SCORE SETS IN ORIENTED 3-PARTITE GRAPHS

S. Pirzada (University of Kashmir, India) Merajuddin (F/O Engineering and Tech., India) T. A. Naikoo (University of Kashmir, India.)

Received Dec. 26, 2006, Revised Oct. 6, 2007

Abstract. Let D(U, V, W) be an oriented 3-partite graph with |U| = p, |V| = q and |W| = r. For any vertex x in D(U, V, W), let d_x^+ and d_x^- be the outdegree and indegree of x respectively. Define a_{u_i} (or simply a_i) = $q + r + d_{u_i}^+ - d_{u_i}^-, b_{v_j}$ (or simply b_j) = $p + r + d^+v_j - d_{v_j}^$ and c_{w_k} (or simply c_k) = $p + q + d_{w_k}^+ - d_{w_k}^-$ as the scores of u_i in U, v_j in V and w_k in Wrespectively. The set A of distinct scores of the vertices of D(U, V, W) is called its score set. In this paper, we prove that if a_1 is a non-negative integer, $a_i(2 \le i \le n-1)$ are even positive integers and a_n is any positive integer, then for $n \ge 3$, there exists an oriented 3-partite

graph with the score set $A = \left\{a_1, \sum_{i=1}^{2} a_i, \dots, \sum_{i=1}^{n} a_i\right\}$, except when $A = \{0, 2, 3\}$. Some more results for score sets in oriented 3-partite graphs are obtained.

Key words: oriented graph, oriented 3-partite graph, tournament score set AMS (2000) subject classification: 05C20

1 Introduction

An oriented graph is a digraph with no symmetric pairs of directed arcs and without loops. Let D be an oriented graph with the vertex set $V = \{v_1, v_2, \dots, v_p\}$, and let d_v^+ and d_v^- denote the outdegree and indegree of the vertex v respectively. Avery [1] defined a_i (or simply a_i) = $p-1+d_{v_i}^+-d_{v_i}^-$, the score of v_i , so $0 \le a_{v_i} \le 2p-2$. The sequence $[a_1,a_2,\cdots,a_p]$ in nondecreasing order is called the score sequence of D.

Avery obtained the following criterion for score sequences in oriented graphs.

Theorem 1.1 ^[1]. A non-decreasing sequence of non-negative integers $[a_1, a_2, \dots, a_p]$ is the score sequence of an oriented graph if and only if

$$\sum_{i=1}^{k} a_i \ge k(k-1), \quad for \quad 1 \le k \le p_i$$

with equality when k = p.

The set A of distinct scores of the vertices of an oriented graph D is called its score set. Pirzada and Naikoo^[4] obtained the following results.

Theorem 1.2 ^[4]. Let $A = \{a, ad, ad^2, \dots, ad^n\}$, where a and d are positive integers with d > 1. Then there exists an oriented graph with the score set A, except for a = 1, d = 2, n > 0and for a = 1, d = 3, n > 0.

Theorem 1.3 ^[4]. If a_1, a_2, \dots, a_n are non-negative integers with $a_1 < a_2 < \dots < a_n$. Then there exists an oriented graph with the score set $A = \{d_1, d_2, \dots, d_n\}$, where

$$a'_{i} = \begin{cases} a_{i-1} + a_{i} + 1, & for \quad i > 1, \\ a_{i}, & for \quad i = 1. \end{cases}$$

Various results regarding score sets in complete oriented graphs (tournaments) can be found in [2, 5, 8, 9, 10].

An oriented bipartite graph is the result of assigning a direction to each edge of a simple bipartite graph. Suppose $U = \{u_1, u_2, \dots, u_p\}$ and $V = \{v_1, v_2, \dots, v_q\}$ be the parts of an oriented bipartite graph D(U,V). For any vertex x in D(U,V), let d_x^+ and d_x^- be the outdegree and indegree of x respectively. Define a_{u_i} (or simply a_i) = $q + d_{u_i}^+ - d_{u_i}^-$ and b_{v_j} (or simply b_j) = $p + d_{v_j}^+ - d_{v_j}^-$ as the scores of u_i in U and v_j in V respectively. Clearly, $0 \le a_{u_i} \le 2q$ and $0 \le b_{v_j} \le 2p$. The sequences $[a_1, a_2, \dots, a_p]$ and $[b_1, b_2, \dots, b_q]$ in non-decreasing order are called the score sequences of D(U,V).

The following result due to Pirzada, Merajuddin and Yin^[6] is the bipartite version of Theorem 1.1.

Theorem 1.4 ^[6]. Two non-decreasing sequences $[a_1, a_2, \dots, a_p]$ and $[b_1, b_2, \dots, b_q]$ of nonnegative integers are the score sequences of some oriented bipartite graph if and only if

$$\sum_{i=1}^{l} a_i + \sum_{j=1}^{m} b_j \ge 2lm, \quad 1 \le l \le p, \quad 1 \le m \le q,$$

with equality when l = p and m = q.

The set *A* of distinct scores of the vertices of an oriented bipartite graph D(U,V) is called its score set. In [7], Pirzada, Naikoo and Chishti proved that every set *A* of positive integers is the score set of an oriented bipartite graph when |A| = 1, 2, 3 or when *A* is a geometric or arithmetic progression.

An oriented 3-partite graph is the result of assigning a direction to each edge of a simple 3-partite graph. Suppose $U = \{u_1, u_2, \dots, u_p\}, V = \{v_1, v_2, \dots, v_q\}$ and $W = \{w_1, w_2, \dots, w_r\}$ be the parts of an oriented 3-partite graph D(U, V, W). For any vertex x in D(U, V, W), let d_x^+ and d_x^- be the outdegree and indegree of x respectively. Define a_{u_i} (or simply a_i) = $q + r + d_{u_i}^+ - d_{u_i}^-, b_{v_j}$ (or simply b_j) = $p + r + d_{v_j}^+ - d_{v_j}^-$ and c_{w_k} (or simply c_k) = $p + q + d_{w_k}^+ - d_{w_k}^-$ as the scores of u_i in U, v_j in V and w_k in W respectively. Clearly, $0 \le a_{u_i} \le 2(q + r), 0 \le b_{v_j} \le 2(p + r)$ and $0 \le c_{w_k} \le 2(p + q)$. The sequences $[a_1, a_2, \dots, a_p], [b_1, b_2, \dots, b_q]$ and $[c_1, c_2, \dots, c_r]$ in non-decreasing order are called the score sequences of D(U, V, W).

The next result is the 3-partite version of Theorem 1.1 given by Pirzada, and Merajuddin³.

Theorem 1.5 ^[3]. Three non-decreasing sequences $[a_1, a_2, \dots, a_p]$, $[b_1, b_2, \dots, b_q]$ and $[c_1, c_2, \dots, c_r]$ of non-negative integers are the score sequences of some oriented 3-partite graph if and only if

$$\sum_{i=1}^{l} a_i + \sum_{j=1}^{m} b_j + \sum_{k=1}^{n} c_k \ge 2(lm + mn + nl), \quad 1 \le l \le p, 1 \le m \le q, \quad 1 \le n \le r,$$

with equality when l = p, m = q and n = r.

The set *A* of distinct scores of the vertices of an oriented 3-partite graph D(U,V,W) is called its score set.

For any nonempty vertex sets *X* and *Y*, $X \to Y$ means that each vertex of *X* dominates every vertex of *Y*. Also for any two vertices *x* and *y*, $x \to y$ means that there is an arc from *x* to *y*, and $x \uparrow y$ or $y \uparrow x$ means that neither $x \to y$ nor $y \to x$.

2 Results

We give the following results.

Theorem 2.1. Every singleton set of positive integer, except $\{1\}$, is the score set of some oriented 3-partite graph.

Proof. Let $A = \{a\}$, where a > 1 is a positive integer.

There are the following three cases:

(i) a = 2r where $r \ge 1$, (ii) a = 4r - 1 where $r \ge 1$, (iii) a = 4r - 3 where $r \ge 2$.

Now we give the proofs.

(i) a = 2r where $r \ge 1$.

Consider an oriented 3-partite graph D(U,V,W) with |U| = |V| = |W| = r, and $U \to V; V \to W$, and $W \to U$. Then the scores of the vertices of D(U,V,W) are

$$a_u = a_v = a_w = |V| + |W| + r - r = r + r = 2r = a$$

for all $u \in U, v \in V, w \in W$.

Therefore, the score set of D(U, V, W) is $A = \{a\}$.

(ii) a = 4r - 1 where $r \ge 1$.

Consider an oriented 3-partite graph D(U, V, W) with $U = \{u_1, u_2, \dots, u_{6r^2 - 2r}\}, V = \{v_1, v_2, \dots, v_r\}$ and $W = \{v_{r+1}, v_{r+2}, \dots, v_{2r}\}$ in which

$$u_{i+j} \rightarrow v_1, v_2, \cdots, v_{i-1}, v_{i+1}, \cdots, v_{2r}$$
 for all i, j

where $1 \le i \le 2r, j \in \{0, 2r, 4r, \dots, 6r^2 - 4r\} = S$ so that |S| = 3r - 1. Then the scores of the vertices of D(U, V, W) are

$$\begin{aligned} a_{u_{i+j}} &= |V| + |W| + \sum_{g=1 \atop g \neq i}^{2r} |v_g| - 0 = r + r_g + \sum_{g=1 \atop g \neq i}^{2r} 1 \\ &= 2r + (2r-1) = 4r - 1 = a \end{aligned}$$

for all $u_{i+j} \in U$, where $1 \le i \le 2r, j \in S$ and

$$\begin{aligned} a_{v_g} &= |U| + |W| + 0 - \sum_{\substack{i=1\\i\neq g}}^{2r} \sum_{j\in S} |u_{i+j}| \\ &= 6r^2 - 2r + r - \sum_{\substack{i=1\\i\neq g}}^{2r} \sum_{j\in S} 1 = 6r^2 - r - \sum_{\substack{i=1\\i\neq g}}^{2r} (3r-1) \\ &= 6r^2 - r - (3r-1) \sum_{\substack{i=1\\i\neq g}}^{2r} 1 = 6r^2 - r - (3r-1)(2r-1) \\ &= 4r - 1 = a \end{aligned}$$

for all $v_g \in V \cup W$, where $1 \le g \le 2r$.

Therefore, the score set of D(U, V, W) is $A = \{a\}$.

(iii) a = 4r - 3 where $r \ge 2$.

Consider an oriented 3-partite graph D(U, V, W) with $U = \{u_1, u_2, \dots, u_{2r^2-2r}\}, V = \{v_1, v_2, \dots, v_r\}$ and $W = \{v_{r+1}, v_{r+2}, \dots, v_{2r}\}$ in which

$$u_{i+j} \rightarrow v_1, v_2, \cdots, v_{i-1}, v_{i+3}, \cdots, v_{2r}, \qquad i, \quad j$$

where $1 \le i \le 2r, j \in \{0, 2r, 4r, \dots, 2r^2 - 4r\} = T$ so that |T| = r - 1. Then the scores of the vertices of D(U, V, W) are

$$a_{u_{i+j}} = |V| + |W| + \sum_{\substack{g=1\\g\neq i, i+1, i+2}}^{2r} |v_g| - 0$$

= $r + r + \left(\sum_{g=1}^{2r} |v_g|\right) - (|v_i| + v_{i+1}| + |v_{i+2}|) = 2r + \left(\sum_{g=1}^{2r} 1\right) - 3$
= $2r + 2r - 3a$

for all $u_{i+j} \in U$, where $1 \le i \le 2r, j \in T$. Note that v_{2r+1} and v_{2r+2} are treated v_1 and v_2 respectively, and

$$\begin{aligned} a_{v_g} &= |U| + |W| + 0 - \sum_{\substack{i=1\\i \neq g-2, g-1, g}}^{2r} \sum_{j \in T} |u_{i+j}| \\ &= 2r^2 - 2r + r - \sum_{\substack{i=1\\i \neq g-2, g-1, g}}^{2r} \sum_{j \in T} 1 = 2r^2 - r - \sum_{\substack{i=1\\i \neq g-2, g-1, g}}^{2r} (r-1) \\ &= 2r^2 - r - (r-1) \sum_{\substack{i=1\\i \neq g-2, g-1, g}}^{2r} 1 \\ &= 2r^2 - r - (r-1)(\sum_{i=1}^{2r} 1 - (|u_{g-2}| + |u_{g-1}| + |v_g|)) \\ &= 2r^2 - r - (r-1)(2r-3) = 4r - 3 = a \end{aligned}$$

for all $v_g \in V \cup W$, where $1 \le g \le 2r$, and note that u_0 and u_{-1} are treated as u_{2r^2-2r} and u_{2r^2-2r-1} respectively. Therefore, the score set of D(U, V, W) is $A = \{a\}$.

Theorem 2.2. Let $A = \{a_1, a_2\}$, where $a_1 \ge 0$ is an even integer and a_2 is any positive integer such that $a_1 < a_2$. Then, there exists an oriented 3-partite graph with the score set A except for $a_1 = 0, a_2 = 1, 2$.

Proof. First assume that $a_1 = 0$ and $a_2 > 2$ so that $a_2 - 2 > 0$. Consider an oriented 3-partite graph D(U,V,W) with |U| = 1, $|V| = |W| = a_2 - 2$, and $V \to U$ and $W \to U$. Then, the scores of the vertices of D(U,V,W) are

$$\begin{array}{rcl} a_u &=& |V|+|W|+0-(a_2-2+a_2-2)=a_2-2+a_2-2-a_2+2-a_2+2\\ &=& 0=a_1, \quad u\in U,\\ a_v &=& |U|+|W|+1-0=1+a_2-2+1=a_2, \qquad v\in V, \end{array}$$

and

$$a_w = |U| + |V| + 1 - 0 = 1 + a_2 - 2 + 1 = a_2, \qquad w \in W.$$

Therefore, the score set of D(U,V,W) is $A = \{a_1, a_2\}$.

Now, assume $a_1 = 2r$ where $r \ge 1$. Since $a_1 < a_2$, then $a_2 - a_1 > 0$. Construct an oriented 3-partite graph D(U, V, W) as follows.

Let

$$U = X_1, V = Y_1 \cup Y_2, W = Z_1, Y_1 \cap Y_2 = \varphi, |X_1| = |Y_1| = |Z_1| = r, |Y_2| = a_2 - a_1.$$

Let $X_1 \to Y_1; Y_1 \to Z_1$, and $Z_1 \to X_1$, so that we get the oriented 3-partite graph D(U, V, W) with

$$|U| = |X_1| = r, |V| = |Y_1| + |Y_2| = r + a_2 - a_1, |W| = |Z_1| = r,$$

and the scores of vertices

$$\begin{array}{rcl} a_{x_1} &=& |V|+|W|+r-r=r+a_2-a_1+r=2r+a_2-a_1\\ &=& a_1+a_2-a_1=a_2, \quad x_1\in X_1,\\ a_{y_1} &=& |U|+|W|+r-r=r+r=2r=a_1, \quad y_1\in Y_1,\\ a_{y_2} &=& |U|+|W|+0-0=r+r+2r=a_1, \quad y_2\in Y_2, \end{array}$$

and

$$a_{z_1} = |U| + |V| + r - r = r + r + a_2 - a_1 = 2r + a_2 - a_1$$

= $a_1 + a_2 - a_1 = a_2, \quad z_1 \in Z_1.$

Therefore, the score set of D(U, V, W) is $A = \{a_1, a_2\}$.

The following result shows that every set of three non-negative integers in arithmetic progression, except $\{0, 1, 2\}$, is a score set of some oriented 3-partite graph.

Theorem 2.3. Let $A = \{a, a + d, a + 2d\}$, where *a* and *d* are non-negative integers with d > 0. Then there exists an oriented 3-partite graph with the score set A, except for a = 0, d = 1.

Proof. First assume that a = 0 and d = 2. Consider an oriented 3-partite graph D(U, V, W) with |U| = |V| = |W| = 1, and $V \to U$ and $W \to U, V$. Then the scores of the vertices of D(U, V, W) are

$$\begin{array}{rcl} a_u & = & |V|+|W|+0-2+1+1-2=0=a, & u\in U, \\ a_v & = & |U|+|W|+1-1+1+1=2=a+d, & v\in V, \end{array}$$

and

$$a_w = |U| + |V| + 2 - 0 = 1 + 1 + 2 = 4 = a + 2d, \ w \in W$$

Therefore, the score set of D(U, V, W) is $A = \{a, a+d, a+2d\}$.

Now, assume that a = 0 and d > 2 so that d - 2 > 0. Consider an oriented 3-partite graph D(U,V,W) with |U| = 1, |V| = d - 2, |W| = 2d - 2, and $V \to U$ and $W \to U, V$. Then the scores of the vertices of D(U,V,W) are

$$\begin{array}{rcl} a_u & = & |V| + |W| + 0 - (d - 2 + 2d - 2) = d - 2 + 2d - 2 - d + 2 - 2d + 2 \\ & = & 0 = a, \quad u \in U, \\ a_v & = & |U| + |W| + 1 - 0 = 1 + 2d - 2 + 1 = 2d = a + 2d, \quad v \in V, \end{array}$$

and

$$a_w = |U| + |V| + 1 - 0 = 1 + d - 2 + 1 = d = a + d, \quad w \in W.$$

Therefore, the score set of D(U, V, W) is $A = \{a, a+d, a+2d\}$.

Finally, assume that a > 0. Consider an oriented 3-partite graph D(U,V,W) with |U| = d, |V| = |W| = a, and $W \to U$. Then the scores of the vertices of D(U,V,W) are

$$\begin{array}{rcl} a_u & = & |V| + |W| + 0 - a = a + a - a = a, & u \in U, \\ a_v & = & |U| + |W| + 0 - 0 = d + a = a + d, & v \in V, \end{array}$$

and

$$a_w = |U| + |V| + d - 0 = d + a + d = a + 2d, \quad w \in W.$$

Therefore, the score set of D(U, V, W) is $A = \{a, a+d, a+2d\}$.

The next result shows that every set of four non-negative integers in arithmetic progression, except $\{0, 1, 2, 3\}$, is a score set of some oriented 3-partite graph.

Theorem 2.4. Let $A = \{a, a + d, a + 2d, a + 3d\}$, where a and d are non-negative integers with d > 0. Then there exists an oriented 3-partite graph with the score set A, except for a = 0, d = 1.

Proof. First assume that a = 0 and d = 2. Construct an oriented 3-partite graph D(U, V, W) as follows.

Let $U = X_1, V = Y_1 \cup Y_2, W = Z_1, Y_1 \cap Y_2 = \emptyset, |X_1| = |Y_1| = |Y_2| = 1, |Z_1| = 2$. Let $Y_1 \to X_1, Z_1; Y_2 \to X_1$, and $Z_1 \to X_1, Y_2$, so that we get the oriented 3-partite graph D(U, V, W) with

$$U| = |X_1| = 1, |V| = |Y_1| + |Y_2| = 1 + 1 = 2, |W| = |Z_1| = 2,$$

and the scores of vertices

$$\begin{array}{rcl} a_{x_1} & = & |V|+|W|+0-4 = 2+2-4 = 0 = a, & x_1 \in X_1, \\ a_{y_1} & = & |U|+|W|+3-0 = 1+2+3 = 6 = a+3d, & y_1 \in Y_1, \\ a_{y_2} & = & |U|+|W|+1-2 = 1+2-1 = 2 = a+d, & y_2 \in Y_2, \end{array}$$

and

$$a_{z_1} = |U| + |V| + 2 - 1 = 1 + 2 + 1 = 4 = a + 2d, \quad z_1 \in Z_1.$$

Therefore, the score set of D(U,V,W) is $A = \{a, a+d, a+2d, a+3d\}$.

Now, assume that a = 0 and d > 2 so that d - 2 > 0. Construct an oriented 3-partite graph D(U,V,W) as follows.

Let

$$U = X_1, V = Y_1 \cup Y_2, W = Z_1 \cup Z_2, Y_1 \cap Y_2 = \emptyset, Z_1 \cap Z_2 = \emptyset, |X_1| = 1, |Y_1| = |Z_1| = d - 2, |Y_2| = d, |Z_2| = 2d.$$

Let $Y_1 \to X_1; Y_2 \to X_1; Z_1 \to X_1$, and $Z_2 \to X_1, Y_2$, so that we get the oriented 3-partite graph D(U, V, W) with

$$\begin{aligned} |U| &= |X_1| = 1, \ |V| = |Y_1| + |Y_2| = d - 2 + d = 2d - 2, \\ |W| &= |Z_1| + |Z_2| = d - 2 + 2d = 3d - 2, \end{aligned}$$

and the scores of vertices

$$\begin{array}{rcl} a_{x_1} &=& |V|+|W|+0-(d-2+d+2d+d-2) \\ &=& 2d-2+3d-2-5d+4=0=a, \quad x_1\in X_1, \\ a_{y_1} &=& |U|+|W|+1-0=1+3d-2+1=3d=a+3d, \quad y_1\in Y_1, \\ a_{y_2} &=& |U|+|W|+1-2d=1+3d-2+1-2d=d=a+d, \quad y_2\in Y_2, \\ a_{z_1} &=& |U|+|V|+1-0=1+2d-2+1=2d=a+2d, \quad z_1\in Z_1, \end{array}$$

and

$$a_{z_2} = |U| + |V| + (1+d) - 0 = 1 + 2d - 2 + 1 + d = 3d = a + 3d, \qquad z_2 \in Z_2.$$

Therefore, the score set of D(U,V,W) is $A = \{a, a+d, a+2d, a+3d\}$.

Finally, assume that a > 0. Construct an oriented 3-partite graph D(U, V, W) as follows. Let

$$U = X_1, V = Y_1 \cup Y_2, W = Z_1, Y_1 \cap Y_2 = \emptyset, |X_1| = |Y_1| = d, |Y_2| = |Z_1| = a.$$

Let $Y_1 \to X_1$, and $Z_1 \to X_1$, so that we get the oriented 3-partite graph D(U, V, W) with

$$|U| = |X_1| = d$$
, $|V| = |Y_1| + |Y_2| = d + a = a + d$, $|W| = |Z_1| = a$

and the scores of vertices

$$\begin{array}{rcl} a_{x_1} & = & |V| + |W| + 0 - (d+a) = a + d + a - d - a = a, & x_1 \in X_1, \\ a_{y_1} & = & |U| + |W| + d - 0 = d + a + d = a + 2d, & y_1 \in Y_1, \\ a_{y_2} & = & |U| + |W| + 0 - 0 = d + a = a + d, & y_2 \in Y_2, \end{array}$$

and

$$a_{z_1} = |U| + |V| + d - 0 = d + a + d + d = a + 3d, \quad z_1 \in Z_1.$$

Therefore, the score set of D(U,V,W) is $A = \{a, a+d, a+2d, a+3d\}$.

Finally, we have the following main result.

Theorem 2.5. Let a_1 be a non-negative integer, a_i $(2 \le i \le n-1)$ be even positive integers and a_n be any positive integer. Then for $n \ge 3$, there exists an oriented 3-partite graph with the score set $A = \left\{a_1, \sum_{i=1}^2 a_i, \dots, \sum_{i=1}^n a_i\right\}$, except when $A = \{0, 2, 3\}$.

Proof. For $2 \le i \le n-1$, let $a_i = 2r_i$ where $r_i \ge 1$.

First assume that $a_1 = 0$ and n = 3. For $a_2 = 2, a_3 = 2$, consider an oriented 3-partite graph D(U,V,W) with |U| = |V| = |W| = 1, and $V \to U$ and $W \to U, V$. Then, the scores of the vertices of D(U,V,W) are

$$a_u = |V| + |W| + 0 - 2 = 1 + 1 - 2 = 0 = a_1, \quad u \in U,$$

$$a_v = |U| + |W| + 1 - 1 = 1 + 1 = 2 = a_1 + a_2, \quad v \in V,$$

and

$$a_w = |U| + |V| + 2 - 0 = 1 + 1 + 2 = 4 = a_1 + a_2 + a_3, w \in W.$$

Therefore, the score set of D(U, V, W) is $A = \{a_1, a_1 + a_2, a_1 + a_2 + a_3\}$.

For $a_2 \ge 2, a_3 > 2$, construct an oriented 3-partite graph D(U, V, W) as follows. Let

$$U = X_1, V = Y_1 \cup Y_2, W = Z_1, Y_1 \cap Y_2 = \emptyset, |X_1| = r_2, |Y_1| = 1, |Y_2| = a_3 - 2, |Z_1| = a_3.$$

Let $Y_1 \to X_1$; $Y_2 \to X_1$, and $Z_1 \to X_1$, Y_1 , so that we get the oriented 3-partite graph D(U, V, W) with

$$|U| = |X_1| = r_2, |V| = |Y_1| + |Y_2| = 1 + a_3 - 2 = a_3 - 1, |W| = |Z_1| = a_3,$$

and the scores of vertices

$$\begin{array}{rcl} a_{x_1} & = & |V| + |W| + 0 - (|Y_1| + |Y_2| + |Z_1|) = a_3 - 1 + a_3 - (1 + a_3 - 2 + a_3) = 0 = a_1, & x_1 \in X_1, \\ a_{y_1} & = & |U| + |W| + |X_1| - |Z_1| = r_2 + a_3 + r_2 - a_3 = 2r_2 = a_1 + a_2, & y_1 \in Y_1, \\ a_{y_2} & = & |U| + |W| + |X_1| - 0 = r_2 + a_3 + r_2 = 2r_2 + a_3 = a_1 + a_2 + a_3, & y_2 \in Y_2, \end{array}$$

and

$$a_{z_1} = |U| + |V| + (|X_1| + |Y_1|) - 0 = r_2 + a_3 - 1 + r_2 + 1 = 2r_2 + a_3 = a_1 + a_2 + a_3, \qquad z_1 \in Z_1.$$

Therefore, the score set of D(U, V, W) is $A = \{a_1, a_1 + a_2, a_1 + a_2 + a_3\}$.

Now, let $a_1 = 0$ and $n \ge 4$. Construct an oriented 3-partite graph D(U, V, W) as follows. Let

$$U = X \cup X_1 \cup X_2 \cup \cdots \cup X_{n-3},$$

$$V = Y,$$

$$W = Z \cup Z_1 \cup Z_2 \cup \cdots \cup Z_{n-3},$$

with $X \cap X_i = \emptyset, X_i \cap X_j = \emptyset, Z \cap Z_i = \emptyset, Z_i \cap Z_j = \emptyset(i \neq j), |X| = |Z| = r_2, |Y| = r_3, |X_i| = |Z_i| = r_{i+3}$ for all *i*, where $1 \le i \le n-4, |X_{n-3}| = |Z_{n-3}| = a_n$.

Let $X_i \to Y, Z, Z_1, Z_2, \dots, Z_i$ for all *i*, where $1 \le i \le n-4$; $X_{n-3} \to Y, Z, Z_1, Z_2, \dots, Z_{n-4}; Y \to X; Z \to Y, X$, and $Z_i \to Y, X, X_1, X_2, \dots, X_{i-1}$ for all *i*, where $1 \le i \le n-3$, so that we get the oriented 3-partite graph D(U, V, W) with

$$|U| = |X| + \sum_{i=1}^{n-3} |X_i| = |Z| + \sum_{i=1}^{n-3} |Z_i| = |W| = r_2 + \sum_{i=1}^{n-4} r_{i+2} + a_n, |V| = |Y| = r_3,$$

and the scores of vertices

$$a_x = |V| + |W| + 0 - \left(|Y| + |Z| + \sum_{i=1}^{n-4} |Z_i| + |Z_{n-3}|\right)$$

= $r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n - \left(r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n\right)$
= $0 = a_1, \quad x \in X, \qquad 1 \le i \le n-4,$

$$\begin{split} a_{x_i} &= |V| + |W| + \left(|Y| + |Z| + \sum_{j=1}^{i} |Z_j| \right) - \left(\sum_{j=i+1}^{n-4} |j| + |Z_{n-3}| \right) \\ &= r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_3 + r_2 + \sum_{j=1}^{i} r_{j+3} - \left(\sum_{i=1}^{n-4} r_{i+3} + a_n \right) \\ &= 2r_2 + 2r_3 + (r_4 + r_3 + \cdots + r_{i+3} + r_{i+4} + \cdots + r_{n-1}) \\ &+ (r_4 + r_5 + \cdots + r_{i+3}) - (r_{i+4} + r_{i+5} + \cdots + r_{n-1}) \\ &= 2r_2 + 2r_3 + 2r_4 + 2r_5 + \cdots + 2r_{i+3} \\ &= a_1 + a_2 + a_3 + \cdots + a_{i+3}, \quad x_i \in X_i, \\ a_{x_{n-3}} &= |V| + |W| + \left(|Y| + |Z| + \sum_{i=1}^{n-4} |Z_i| \right) - 0 \\ &= r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_3 + r_2 + \sum_{i=1}^{n-4} r_{i+3} \\ &= 2r_2 + 2r_3 + 2 \sum_{i=1}^{n-4} r_{i+3} + a_n \\ &= a_1 + a_2 + a_3 + \cdots + a_{n-1} + a_n, \quad x_{n-3} \in X_{n-3}, \\ a_y &= |U| + |W| + |X| - \left(\sum_{i=1}^{n-4} |X_i| + |X_{n-3}| + |Z| + \sum_{i=1}^{n-4} |Z_i| + |Z_{n-3}| \right) \\ &= r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_2 \\ &- \left(\sum_{i=1}^{n-4} r_{i+3} + a_n + r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_2 \right) \\ &= 2r_2 = a_1 + a_2, \quad y \in Y, \\ a_z &= |U| + |V| + (|Y| + |X|) - \left(\sum_{i=1}^{n-4} |X_i| + |X_{n-3}| \right) \\ &= r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_3 + r_3 + r_2 - \left(\sum_{i=1}^{n-4} r_{i+3} + a_n \right) \\ &= 2r_2 + 2r_3 = a_1 + a_2 + a_3, \quad z \in Z, \end{split}$$

for $1 \le i \le n-4$

$$a_{z_{i}} = |U| + |V| + \left(|Y| + |X| + \sum_{j=2}^{i} |X_{j-1}|\right) - \left(\sum_{j=1}^{n-4} |X_{j}| + |X_{n-3}|\right)$$

$$= r_{2} + \sum_{j=1}^{n-4} r_{i+3} + a_{n} + r_{3} + r_{3} + r_{2} + \sum_{j=2}^{i} r_{j+2} - \left(\sum_{j=1}^{n-4} r_{j+3} + a_{n}\right)$$

$$= 2r_{2} + 2r_{3} + (r_{4} + r_{5} + \dots + r_{i+2} + r_{i+3} + \dots + r_{n-1})$$

$$+ (r_{4} + r_{5} + \dots + r_{i+2}) - (r_{i+3} + r_{i+4} + \dots + r_{n-1})$$

$$= 2r_2 + 2r_3 + 2r_4 + 2r_5 + \dots + 2r_{i+2}$$

= $a_1 + a_2 + a_3 + \dots + a_{i+2}, \quad z_i \in \mathbb{Z}_i,$

and

$$a_{z_{n-3}} = |U| + |V| + \left(|Y| + |X| + \sum_{j=1}^{n-4} |X_i|\right) - 0$$

= $r_2 + \sum_{i=1}^{n-4} r_{i+3} + a_n + r_3 + r_3 + r_2 + \sum_{j=2}^{i} r_{j+2} - \left(\sum_{j=1}^{n-4} r_{j+3} + a_n\right)$
= $2r_2 + 2r_3 + 2r_4 + \dots + 2r_{n-1} + a_n$
= $a_1 + a_2 + a_3 + \dots + a_{n-1} + a_n, \quad z_{n-3} \in Z_{n-3}.$

Therefore, the score set of D(U, V, W) is $A = \left\{a_1, \sum_{i=1}^2 a_i, \cdots, \sum_{i=1}^n a_i\right\}$.

Now, assume that $a_1 > 0$. Construct an oriented 3-partite graph D(U,V,W) as follows. Let

$$U = X,$$

$$V = Y \cup Y_1 \cup Y_2 \cup \cdots \cup Y_{n-3} \cup Y_{n-2},$$

$$W = Z \cup Z_1 \cup Z_2 \cup \cdots \cup Z_{n-3},$$

with $Y \cap Y_i = \emptyset$, $Y_i \cap Y_j = \emptyset$, $Z \cap Z_i = \emptyset$, $Z_i \cap Z_j = \emptyset$ ($i \neq j$), $|X| = a_1$, $|Y| = |Z| = r_2$, $|Y_i| = |Z_i| = r_{i+2}$ for all *i*, where $1 \le i \le n-3$, $|Y_{n-2}| = a_1 + a_n$.

Let $Y_1 \to Z, Z_1; Y_i \to Z, Z_1, Z_2, \dots, Z_{i-1}$ for all *i*, where $2 \le i \le n-2; Z \to Y; Z_1 \to Y$, and $Z_i \to Y, Y_1, Y_2, \dots, Y_i$ for all *i*, where $2 \le i \le n-3$, so that we get the oriented 3-partite graph D(U, V, W) with

$$|U| = |X| = a_1, |V| = |Y| + \sum_{i=1}^{n-2} |Y_i| = r_2 + \sum_{i=1}^{n-3} r_{i+2}a_1 + a_n,$$
$$|W| = |Z| + \sum_{i=1}^{n-3} |Z_i| = r_2 + \sum_{i=1}^{n-3} r_{i+2},$$

and the scores of vertices

$$a_{x} = |V| + |W| + 0 - 0 = r_{2} + \sum_{i=1}^{n-3} r_{i+2} + a_{1} + a_{n} + r_{2} + \sum_{i=1}^{n-3} r_{i+2}$$

$$= a_{1} + 2r_{2} + 2r_{3} + \dots + 2r_{n-1} + a_{n}$$

$$= a_{1} + a_{2} + a_{3} + \dots + a_{n-1} + a_{n}, \quad x \in X,$$

$$a_{y} = |U| + |W| + 0 - \left(|Z| + \sum_{i=1}^{n-3} |Z_{i}|\right)$$

$$= a_{1} + r_{2} + \sum_{i=1}^{n-3} r_{i+2} - \left(r_{2} + \sum_{i=1}^{n-3} r_{i+2}\right) = a_{1}, \quad y \in Y,$$

$$a_{y_1} = a_{y_2} = |U| + |W| + (|Z| + |Z_1|) - \sum_{i=2}^{n-3} |Z_i|$$

= $a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + r_2 + r_3 - \sum_{i=2}^{n-3} r_{i+2} = a_1 + 2r_2 + 2r_3$
= $a_1 + a_2 + a_3$, $y_1 \in Y_1, y_2 \in Y_2$,

for $3 \le i \le n-3$

$$\begin{aligned} a_{y_1} &= |U| + |W| + \left(|Z| + \sum_{j=2}^{i} |Z_{j-1}| \right) - \sum_{j=i}^{n-3} |Z_j| \\ &= a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + r_2 + \sum_{j=2}^{i} r_{j+1} - \sum_{j=i}^{n-3} r_{j+2} \\ &= a_1 + 2r_2 + (r_3 + r_4 + \dots + r_{i+1} + r_{i+2} + \dots + r_{n-1}) \\ &+ (r_3 + r_4 + \dots + r_{i+1}) - (r_{i+2} + r_{i+3} + \dots + r_{n-1}) \\ &= a_1 + 2r_2 + 2r_3 + 2r_4 + \dots + 2r_{i+1} \\ &= a_1 + a_2 + a_3 + \dots + a_{i+1}, \quad y_i \in Y_i, \\ a_{y_{n-2}} &= |U| + |W| + \left(|Z| + \sum_{j=2}^{n-2} |Z_{j-1}| \right) - 0 \\ &= a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + r_2 + \sum_{j=2}^{n-2} r_{j+1} \\ &= a_1 + 2r_2 + 2r_3 + 2r_4 + \dots + 2r_{n-1} \\ &= a_1 + a_2 + a_3 + \dots + a_{n-1}, \quad y_{n-2} \in Y_{n-2}, \\ a_z &= a_{z_1} = |U| + |V| + |Y| - \sum_{i=1}^{n-2} |Y_i| \\ &= a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + a_1 + a_n + r_2 - \left(\sum_{i=1}^{n-3} r_{i+2} + a_1 + a_n +$$

and for $2 \le i \le n-3$

$$\begin{aligned} a_{z_i} &= |U| + |V| + |Y| + \sum_{j=1}^{i} |Y_j| - \sum_{j=i+1}^{n-2} |Y_j| \\ &= a_1 + r_2 + \sum_{i=1}^{n-3} r_{i+2} + a_1 + a_n + r_2 \\ &+ \sum_{j=1}^{i} r_{j+2} - \left(\sum_{j=i+1}^{n-2} r_{j+2} + a_1 + a_n\right) \\ &= a_1 + 2r_2 + (r_3 + r_4 + \dots + r_{i+2} + r_{i+3} + \dots + r_{n-1}) \\ &+ (r_3 + r_4 + \dots + r_{i+2}) - (r_{i+3} + r_{i+4} + \dots + r_{n-1}) \\ &= a_1 + 2r_2 + 2r_3 + 2r_4 + \dots + 2r_{i+2} \\ &= a_1 + a_2 + a_3 + \dots + a_{i+2}, \quad z_i \in Z_i. \end{aligned}$$

Therefore, the score set of D(U, V, W) is $A = \left\{a_1, \sum_{i=1}^2 a_i, \cdots, \sum_{i=1}^n a_i\right\}$.

References

- [1] Avery, P., Score Sequences of Oriented Graphs, J. Graph Theory, 15:3(1991), 251-257.
- [2] Hager, M., On Score Sets for Tournaments, Discrete Mathematics, 58:1(1986), 25-34.
- [3] Pirzada, S. and Merajuddin, Score Lists of Oriented Tripartite Graphs, Novi Sad J. Math., 26:2(1996), 1-9.
- [4] Pirzada, S. and Naikoo, T. A., Score Sets in Oriented Graphs, Applicable Analysis and Discrete Mathematics, (2007) To appear.
- [5] Pirzada, S. and Naikoo, T. A., Score Sets in Tournaments, Vietnam J. Mathematics, 34:2(2006), 157-161.
- [6] Pirzada, S., Merajuddin, and Yin, J., On the Scores of Oriented Bipartite Graphs, J. Mathematical Study, 33:4(2000), 354-359.
- [7] Pirzada, S., Naikoo, T. A. and Chishti, T. A., Score Sets in Oriented Bipartite Graphs, Novi Sad J. Mathematics, 36:1(2006), 35-45.
- [8] Reid, K. B., Score Sets for Tournaments, Congressus Numerantium XXI, Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, (1978), 607-618.
- [9] Yao, T. X., Reid's Conjecture on Score Sets in Tournaments (in Chinese), Kexue Tongbao, 33(1988), 481-484.
- [10] Yao, T. X., On Reid's Conjecture of Score Sets for Tournaments, Chinese Sci. Bull., 34 (1989), 804-808.

S. Pirzada

Department of Mathematics University of Kashmir, Srinagar-190006 India

E-mail: sdpirzada@yahoo.co.in

Merajuddin Department of Applied Mathematics F/O Engineering and Tech., A.M.U. Aligarh, India

E-mail: meraj1957@rediffmail.com

T. A. Naikoo Department of Mathematics University of Kashmir, Srinagar-190006 India

E-mail: tariqnaikoo@rediffmail.com