SCORE SETS IN ORIENTED 3-PARTITE GRAPHS

S. Pirzada (*University of Kashmir, India)* Merajuddin (*F/O Engineering and Tech., India)* T. A. Naikoo (*University of Kashmir, India.)*

Received Dec. 26, 2006, Revised Oct. 6, 2007

Abstract. Let $D(U, V, W)$ be an oriented 3-partite graph with $|U| = p$, $|V| = q$ and $|W| = r$. For any vertex *x* in $D(U, V, W)$, let d_x^+ and d_x^- be the outdegree and indegree of *x* respectively. Define a_{u_i} (or simply a_i) = $q + r + d_{u_i}^+ - d_{u_i}^-$, b_{v_j} (or simply b_j) = $p + r + d^+v_j - d_{v_j}^$ and c_{w_k} (or simply c_k) = $p + q + d_{w_k}^+ - d_{w_k}^-$ as the scores of u_i in U, v_j in V and w_k in W respectively. The set *A* of distinct scores of the vertices of $D(U, V, W)$ is called its score set. In this paper, we prove that if *a*₁ is a non-negative integer, a_i (2 ≤ *i* ≤ *n* − 1) are even positive integers and a_n is any positive integer, then for $n \geq 3$, there exists an oriented 3-partite $\sqrt{ }$ <u>)</u>

graph with the score set $A =$ *a*1*,* $\sum_{i=1}^{2}$ *ai,*··· *, n* ∑ *i*=1 *ai* , except when $A = \{0, 2, 3\}$. Some more

results for score sets in oriented 3-partite graphs are obtained.

Key words: *oriented graph, oriented 3-partite graph, tournament score set*

AMS (2000) subject classification: 05C20

1 Introduction

An oriented graph is a digraph with no symmetric pairs of directed arcs and without loops. Let *D* be an oriented graph with the vertex set $V = \{v_1, v_2, \dots, v_p\}$, and let d_v^+ and d_v^- denote the outdegree and indegree of the vertex *v* respectively. Avery [1] defined a_i (or simply a_i) = $p - 1 + d_{\nu_i}^+ - d_{\nu_i}^-$, the score of ν_i , so $0 \le a_{\nu_i} \le 2p - 2$. The sequence $[a_1, a_2, \dots, a_p]$ in nondecreasing order is called the score sequence of *D*.

Avery obtained the following criterion for score sequences in oriented graphs.

Theorem 1.1 ^[1]. A non-decreasing sequence of non-negative integers $[a_1, a_2, \dots, a_p]$ is the *score sequence of an oriented graph if and only if*

$$
\sum_{i=1}^k a_i \ge k(k-1), \quad \text{for} \quad 1 \le k \le p,
$$

with equality when $k = p$.

The set *A* of distinct scores of the vertices of an oriented graph *D* is called its score set. Pirzada and Naikoo $^{[4]}$ obtained the following results.

Theorem 1.2 ^[4]. Let $A = \{a, ad, ad^2, \dots, ad^n\}$, where a and d are positive integers with $d > 1$. Then there exists an oriented graph with the score set A, except for $a = 1, d = 2, n > 0$ *and for* $a = 1, d = 3, n > 0$ *.*

Theorem 1.3 ^[4]. *If* a_1, a_2, \dots, a_n are non-negative integers with $a_1 < a_2 < \dots < a_n$. Then *there exists an oriented graph with the score set* $A = \{d_1, d_2', \cdots, d_n'\}$ *, where*

$$
a'_{i} = \begin{cases} a_{i-1} + a_i + 1, & \text{for} \quad i > 1, \\ a_i, & \text{for} \quad i = 1. \end{cases}
$$

Various results regarding score sets in complete oriented graphs (tournaments) can be found in [2, 5, 8, 9, 10].

An oriented bipartite graph is the result of assigning a direction to each edge of a simple bipartite graph. Suppose $U = \{u_1, u_2, \dots, u_p\}$ and $V = \{v_1, v_2, \dots, v_q\}$ be the parts of an oriented bipartite graph $D(\bar{U}, V)$. For any vertex *x* in $D(U, V)$, let d_x^+ and d_x^- be the outdegree and indegree of *x* respectively. Define a_{u_i} (or simply a_i) = $q + d_{u_i}^+ - d_{u_i}^-$ and b_{v_j} (or simply b_j) = $p +$ $d_{v_j}^+ - d_{v_j}^-$ as the scores of u_i in *U* and v_j in *V* respectively. Clearly, $0 \le a_{u_i} \le 2q$ and $0 \le b_{v_j} \le 2p$. The sequences $[a_1, a_2, \dots, a_p]$ and $[b_1, b_2, \dots, b_q]$ in non-decreasing order are called the score sequences of $D(U, V)$.

The following result due to Pirzada, Merajuddin and $\text{Yin}^{[6]}$ is the bipartite version of Theorem 1.1.

Theorem 1.4 ^[6]. *Two non-decreasing sequences* $[a_1, a_2, \dots, a_p]$ *and* $[b_1, b_2, \dots, b_q]$ *of nonnegative integers are the score sequences of some oriented bipartite graph if and only if*

$$
\sum_{i=1}^{l} a_i + \sum_{j=1}^{m} b_j \ge 2lm, \quad 1 \le l \le p, \quad 1 \le m \le q,
$$

with equality when $l = p$ *and* $m = q$ *.*

The set *A* of distinct scores of the vertices of an oriented bipartite graph $D(U, V)$ is called its score set. In [7], Pirzada, Naikoo and Chishti proved that every set *A* of positive integers is the score set of an oriented bipartite graph when $|A| = 1, 2, 3$ or when A is a geometric or arithmetic progression.

An oriented 3-partite graph is the result of assigning a direction to each edge of a simple 3-partite graph. Suppose $U = \{u_1, u_2, \dots, u_p\}$, $V = \{v_1, v_2, \dots, v_q\}$ and $W = \{w_1, w_2, \dots, w_r\}$ be the parts of an oriented 3-partite graph $D(U, V, W)$. For any vertex *x* in $D(U, V, W)$, let d_x^+ and $d_x^$ be the outdegree and indegree of *x* respectively. Define a_{i_i} (or simply a_i) = $q + r + d_{u_i}^+ - d_{u_i}^-$, b_{v_i} (or simply b_j) = $p + r + d_{v_j}^+ - d_{v_j}^-$ and c_{w_k} (or simply c_k) = $p + q + d_{w_k}^+ - d_{w_k}^-$ as the scores of *u_i* in *U*, v_j in *V* and w_k in *W* respectively. Clearly, $0 \le a_{u_i} \le 2(q+r)$, $0 \le b_{v_j} \le 2(p+r)$ and $0 \leq c_{w_k} \leq 2(p+q)$. The sequences $[a_1, a_2, \cdots, a_p], [b_1, b_2, \cdots, b_q]$ and $[c_1, c_2, \cdots, c_r]$ in nondecreasing order are called the score sequences of $D(U, V, W)$.

The next result is the 3-partite version of Theorem 1.1 given by Pirzada, and Merajuddin^[3].

Theorem 1.5^[3]. *Three non-decreasing sequences* $[a_1, a_2, \cdots, a_p]$, $[b_1, b_2, \cdots, b_q]$ *and* $[c_1, c_2, \dots, c_r]$ *of non-negative integers are the score sequences of some oriented 3-partite graph if and only if*

$$
\sum_{i=1}^{l} a_i + \sum_{j=1}^{m} b_j + \sum_{k=1}^{n} c_k \ge 2(lm + mn + nl), \quad 1 \le l \le p, 1 \le m \le q, \quad 1 \le n \le r,
$$

with equality when $l = p, m = q$ *and* $n = r$.

The set *A* of distinct scores of the vertices of an oriented 3-partite graph $D(U, V, W)$ is called its score set.

For any nonempty vertex sets *X* and Y , $X \rightarrow Y$ means that each vertex of *X* dominates every vertex of *Y*. Also for any two vertices *x* and *y*, $x \rightarrow y$ means that there is an arc from *x* to *y*, and $x \uparrow y$ or $y \uparrow x$ means that neither $x \rightarrow y$ nor $y \rightarrow x$.

2 Results

We give the following results.

Theorem 2.1. *Every singleton set of positive integer, except* {1}*, is the score set of some oriented 3-partite graph.*

Proof. Let $A = \{a\}$, where $a > 1$ is a positive integer.

There are the following three cases:

(i) $a = 2r$ where $r \ge 1$, (ii) $a = 4r - 1$ where $r \ge 1$, (iii) $a = 4r - 3$ where $r \ge 2$.

Now we give the proofs.

(i) $a = 2r$ where $r \geq 1$.

Consider an oriented 3-partite graph $D(U, V, W)$ with $|U| = |V| = |W| = r$, and $U \rightarrow V; V \rightarrow$ *W*, and $W \rightarrow U$. Then the scores of the vertices of $D(U, V, W)$ are

$$
a_u = a_v = a_w = |V| + |W| + r - r = r + r = 2r = a
$$

for all $u \in U, v \in V, w \in W$.

Therefore, the score set of $D(U, V, W)$ is $A = \{a\}.$

(ii) $a = 4r - 1$ where $r \ge 1$.

Consider an oriented 3-partite graph $D(U, V, W)$ with $U = \{u_1, u_2, \cdots, u_{6r^2-2r}\}, V = \{v_1, v_2, \cdots, v_r\}$ and $W = \{v_{r+1}, v_{r+2}, \dots, v_{2r}\}\$ in which

$$
u_{i+j} \rightarrow v_1, v_2, \cdots, v_{i-1}, v_{i+1}, \cdots, v_{2r}
$$
 for all i, j ,

where $1 \le i \le 2r, j \in \{0, 2r, 4r, \dots, 6r^2 - 4r\} = S$ so that $|S| = 3r - 1$. Then the scores of the vertices of $D(U, V, W)$ are

$$
a_{u_{i+j}} = |V| + |W| + \sum_{\substack{g=1 \ g \neq i}}^{2r} |v_g| - 0 = r + r_g + \sum_{\substack{g=1 \ g \neq i}}^{2r} 1
$$

= 2r + (2r - 1) = 4r - 1 = a

for all $u_{i+j} \in U$, where $1 \leq i \leq 2r, j \in S$ and

$$
a_{v_g} = |U| + |W| + 0 - \sum_{\substack{i=1 \ i \neq g}}^{2r} \sum_{j \in S} |u_{i+j}|
$$

\n
$$
= 6r^2 - 2r + r - \sum_{\substack{i=1 \ i \neq g}}^{2r} \sum_{j \in S} 1 = 6r^2 - r - \sum_{\substack{i=1 \ i \neq g}}^{2r} (3r - 1)
$$

\n
$$
= 6r^2 - r - (3r - 1) \sum_{\substack{i=1 \ i \neq g}}^{2r} 1 = 6r^2 - r - (3r - 1)(2r - 1)
$$

\n
$$
= 4r - 1 = a
$$

for all $v_g \in V \cup W$, where $1 \le g \le 2r$.

Therefore, the score set of $D(U, V, W)$ is $A = \{a\}.$

(iii) $a = 4r - 3$ where $r \ge 2$.

Consider an oriented 3-partite graph $D(U, V, W)$ with $U = \{u_1, u_2, \dots, u_{2r^2-2r}\}, V = \{v_1, v_2, \dots, v_r\}$ and $W = \{v_{r+1}, v_{r+2}, \dots, v_{2r}\}\$ in which

$$
u_{i+j} \to v_1, v_2, \cdots, v_{i-1}, v_{i+3}, \cdots, v_{2r}, \qquad i, \quad j,
$$

where $1 \le i \le 2r, j \in \{0, 2r, 4r, \dots, 2r^2 - 4r\} = T$ so that $|T| = r - 1$. Then the scores of the vertices of $D(U, V, W)$ are

$$
a_{u_{i+j}} = |V| + |W| + \sum_{\substack{g=1 \ g \neq i, i+1, i+2}}^{2r} |v_g| - 0
$$

= $r + r + \left(\sum_{g=1}^{2r} |v_g|\right) - (|v_i| + v_{i+1}| + |v_{i+2}|) = 2r + \left(\sum_{g=1}^{2r} 1\right) - 3$
= $2r + 2r - 3a$

for all $u_{i+j} \in U$, where $1 \leq i \leq 2r, j \in T$. Note that v_{2r+1} and v_{2r+2} are treated v_1 and v_2 respectively, and

$$
a_{v_g} = |U| + |W| + 0 - \sum_{\substack{i=1 \ i\neq g-2,g-1,g}}^{2r} \sum_{j\in T} |u_{i+j}|
$$

\n
$$
= 2r^2 - 2r + r - \sum_{\substack{i=1 \ i\neq g-2,g-1,g}}^{2r} \sum_{j\in T} 1 = 2r^2 - r - \sum_{\substack{i=1 \ i\neq g-2,g-1,g}}^{2r} (r-1)
$$

\n
$$
= 2r^2 - r - (r-1) \sum_{\substack{i=1 \ i\neq g-2,g-1,g}}^{2r} 1
$$

\n
$$
= 2r^2 - r - (r-1) (\sum_{i=1}^{2r} 1 - (|u_{g-2}| + |u_{g-1}| + |v_g|))
$$

\n
$$
= 2r^2 - r - (r-1)(2r-3) = 4r - 3 = a
$$

for all v_g ∈ *V* ∪*W,* where $1 \le g \le 2r$, and note that u_0 and u_{-1} are treated as u_{2r^2-2r} and u_{2r^2-2r-1} respectively. Therefore, the score set of $D(U, V, W)$ is $A = \{a\}.$

Theorem 2.2. Let $A = \{a_1, a_2\}$, where $a_1 \geq 0$ is an even integer and a_2 is any positive *integer such that* $a_1 < a_2$ *. Then, there exists an oriented 3-partite graph with the score set A except for* $a_1 = 0, a_2 = 1, 2$.

Proof. First assume that $a_1 = 0$ and $a_2 > 2$ so that $a_2 - 2 > 0$. Consider an oriented 3partite graph $D(U, V, W)$ with $|U| = 1, |V| = |W| = a_2 - 2$, and $V \rightarrow U$ and $W \rightarrow U$. Then, the scores of the vertices of $D(U, V, W)$ are

$$
a_u = |V| + |W| + 0 - (a_2 - 2 + a_2 - 2) = a_2 - 2 + a_2 - 2 - a_2 + 2 - a_2 + 2
$$

= 0 = a₁, $u \in U$,

$$
a_v = |U| + |W| + 1 - 0 = 1 + a_2 - 2 + 1 = a_2, \qquad v \in V
$$

and

$$
a_w = |U| + |V| + 1 - 0 = 1 + a_2 - 2 + 1 = a_2, \qquad w \in W.
$$

Therefore, the score set of $D(U, V, W)$ is $A = \{a_1, a_2\}.$

Now, assume $a_1 = 2r$ where $r \geq 1$. Since $a_1 < a_2$, then $a_2 - a_1 > 0$. Construct an oriented 3-partite graph $D(U, V, W)$ as follows.

Let

$$
U=X_1, V=Y_1\cup Y_2, W=Z_1, Y_1\cap Y_2=\varphi, |X_1|=|Y_1|=|Z_1|=r, |Y_2|=a_2-a_1.
$$

Let $X_1 \rightarrow Y_1$; $Y_1 \rightarrow Z_1$, and $Z_1 \rightarrow X_1$, so that we get the oriented 3-partite graph $D(U, V, W)$ with

$$
|U| = |X_1| = r, |V| = |Y_1| + |Y_2| = r + a_2 - a_1, |W| = |Z_1| = r,
$$

and the scores of vertices

$$
a_{x_1} = |V| + |W| + r - r = r + a_2 - a_1 + r = 2r + a_2 - a_1
$$

\n
$$
= a_1 + a_2 - a_1 = a_2, \quad x_1 \in X_1,
$$

\n
$$
a_{y_1} = |U| + |W| + r - r = r + r = 2r = a_1, \quad y_1 \in Y_1,
$$

\n
$$
a_{y_2} = |U| + |W| + 0 - 0 = r + r + 2r = a_1, \quad y_2 \in Y_2,
$$

and

$$
a_{z_1} = |U| + |V| + r - r = r + r + a_2 - a_1 = 2r + a_2 - a_1
$$

= $a_1 + a_2 - a_1 = a_2, \quad z_1 \in Z_1.$

Therefore, the score set of $D(U, V, W)$ is $A = \{a_1, a_2\}$.

The following result shows that every set of three non-negative integers in arithmetic progression, except {0*,*1*,*2}, is a score set of some oriented 3-partite graph.

Theorem 2.3. Let $A = \{a, a+d, a+2d\}$, where a and d are non-negative integers with $d > 0$. Then there exists an oriented 3-partite graph with the score set A, except for $a = 0, d = 1$.

Proof. First assume that $a = 0$ and $d = 2$. Consider an oriented 3-partite graph $D(U, V, W)$ with $|U| = |V| = |W| = 1$, and $V \rightarrow U$ and $W \rightarrow U, V$. Then the scores of the vertices of $D(U, V, W)$ are

$$
a_u = |V| + |W| + 0 - 2 + 1 + 1 - 2 = 0 = a, u \in U,
$$

\n
$$
a_v = |U| + |W| + 1 - 1 + 1 + 1 = 2 = a + d, v \in V,
$$

and

$$
a_w = |U| + |V| + 2 - 0 = 1 + 1 + 2 = 4 = a + 2d, \ w \in W.
$$

Therefore, the score set of $D(U, V, W)$ is $A = \{a, a+d, a+2d\}.$

Now, assume that $a = 0$ and $d > 2$ so that $d - 2 > 0$. Consider an oriented 3-partite graph $D(U, V, W)$ with $|U| = 1$, $|V| = d - 2$, $|W| = 2d - 2$, and $V \to U$ and $W \to U, V$. Then the scores of the vertices of $D(U, V, W)$ are

$$
a_u = |V| + |W| + 0 - (d - 2 + 2d - 2) = d - 2 + 2d - 2 - d + 2 - 2d + 2
$$

= 0 = a, $u \in U$,

$$
a_v = |U| + |W| + 1 - 0 = 1 + 2d - 2 + 1 = 2d = a + 2d, v \in V
$$

and

$$
a_w = |U| + |V| + 1 - 0 = 1 + d - 2 + 1 = d = a + d, \quad w \in W.
$$

Therefore, the score set of $D(U, V, W)$ is $A = \{a, a+d, a+2d\}.$

Finally, assume that $a > 0$. Consider an oriented 3-partite graph $D(U, V, W)$ with $|U| =$ d *,*| V | = | W | = *a*, and $W \rightarrow U$. Then the scores of the vertices of *D*(*U,V,W*) are

$$
a_u = |V| + |W| + 0 - a = a + a - a = a, \quad u \in U,
$$

\n
$$
a_v = |U| + |W| + 0 - 0 = d + a = a + d, \quad v \in V,
$$

and

$$
a_w = |U| + |V| + d - 0 = d + a + d = a + 2d, \quad w \in W.
$$

Therefore, the score set of $D(U, V, W)$ is $A = \{a, a+d, a+2d\}.$

The next result shows that every set of four non-negative integers in arithmetic progression, except {0*,*1*,*2*,*3}, is a score set of some oriented 3-partite graph.

Theorem 2.4. Let $A = \{a, a+d, a+2d, a+3d\}$, where a and d are non-negative integers *with d* > 0 . Then there exists an oriented 3-partite graph with the score set A, except for $a =$ $0, d = 1.$

Proof. First assume that $a = 0$ and $d = 2$. Construct an oriented 3-partite graph $D(U, V, W)$ as follows.

Let $U = X_1, V = Y_1 \cup Y_2, W = Z_1, Y_1 \cap Y_2 = \emptyset, |X_1| = |Y_1| = |Y_2| = 1, |Z_1| = 2$. Let Y_1 → $X_1, Z_1; Y_2 \to X_1$, and $Z_1 \to X_1, Y_2$, so that we get the oriented 3-partite graph $D(U, V, W)$ with

$$
|U| = |X_1| = 1, |V| = |Y_1| + |Y_2| = 1 + 1 = 2, |W| = |Z_1| = 2,
$$

and the scores of vertices

$$
a_{x_1} = |V| + |W| + 0 - 4 = 2 + 2 - 4 = 0 = a, \quad x_1 \in X_1,
$$

\n
$$
a_{y_1} = |U| + |W| + 3 - 0 = 1 + 2 + 3 = 6 = a + 3d, \quad y_1 \in Y_1,
$$

\n
$$
a_{y_2} = |U| + |W| + 1 - 2 = 1 + 2 - 1 = 2 = a + d, \quad y_2 \in Y_2,
$$

and

$$
a_{z_1} = |U| + |V| + 2 - 1 = 1 + 2 + 1 = 4 = a + 2d, \quad z_1 \in Z_1.
$$

Therefore, the score set of $D(U, V, W)$ is $A = \{a, a+d, a+2d, a+3d\}.$

Now, assume that $a = 0$ and $d > 2$ so that $d - 2 > 0$. Construct an oriented 3-partite graph $D(U, V, W)$ as follows.

Let

$$
U = X_1, V = Y_1 \cup Y_2, W = Z_1 \cup Z_2, Y_1 \cap Y_2 = \emptyset, Z_1 \cap Z_2 = \emptyset, |X_1| = 1, |Y_1| = |Z_1| = d - 2, |Y_2| = d, |Z_2| = 2d.
$$

Let $Y_1 \rightarrow X_1; Y_2 \rightarrow X_1; Z_1 \rightarrow X_1$, and $Z_2 \rightarrow X_1, Y_2$, so that we get the oriented 3-partite graph $D(U, V, W)$ with

$$
|U| = |X_1| = 1, |V| = |Y_1| + |Y_2| = d - 2 + d = 2d - 2,
$$

$$
|W| = |Z_1| + |Z_2| = d - 2 + 2d = 3d - 2,
$$

and the scores of vertices

$$
a_{x_1} = |V| + |W| + 0 - (d - 2 + d + 2d + d - 2)
$$

\n
$$
= 2d - 2 + 3d - 2 - 5d + 4 = 0 = a, \quad x_1 \in X_1,
$$

\n
$$
a_{y_1} = |U| + |W| + 1 - 0 = 1 + 3d - 2 + 1 = 3d = a + 3d, \quad y_1 \in Y_1,
$$

\n
$$
a_{y_2} = |U| + |W| + 1 - 2d = 1 + 3d - 2 + 1 - 2d = d = a + d, \quad y_2 \in Y_2,
$$

\n
$$
a_{z_1} = |U| + |V| + 1 - 0 = 1 + 2d - 2 + 1 = 2d = a + 2d, \quad z_1 \in Z_1,
$$

and

$$
a_{z_2} = |U| + |V| + (1 + d) - 0 = 1 + 2d - 2 + 1 + d = 3d = a + 3d, \qquad z_2 \in Z_2.
$$

Therefore, the score set of $D(U, V, W)$ is $A = \{a, a+d, a+2d, a+3d\}.$

Finally, assume that $a > 0$. Construct an oriented 3-partite graph $D(U, V, W)$ as follows. Let

$$
U = X_1, V = Y_1 \cup Y_2, W = Z_1, Y_1 \cap Y_2 = \emptyset, |X_1| = |Y_1| = d, |Y_2| = |Z_1| = a.
$$

Let $Y_1 \rightarrow X_1$, and $Z_1 \rightarrow X_1$, so that we get the oriented 3-partite graph $D(U, V, W)$ with

$$
|U| = |X_1| = d, |V| = |Y_1| + |Y_2| = d + a = a + d, |W| = |Z_1| = a,
$$

and the scores of vertices

$$
a_{x_1} = |V| + |W| + 0 - (d+a) = a + d + a - d - a = a, \quad x_1 \in X_1,
$$

\n
$$
a_{y_1} = |U| + |W| + d - 0 = d + a + d = a + 2d, \quad y_1 \in Y_1,
$$

\n
$$
a_{y_2} = |U| + |W| + 0 - 0 = d + a = a + d, \quad y_2 \in Y_2,
$$

and

$$
a_{z_1} = |U| + |V| + d - 0 = d + a + d + d = a + 3d, \quad z_1 \in Z_1.
$$

Therefore, the score set of $D(U, V, W)$ is $A = \{a, a+d, a+2d, a+3d\}.$

Finally, we have the following main result.

Theorem 2.5. *Let a*₁ *be a non-negative integer,* a_i *(2 ≤ <i>i* ≤ *n* − 1) *be even positive integers and* a_n *be any positive integer. Then for n* \geq 3, there exists an oriented 3-partite graph with the *score set A* = $\sqrt{ }$ *a*1*,* $\sum_{i=1}^{2}$ *ai,*··· *, n* ∑ *i*=1 *ai* \mathcal{L} *, except when* $A = \{0, 2, 3\}$ *.*

Proof. For $2 \le i \le n-1$, let $a_i = 2r_i$ where $r_i \ge 1$.

First assume that $a_1 = 0$ and $n = 3$. For $a_2 = 2$, $a_3 = 2$, consider an oriented 3-partite graph $D(U, V, W)$ with $|U| = |V| = |W| = 1$, and $V \to U$ and $W \to U, V$. Then, the scores of the vertices of $D(U, V, W)$ are

$$
a_u = |V| + |W| + 0 - 2 = 1 + 1 - 2 = 0 = a_1, u \in U,
$$

\n
$$
a_v = |U| + |W| + 1 - 1 = 1 + 1 = 2 = a_1 + a_2, v \in V,
$$

and

$$
a_w = |U| + |V| + 2 - 0 = 1 + 1 + 2 = 4 = a_1 + a_2 + a_3, \quad w \in W.
$$

Therefore, the score set of $D(U, V, W)$ is $A = \{a_1, a_1 + a_2, a_1 + a_2 + a_3\}.$

For $a_2 \geq 2$, $a_3 > 2$, construct an oriented 3-partite graph $D(U, V, W)$ as follows. Let

$$
U=X_1, V=Y_1\cup Y_2, W=Z_1, Y_1\cap Y_2=\emptyset, |X_1|=r_2, |Y_1|=1, |Y_2|=a_3-2, |Z_1|=a_3.
$$

Let $Y_1 \rightarrow X_1$; $Y_2 \rightarrow X_1$, and $Z_1 \rightarrow X_1$, Y_1 , so that we get the oriented 3-partite graph $D(U, V, W)$ with

$$
|U| = |X_1| = r_2, |V| = |Y_1| + |Y_2| = 1 + a_3 - 2 = a_3 - 1, |W| = |Z_1| = a_3,
$$

and the scores of vertices

$$
a_{x_1} = |V| + |W| + 0 - (|Y_1| + |Y_2| + |Z_1|) = a_3 - 1 + a_3 - (1 + a_3 - 2 + a_3) = 0 = a_1, \quad x_1 \in X_1,
$$

\n
$$
a_{y_1} = |U| + |W| + |X_1| - |Z_1| = r_2 + a_3 + r_2 - a_3 = 2r_2 = a_1 + a_2, \quad y_1 \in Y_1,
$$

\n
$$
a_{y_2} = |U| + |W| + |X_1| - 0 = r_2 + a_3 + r_2 = 2r_2 + a_3 = a_1 + a_2 + a_3, \quad y_2 \in Y_2,
$$

and

$$
a_{z_1} = |U| + |V| + (|X_1| + |Y_1|) - 0 = r_2 + a_3 - 1 + r_2 + 1 = 2r_2 + a_3 = a_1 + a_2 + a_3, \qquad z_1 \in Z_1.
$$

Therefore, the score set of $D(U, V, W)$ is $A = \{a_1, a_1 + a_2, a_1 + a_2 + a_3\}.$

Now, let $a_1 = 0$ and $n \geq 4$. Construct an oriented 3-partite graph $D(U, V, W)$ as follows. Let

$$
U = X \cup X_1 \cup X_2 \cup \cdots \cup X_{n-3},
$$

\n
$$
V = Y,
$$

\n
$$
W = Z \cup Z_1 \cup Z_2 \cup \cdots \cup Z_{n-3},
$$

with $X \cap X_i = \emptyset$, $X_i \cap X_j = \emptyset$, $Z \cap Z_i = \emptyset$, $Z_i \cap Z_j = \emptyset$ $(i \neq j)$, $|X| = |Z| = r_2$, $|Y| = r_3$, $|X_i| = |Z_i| = r_3$ *r*_{*i*+3} for all *i*, where $1 \le i \le n-4$, $|X_{n-3}| = |Z_{n-3}| = a_n$.

Let $X_i \to Y, Z, Z_1, Z_2, \cdots, Z_i$ for all i, where $1 \le i \le n-4$; $X_{n-3} \to Y, Z, Z_1, Z_2, \cdots, Z_{n-4}$; $Y \to Z_n$ $X; Z \to Y, X$, and $Z_i \to Y, X, X_1, X_2, \cdots, X_{i-1}$ for all i, where $1 \le i \le n-3$, so that we get the oriented 3-partite graph $D(U, V, W)$ with

$$
|U| = |X| + \sum_{i=1}^{n-3} |X_i| = |Z| + \sum_{i=1}^{n-3} |Z_i| = |W| = r_2 + \sum_{i=1}^{n-4} r_{i+2} + a_n, |V| = |Y| = r_3,
$$

and the scores of vertices

$$
a_x = |V| + |W| + 0 - \left(|Y| + |Z| + \sum_{i=1}^{n-4} |Z_i| + |Z_{n-3}|\right)
$$

= $r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n - \left(r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n\right)$
= $0 = a_1, \quad x \in X, \quad 1 \le i \le n-4,$

$$
a_{x_i} = |V| + |W| + (|Y| + |Z| + \sum_{j=1}^{i} |Z_j|) - (\sum_{j=i+1}^{n-4} |j| + |Z_{n-3}|)
$$

\n
$$
= r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_3 + r_2 + \sum_{j=1}^{i} r_{j+3} - (\sum_{i=1}^{n-4} r_{i+3} + a_n)
$$

\n
$$
= 2r_2 + 2r_3 + (r_4 + r_3 + \dots + r_{i+3} + r_{i+4} + \dots + r_{n-1})
$$

\n
$$
+ (r_4 + r_5 + \dots + r_{i+3}) - (r_{i+4} + r_{i+5} + \dots + r_{n-1})
$$

\n
$$
= 2r_2 + 2r_3 + 2r_4 + 2r_5 + \dots + 2r_{i+3}
$$

\n
$$
= a_1 + a_2 + a_3 + \dots + a_{i+3}, x_i \in X_i,
$$

\n
$$
a_{x_{n-3}} = |V| + |W| + (|Y| + |Z| + \sum_{i=1}^{n-4} |Z_i|) - 0
$$

\n
$$
= r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3}
$$

\n
$$
= 2r_2 + 2r_3 + 2 \sum_{i=1}^{n-4} r_{i+3} + a_n
$$

\n
$$
= a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n, x_{n-3} \in X_{n-3},
$$

\n
$$
a_y = |U| + |W| + |X| - (\sum_{i=1}^{n-4} |X_i| + |X_{n-3}| + |Z| + \sum_{i=1}^{n-4} |Z_i| + |Z_{n-3}|)
$$

\n
$$
= r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_2
$$

\n
$$
= 2r_2 = a_1 + a_2, y \in
$$

for $1 \leq i \leq n-4$

$$
a_{z_i} = |U| + |V| + \left(|Y| + |X| + \sum_{j=2}^i |X_{j-1}|\right) - \left(\sum_{j=1}^{n-4} |X_j| + |X_{n-3}|\right)
$$

\n
$$
= r_2 + \sum_{j=1}^{n-4} r_{i+3} + a_n + r_3 + r_3 + r_2 + \sum_{j=2}^i r_{j+2} - \left(\sum_{j=1}^{n-4} r_{j+3} + a_n\right)
$$

\n
$$
= 2r_2 + 2r_3 + (r_4 + r_5 + \dots + r_{i+2} + r_{i+3} + \dots + r_{n-1}) + (r_4 + r_5 + \dots + r_{i+2}) - (r_{i+3} + r_{i+4} + \dots + r_{n-1})
$$

$$
= 2r_2 + 2r_3 + 2r_4 + 2r_5 + \cdots + 2r_{i+2}
$$

= $a_1 + a_2 + a_3 + \cdots + a_{i+2}, \quad z_i \in Z_i,$

and

$$
a_{z_{n-3}} = |U| + |V| + \left(|Y| + |X| + \sum_{j=1}^{n-4} |X_i|\right) - 0
$$

= $r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_3 + r_3 + r_2 + \sum_{j=2}^{i} r_{j+2} - \left(\sum_{j=1}^{n-4} r_{j+3} + a_n\right)$
= $2r_2 + 2r_3 + 2r_4 + \dots + 2r_{n-1} + a_n$
= $a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n, \quad z_{n-3} \in Z_{n-3}.$

Therefore, the score set of $D(U, V, W)$ is $A =$ $\sqrt{ }$ *a*1*,* $\sum_{i=1}^{2}$ $a_i, \cdots,$ *n* ∑ *i*=1 *ai* \mathcal{L}

Now, assume that $a_1 > 0$. Construct an oriented 3-partite graph $D(U, V, W)$ as follows. Let

.

$$
U = X,
$$

\n
$$
V = Y \cup Y_1 \cup Y_2 \cup \cdots \cup Y_{n-3} \cup Y_{n-2},
$$

\n
$$
W = Z \cup Z_1 \cup Z_2 \cup \cdots \cup Z_{n-3},
$$

with $Y \cap Y_i = \emptyset$, $Y_i \cap Y_j = \emptyset$, $Z \cap Z_i = \emptyset$, $Z_i \cap Z_j = \emptyset$ $(i \neq j)$, $|X| = a_1$, $|Y| = |Z| = r_2$, $|Y_i| = |Z_i| = r_{i+2}$ for all *i*, where $1 \le i \le n-3$, $|Y_{n-2}| = a_1 + a_n$.

Let $Y_1 \rightarrow Z, Z_1; Y_i \rightarrow Z, Z_1, Z_2, \cdots, Z_{i-1}$ for all *i*, where $2 \le i \le n-2; Z \rightarrow Y; Z_1 \rightarrow Y$, and $Z_i \rightarrow Y, Y_1, Y_2, \cdots, Y_i$ for all *i*, where $2 \le i \le n-3$, so that we get the oriented 3-partite graph $D(U, V, W)$ with

$$
|U| = |X| = a_1, |V| = |Y| + \sum_{i=1}^{n-2} |Y_i| = r_2 + \sum_{i=1}^{n-3} r_{i+2}a_1 + a_n,
$$

$$
|W| = |Z| + \sum_{i=1}^{n-3} |Z_i| = r_2 + \sum_{i=1}^{n-3} r_{i+2},
$$

and the scores of vertices

$$
a_x = |V| + |W| + 0 - 0 = r_2 + \sum_{i=1}^{n-3} r_{i+2} + a_1 + a_n + r_2 + \sum_{i=1}^{n-3} r_{i+2}
$$

\n
$$
= a_1 + 2r_2 + 2r_3 + \dots + 2r_{n-1} + a_n
$$

\n
$$
= a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n, \qquad x \in X,
$$

\n
$$
a_y = |U| + |W| + 0 - (|Z| + \sum_{i=1}^{n-3} |Z_i|)
$$

\n
$$
= a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} - (r_2 + \sum_{i=1}^{n-3} r_{i+2}) = a_1, \qquad y \in Y,
$$

$$
a_{y_1} = a_{y_2} = |U| + |W| + (|Z| + |Z_1|) - \sum_{i=2}^{n-3} |Z_i|
$$

= $a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + r_2 + r_3 - \sum_{i=2}^{n-3} r_{i+2} = a_1 + 2r_2 + 2r_3$
= $a_1 + a_2 + a_3, \quad y_1 \in Y_1, y_2 \in Y_2,$

for $3 \le i \le n-3$

$$
a_{y_1} = |U| + |W| + (|Z| + \sum_{j=2}^{i} |Z_{j-1}|) - \sum_{j=i}^{n-3} |Z_j|
$$

\n
$$
= a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + r_2 + \sum_{j=2}^{i} r_{j+1} - \sum_{j=i}^{n-3} r_{j+2}
$$

\n
$$
= a_1 + 2r_2 + (r_3 + r_4 + \dots + r_{i+1} + r_{i+2} + \dots + r_{n-1})
$$

\n
$$
+ (r_3 + r_4 + \dots + r_{i+1}) - (r_{i+2} + r_{i+3} + \dots + r_{n-1})
$$

\n
$$
= a_1 + 2r_2 + 2r_3 + 2r_4 + \dots + 2r_{i+1}
$$

\n
$$
= a_1 + 2r_2 + 2r_3 + 2r_4 + \dots + 2r_{i+1}
$$

\n
$$
a_{y_{n-2}} = |U| + |W| + (|Z| + \sum_{j=2}^{n-2} |Z_{j-1}|) - 0
$$

\n
$$
= a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + r_2 + \sum_{j=2}^{n-2} r_{j+1}
$$

\n
$$
= a_1 + 2r_2 + 2r_3 + 2r_4 + \dots + 2r_{n-1}
$$

\n
$$
= a_1 + a_2 + a_3 + \dots + a_{n-1}, y_{n-2} \in Y_{n-2},
$$

\n
$$
a_z = a_{z_1} = |U| + |V| + |Y| - \sum_{i=1}^{n-2} |Y_i|
$$

\n
$$
= a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + a_1 + a_n + r_2 - \sum_{i=1}^{n-3} r_{i+2} + a_1 + a_n
$$

\n
$$
= a_1 + 2r_2 = a_1 + a_2, z \in Z, z_1 \in Z_1,
$$

and for $2 \le i \le n-3$

$$
a_{z_i} = |U| + |V| + |Y| + \sum_{j=1}^{i} |Y_j| - \sum_{j=i+1}^{n-2} |Y_j|
$$

\n
$$
= a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + a_1 + a_n + r_2
$$

\n
$$
+ \sum_{j=1}^{i} r_{j+2} - \left(\sum_{j=i+1}^{n-2} r_{j+2} + a_1 + a_n\right)
$$

\n
$$
= a_1 + 2r_2 + (r_3 + r_4 + \dots + r_{i+2} + r_{i+3} + \dots + r_{n-1})
$$

\n
$$
+ (r_3 + r_4 + \dots + r_{i+2}) - (r_{i+3} + r_{i+4} + \dots + r_{n-1})
$$

\n
$$
= a_1 + 2r_2 + 2r_3 + 2r_4 + \dots + 2r_{i+2}
$$

\n
$$
= a_1 + a_2 + a_3 + \dots + a_{i+2}, \quad z_i \in Z_i.
$$

 $\big)$

Therefore, the score set of $D(U, V, W)$ is $A =$ $\sqrt{ }$ *a*1*,* $\sum_{i=1}^{2}$ *ai,*··· *, n* ∑ *i*=1 *ai* \mathcal{L} *.*

References

- [1] Avery, P., Score Sequences of Oriented Graphs, J. Graph Theory, 15:3(1991), 251-257.
- [2] Hager, M., On Score Sets for Tournaments, Discrete Mathematics, 58:1(1986), 25-34.
- [3] Pirzada, S. and Merajuddin, Score Lists of Oriented Tripartite Graphs, Novi Sad J. Math., 26:2(1996), 1-9.
- [4] Pirzada, S. and Naikoo, T. A., Score Sets in Oriented Graphs, Applicable Analysis and Discrete Mathematics, (2007) To appear.
- [5] Pirzada, S. and Naikoo, T. A., Score Sets in Tournaments, Vietnam J. Mathematics, 34:2(2006), 157-161.
- [6] Pirzada, S., Merajuddin, and Yin, J., On the Scores of Oriented Bipartite Graphs, J. Mathematical Study, 33:4(2000), 354-359.
- [7] Pirzada, S., Naikoo, T. A. and Chishti, T. A., Score Sets in Oriented Bipartite Graphs, Novi Sad J. Mathematics, 36:1(2006), 35-45.
- [8] Reid, K. B., Score Sets for Tournaments, Congressus Numerantium XXI, Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, (1978), 607-618.
- [9] Yao, T. X., Reid's Conjecture on Score Sets in Tournaments (in Chinese), Kexue Tongbao, 33(1988), 481-484.
- [10] Yao, T. X., On Reid's Conjecture of Score Sets for Tournaments, Chinese Sci. Bull., 34 (1989), 804-808.

S. Pirzada Department of Mathematics University of Kashmir, Srinagar-190006 India

E-mail: sdpirzada@yahoo.co.in

Merajuddin Department of Applied Mathematics F/O Engineering and Tech., A.M.U. Aligarh, India

E-mail: meraj1957@rediffmail.com

T. A. Naikoo Department of Mathematics University of Kashmir, Srinagar-190006 India

E-mail: tariqnaikoo@rediffmail.com