Z1;Y, — X1, and Z; — X1, Yo, so that we get the oriented 3-partite graph D(U,V,W) with

U= X[ =L, V|=M|+ V2| =1+1=2,|W|=[Z4] =2,

and the scores of vertices

a, = |V|+|W|+0—4=2+2-4=0=a, X €Xy,
a, = |U/+W[+3-0=1+2+3=6=a+3d, y1eVY,
a, = |U+W[+1-2=14+2-1=2=a+d, ypeY,

and
ag =|U|+|V|+2-1=1+2+1=4=a+2d, 7ncz.
Therefore, the score set of D(U,V,W) is A= {a,a-+d,a+2d,a+ 3d}.
Now, assume that a= 0 and d > 2 so that d — 2 > 0. Construct an oriented 3-partite graph

D(U,V,W) as follows.
Let

U=X,V=YIUY,, W=ZUZ,,1NYo =0, ZyNZ, =0, ‘Xl‘ =1,
Y| =[Z1] =d -2, |Yz| =d, [Z;| = 2d.

LetY: — X1;Yo — Xq;Z1 — Xq, and Z, — Xy, Y2, so that we get the oriented 3-partite graph
D(U,V,W) with

U|=[Xi| =1, V|= V1| +|Yo| =d—2+d=2d -2,
W| =Z1|+|Z,| =d—2+2d =3d -2,
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and the scores of vertices

a, = |V|+W|+0—-(d-2+d+2d+d-2)
2d—2+3d—2-5d+4=0=a, x €Xy,

ay, = |U/+W|+1-0=1+4+3d-2+1=3d=a+3d, Y1 € VY1,
a, = |U/+W|+1-2d=1+3d-2+1-2d=d=a+d, Y2 €Yz,
a8 = U[+|V|+1-0=1+2d-2+1=2d=a+2d, 7 €7,

and
az, =|U|+|V|+(1+d)-0=1+2d—-2+1+d=3d=a+3d, €.
Therefore, the score set of D(U,V,W) is A= {a,a+d,a+2d,a+ 3d}.
Eier;ally, assume that a > 0. Construct an oriented 3-partite graph D(U,V,W) as follows.
U=X,V=Y1UY, W=7, 1N =0, |X;| = ¥1| =d, [V2o| = |Z1] = a
LetY; — Xg, and Z; — X, so that we get the oriented 3-partite graph D(U,V,W) with
U|=[Xi|=d, V|[= V1| +|Yo| =d+a=a+d, |W|=|Z| =4,

and the scores of vertices

&, = |V|+W|+0-(d+a)=a+d+a—-d—a=a, x €Xi,
ay, = |U|+W|+d-0=d+a+d=a+2d, yieVY,
a, = |[U/+W|+0-0=d+a=a+d, yeY,

and
8z =U|+|V|+d-0=d+a+d+d=a+3d, zeZ.
Therefore, the score set of D(U,V,W) is A= {a,a+d,a+2d,a+ 3d}.
Finally, we have the following main result.

Theorem 2.5. Let & be a non-negative integer, g (2 <i < n—1) be even positive integers
and a, be any positive integer. Then for n > 3, there exists an oriented 3-partite graph with the

2 n
score set A = {al,Zai,--- ,Zai}, except when A = {0,2,3}.
i—1 i—1

Proof. For2 <i<n-1,leta = 2ri wherer; > 1.

First assume that & = 0 and n = 3. For & = 2,a3 = 2, consider an oriented 3-partite graph
D(U,V,W)with |U|=|V|=|W|=1,andV — U and W — U,V. Then, the scores of the vertices
of D(U,V,W) are

a, = |V|[+W|+0-2=1+1-2=0=9, uecU,
ay U+ W|+1-1=1+1=2=a+a, VeV,

and
ay=|U|+V|+2-0=1+1+2=4=a+a+a, weW.

Therefore, the score set of D(U,V,W) is A= {&,a1 + a,a1 + a» + a3 }.
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For ap > 2,a3 > 2, construct an oriented 3-partite graph D(U,V,W) as follows.
Let

U= Xl, V=Y UYQ, W = Zl, YiNnY, = 0, ’Xl‘ =TIy, ’Yﬂ = l, ‘Yz‘ =ag —2, |Zl‘ =a3.
LetY: — Xi; Y2 — X, and Z; — Xy, Y1, so that we get the oriented 3-partite graph D(U,V,W)
with
U[=X1| =12, V|=M|+ V2| =1+ —-2=a—1, |W|=|Z|=as,

and the scores of vertices

ay, = |V[+W[+0—-(Vi|+ V2| +|Z|)=as—14+a3—(1+az—2+a3) =0=a, X €X,
ay, = |U|+|W[+|X|—|Zi]=r2+a+Tr—ag=2r=a +a, y1 €Y1,

a, = [U|+W|+|X|-0=r+ag+rn=2n+a=a+a+a, Y€Y,

and

az :\U]+]V|+(\X1]+]Y1])—0:r2+ag—1+r2—|—1:2r2—|—a3:a1+a2+ag, 71 €7;.

Therefore, the score set of D(U,V,W) is A= {&,a1 + a,a1 + &y + a3 }.
Now, let a; = 0 and n > 4. Construct an oriented 3-partite graph D(U,V,W) as follows.
Let

U XUX UXoU---UXp_3,
Vo= Y,
W = ZUZyUZyuU---UZ, 3,

With XNX =0,XNX;j=0,ZNZ =0,ZNZ;=0(i # ), X[ = Z| = 12, [Y| =13, |X| = |Zi| =
rips forall i, where 1 <i <n—4,|X,_3| = |Zn—3| = an.

LetXi —VY,Z,Z1,2,,--- ,Zi foralli,where 1 <i<n—4;X,.3—Y,2,21,Z5,-- ,Zn_4;Y —
X;Z—Y,X,and Z — Y, X, X1, Xp,---, X1 forall i, where 1 <i < n—3, so that we get the
oriented 3-partite graph D(U,V,W) with

n-3 n—-3 n—4
U= X[+ X = 2|+ D 1Z] = W[ =r2+ Y risa+an, V] = Y| =13,
i=1 i=1 i=1
and the scores of vertices

ax

n—4
V] + W[ +0— <|Y|+|Z\ + 1zl + |Zn3|>
i=1
n-4 n—4
= r3+T2+ Y igz+an— |f3+ra+ Y fijz+ag
i=1 i=1
= 0=a, xeX, 1<i<n-—4,
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=1 j=i+1

i n—4
a, = |V[+ W[+ <|Y|+|Z\+_Z|Zj|> - (_Z |j|+|Zn3|>

i=1 =1 i

= 2rp+2r3+ (rg+r3+---+rizg+ripat+---+rn-1)

+(ra+rs+---4riy3) — (fiya+rigs+---+rn_1)
2[’2+2I’3+2I’4+2I’5+-'-+2I’i+3
at+atag+--+ai3, X EX,

n—4 i n—4
= r3+rz+Zri+3+an+r3+rz+2rj+3—( ri+3+an>
. . ~

n—4

By = VI+WI+ <M+ zZ+ % rzir> -0
i=1

n—4 n—4

}SVHG

= r3+r24+ Y figz+an+r3+ra+
i=1 i=1

n—4
= 2r+2r3+2) rijz+an
i—1

= aq+a+ag+---+an-1+a), Xn-3€ X3,

n—4 n—4
a = IU!+!W+X|—<ZIXa|+|Xn3|+|Z!+_21|Zi|+lzn3l>

i=1
n—4 n—-4
= r24 Y fiyz+an+ra+ Y laz+an+r
i=1 i=1

n—4 n—4
—| Xrivstantra+ Y riatag
i=1 i=1
= 2np=a+a, ycy,

n—4
8 = \U!+!V|+(\Y\+\XI>—(Z!N!Jrlxn—s\)

i=1

n—4 n—4
= T2+ D Ti3+an+r3+r3+r— (Zri+3+an>
i=1 i=1

= 2+2r3=a+a+az, zZ€Z,

forl1<i<n-4

i n—4
a = [U[+[V[+ (IYH!XH > |X11|> - (Z IXj|+|Xn3I>
j=2

=1

n—4 i n—4
= rz+Zri+3+an+r3+r3+rz+2rj+z—< rj+3+an>
j=1 j=2 j=1

= 200+ 2r3+(ra+rs+--+rijo+riygz+---+rn1)
+(ra+rs5+--+rig2) = (ea+rigat--+rn-a)
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= 2I’2+2I’3+2I’4+2I’5—I—'-'—i-2I’i+2
- al+32+as+"'+ai+2, Z|€ZI7

and

n—4
8, = |U|+|V\+<IY!+!X\+ZI>@I>—0

j=1

n—4 i n—4
= r2+Zri+3+an+r3+r3+r2+2rj+2—( rj+3+an>
= =2 ]

j=1
2rp +2r3+2r4+---+ 21+
atapt+az+---+an-1+an zZn-3€Zns.
2 n
Therefore, the score set of D(U,V,W) isA=<ai, > a,-, >,a ¢-
i=1 i=1

Now, assume that & > 0. Construct an oriented 3-partite graph D(U,V, W) as follows.
Let

Uu = X,
V YUY]_ UYZUUYn_3 UYn_z,
W = ZUzZyUZyU---UZ, 3,

WithYNYi =0,YiNY;j=0,ZNZ =0,ZNZ; =0(i # ]), [X| = a1, |Y| = |Z| =12, [Yi| = |Z] =ri2
forall i, where 1 <i <n—3,|Yy_2| =& + an.

LetVi — Z,23)Y, — 2,24,2,--- ,Zi_q forall i, where 2 <i<n-2;Z—Y;Z — Y, and
Zi — Y, Y1,Yo,--- Y for all i, where 2 <i < n—3, so that we get the oriented 3-partite graph
D(U,V,W) with

n-2 n—3
Ul=IX|=aq, V= Y[+ D [¥i] =r2+ Y risoa + a0,
i=1 i=1

n—-3 n-3
W[ =|Z|+ 2 1Zi| =12+ 2 lis2,
i=1 i=1

and the scores of vertices

n—3 n—-3
a = [[+|W|[+0-0=r+ ) fiyo+a+an+r2+ Yl
i=1 i=1

a+2rp+2r34---42rp_1+an
at+at+ag+---+an_1+an, X e X,

n-3
ay = |U!+!W|+0—<IZ!+Z|ZiI>
i=1

n—-3 n-3
= a1+r2+zri+2_<r2+zri+2>:ala yey,

i=1 i=1
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8y,

for3<i<n-3

8y,

8y,

andfor2<i<n-3

3

= U+ W[+ (2] +]Z]) - Z |Zil

n-3 —

ar+ra+ Y fipa+ra+r3— Zri+z:a1+2rz+2r3
= =2

atatag, YieEYLY2€Y2

i n-3
U]+ W[+ (IZH > |211I> - 1Zj

=2 =
n-3 n-3
a1+r2+2r.+2+r2+2r1+1—Zer
i=1 j=2 j=i

ar+2rp+ (r3+ra+---+rip1+rigo+--+rn-1)
+(rs+ra+--+riz1) — (liyz2 +rizg+ - +rn1)
a+2rp+2r34+2r4+-- -+ 2riyg
at+a@tagt--+a11, V€Y,

n—2
U]+ W[+ (IZH > IZjll> -
j=2

n—3 n-2
ap+r+ Zri+2+r2+ z Mi+1
i—1 =2

a+2rp+2r3+2r4+---+2rp1
aq+a+ag+---+an-1, Yn-2€ Yno2,
n-2
= U+ NV|+IY]= Y Y]
i—1

n-3
ar+r2+ Y fipo+ar+an+rz2— (Zr.+z+a1+an>

i=1 i=1
at+2fh=a1t+a, z€Z,z1€”Zy,

i n—2
U+ N+ X Y= X Yl
j=1 j=i+1

nf
al+r2+zri+2+al+an+r2

i—1
i n—2
+ ) M= | D T2 ta+a
=1 j=i+1
a +2rp+ (fg+ g+ +rizp+livg+ - +rno1)
+(r3+ra+-+rit2) — (i +riva+ - +rn-1)
ap+2rp+2r34+2r4+-- -+ 2riy
ata+ag+---+as2, ZzZec<Z.

373
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2 n
Therefore, the score set of D(U,V,W) is A= {al, Yai,, )8 } )
i—1 i—1

(1]
(2]
(3]
(4]

(5]
(6]

(7]

(8]

(9]
[10]
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