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1 Introduction

The importance of studying continuous but nowhere differentiable functions was empha-
sized a long time ago by Perrin Poincaré, Falconer and Mandelbrot(see Refs. [1,3]). It is pos-
sible for a continuous function to be sufficiently irregular so that its graph is a fractal curve.
Weierstrass function maybe have the most importance which is defined as

W (t) = ∑
j≥1

λ−α j sin(λ jt), 0 < α < 1, λ > 1. (1.1)

Though W (t) is continuous, it is nowhere differentiable, so we appeal to fractional calculus. The
Riemann-Liouville transformation is probably very useful fractional calculus which is defined
as follows:
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Definition 1[5]. Let f be piecewisely continuous on (0,∞) and local integrable on [0,∞).
Then for t > 0, Re(v) > 0, we call

D−v f (t) =
1

Γ(v)

∫ t

0
(t − x)v−1 f (x)dx

the Riemann-Liouville fractional integral of f of order v . For 0 < u < 1, we call

Du f (t) = D[Du−1 f (t)]

the Riemann-Liouville fractional derivative of f of order u.
In [6], Tatom explored the general relationship between the fractional calculus and fractals.

But he didn’t give out the accurate connection. So in [8], Yao has proved there exist some
linear connection between the order of the fractional calculus and the fractal dimensions of the
graphs of the Weierstrass function which is defined as (1.1). For both theoretical and practical
importance, we consider the generalized Weierstrass function which is defined by:

W ∗(t) = ∑
j≥1

λ−α j f (λ jt), 0 < α < 1, λ > 1, (1.2)

here

f (t) ∈ S := {g(t) ∈C1 : g(t) = g(2a+ t),g(a+ t) = −g(a− t), f (t) �≡ 0, a > 0}. (1.3)

The generalized Weierstrass function defined as (1.2) most maybe appear in three contexts: first
as repellers for certain functions and such functions can occur as invariant sets in dynamical
systems; second as graphs of wavelet functions which are fundamental to wavelet analysis; third
as graphs of approximation functions,where they have been used in approximation theory. More
details can be found in Refs. [10-13].

Now we consider the Riemann-Liouville fractional calculus of the generalized Weierstrass
function. Let

D−v f (at) =
1

Γ(v)

∫ t

0
(t − x)v−1 f (ax)dx =: Gt(v,a)

denote the Riemann-Liouville fractional integral of f (at), and let

D−v f ′(at) =
1

Γ(v)

∫ t

0
(t − x)v−1 f ′(ax)dx =: Lt(v,a)

denote the Riemann-Liouville fractional integral of f′(at). For λ > 1,0 < α ,v,u < 1 with 0 <
α + v < 1,0 < u < α , denote by

g∗(t) := D−v(W ∗(t)) = ∑
j≥1

λ−α jGt(v,λ j) (1.4)
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the fractional integral of Weierstrass type function W∗(t) of order v. Denote by

m∗(t) := Du(W ∗(t)) = ∑
j≥1

λ (1−α) jLt(1−u,λ j) (1.5)

the fractional derivative of Weierstrass type function W∗(t) of order u.
We give some symbols and main result of our paper. Let I = [0,1], f be continuous on I and

Γ( f , I) denote the graph of function f (t) on I. Let

OSC( f , I) = sup
t ′,t ′′∈I

| f (t′)− f (t′′)|

be the oscillation of f on interval I. Throughout the present paper, more precisely by C we denote
a positive constant that may have different values at different occurrences. By C(v),Ci(v)(i =
1,2, · · · ,5) we denote positive constants only depending on v.

The main result of our paper is:
Theorem 1. (1) Let g∗(t) be the fractional integral of generalized Weierstrass function

W ∗(t), 0 < α ,v < 1 with α + v < 1. Then, for sufficiently large λ > 1, it holds

dimB Γ(g∗, I) = dimB Γ(W ∗, I)− v.

(2) Let m∗(t) be the fractional derivative of generalized Weierstrass function W∗(t), 0 <
u < α < 1. Then, for sufficiently large λ , it holds that

dimB Γ(m∗, I) = dimB Γ(W ∗, I)+u.

The subsequent discussion will deal with: (1) proof of Theorem 1; (2) graphs and numerical
results and (3) conclusions.

2 Proof of Theorem 1

In this section, we give 5 lemmas and the proof of Theorem 1.

2.1 Lemmas
Lemma 1[1,7]. Let f be a continuous function on I = [0,1] and 0 ≤ s ≤ 1.
(1) Suppose

| f (t)− f (u)| ≤C|t −u|s, 0 ≤ t,u ≤ 1.

Then
dimBΓ( f , I) ≤ 2− s.
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(2) Suppose δ0 > 0. For every t ∈ [0,1] and 0 < δ < δ0, there exists u ∈ [0,1] such that
|t −u| ≤ δ and

| f (t)− f (u)| ≥Cδ s.

Then
dimBΓ( f , I) ≥ 2− s.

Lemma 2[2]. Let f be continuous on I = [0,1],1 < s ≤ 2, Π = {0 = x0 < x1 < x2 < · · · <
xn = 1} be a partition of I, δi = [xi−1,xi) and |Π| = max

1≤i≤n
|δi|. Then

Ks(Γ( f , I)) = lim
δ→0+

inf
|Π|<δ

∑
Π

OSC( f ,δi)|δ |s−1, (2.1)

where Ks(Γ( f , I)) denotes the s-dimension K-measure of Γ( f , I). And

dimK Γ( f , I) ≤ dimBΓ( f , I). (2.2)

If the values of dimK Γ( f ,A) are equal for all open intervals A of I. Then

dimK Γ( f , I) ≤ dimP Γ( f , I). (2.3)

From [8] and simple calculation, we have

Lemma 3. Let 0 < v < 1, l > 1, I = [0,1] and tj =
4a j

l
( j = 2,3, · · · ). There exists certain

h ∈
(

0,
3a
l

)
such that

|Gtj+h(v, l)−Gtj(v, l)| ≥C1(v)l−v. (2.4)

We also have
|Gt(v, l)| ≤C2(v)l−v, |Gt+h(v, l)−Gt(v, l)| ≤C2(v)l−v (2.5)

and
|Gt+h(v, l)−Gt(v, l)| ≤C3(v)h · l1−v (2.6)

with C1(v),C2(v) and C3(v) certain positive constants which only depend on v.
Lemma 4. Let 0 < v,α < 1 with α + v < 1,λ > 1 and I = [0,1]. Then

dimBΓ(g∗, I) ≤ 2−α − v, (2.7)

here g∗(t) is defined as (1.4) of section 1.
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Proof. First we show g∗(t) is continuous on I. Note that Gt(v,λ j) ≤C(v), we have

|g∗(t)| =
∣∣∣∣∣∑j≥1

λ−α jGt(v,λ j)

∣∣∣∣∣≤C(v) ∑
j≥1

λ−α j < ∞.

This shows the continuity of g∗(t). For any given 0 < h < 1, there exists a non-negative integer
N such that h ∈ [λ−(N+1),λ−N). Then we have

|g∗(t +h)−g∗(t)| ≤
(

N

∑
j=1

+
∞

∑
j=N+1

)
λ−α j|Gt+h(v,λ j)−Gt(v,λ j)| =: I1 + I2.

By (2.6) of Lemma 3, we have

I1 ≤C3(v)
N

∑
j=1

hλ (1−α−v) j ≤C3(v)hv+α ,

and by (2.5) of Lemma 3, we get

I2 ≤C2(v)
∞

∑
j=N+1

λ−α jλ−v j ≤C2(v)hv+α .

So we have
|g∗(t +h)−g∗(t)| ≤C(v)hv+α .

With Lemma 2(1) we complete the proof of Lemma 4.
Lemma 5. Let 0 < v,α < 1,α + v < 1 and I = [0,1]. For sufficiently large λ , it holds

dimK Γ(g∗, I) ≥ 2−α − v, (2.8)

here g∗(t) is defined as (1.4) in section 1.

Proof. Let δ <
1
λ

. We consider any partition Π of I. For any given interval δi of Π, there

exists a positive integer N such that |δi| ∈
[

1
λ N−1 ,

1
λ N−2

)
. Let

R =
{

t j : t j =
4α j
λ N , j = 2,3, · · ·

}

and h ∈ (0,
4a
λ N ). Because λ is sufficiently large, there exists at least one point ti of δi such that

ti ∈ R and (ti, ti +h) ⊂ δi.

Due to (2.4) of Lemma 3, there exists certain h ∈ (0,
a

λ N ) such that

|Gti+h(v,λ N)−Gti(v,λ
N)| ≥C1(v)λ−vN .
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On the other hand, we see that

|g∗(t +h)−g∗(t)−λ−αN(Gt+h(v,λ N)−Gt(v,λ N))|

≤
(

N−1

∑
j=1

+
∞

∑
j=N+1

)
λ−a j|Gt+h(v,λ j)−Gt(v,λ j)| =: I1 + I2.

By (2.5) and (2.6) of Lemma 3, we get

I1 ≤ aC2(v)
λ α+v−1

1−λ α+v−1 λ−(α+v)N, I2 ≤C3(v)
λ−α−v

1−λ−α−v λ−(α+v)N.

Here C1(v),C2(v) and C3(v) are the same as that of Lemma 3. Let

λ α+v−1 = s,C4(v) = max{aC2(v),C3(v)}.

Hence

I1 + I2 ≤C4(v)
λ s2 + 1

(1− s)(λ s−1)
λ−(α+v)N.

For sufficiently large λ and C5(v) =
2C4(v)
C1(v)

, we have

0 < s <
1

2C5(v)+ 1
,
2C5(v)+ 2

λ s−1
< 1.

Then,
λ s2 + 1

(1− s)(λ s−1)
≤ 1

C5(v)
,

so we have

|g∗(t +b)−g∗(t)−λ−αN(Gt+h(v,λ N)−Gt(v,λ N))| ≤ 1
2
C1(v)λ−(α+v)N.

Based on prior discussion we know that there exists (ti, ti +h) ⊂ δi, such that

|g∗(ti +h)−g∗(ti)| ≥C1(v)λ−(α+v)N − 1
2
C1(v)λ−(α+v)N > C(v)|δi|α+v.

Hence
OSC(g∗,δi) > C|δi|α+v.

Combining with (2.2) of Lemma 2, we have

K2−α−v(Γ(g∗, I)) = lim
δ→0+

inf
|Π|<δ

∑
Π

OSC(g∗,δi)|δi|1−α−v > C.
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So we get (2.8).

2.2 Proof of Theorem 1
Proof of Theorem 1. Similar argument to Example 11.3 of [1, pp193-194] and for suffi-

ciently large λ , it holds
dimB Γ(W ∗, I) = 2−α . (2.9)

A combination of Lemma 2, 4, 5 and (2.9) leads to the following conclusion:

dimB Γ(g∗, I) = dimK Γ(g∗, I) = dimB Γ(W ∗, I)− v = dimB Γ(W ∗, I)− v = 2−α − v.

Let m∗(t) be the fractional derivative of generalized Weierstrass function W∗(t),0 < u < α <
1. For sufficiently large λ , similarly we can get

dimB Γ(m∗, I) = dimK Γ(m∗, I) = dimk Γ(W ∗, I)+u = dimB Γ(W ∗, I)+u = 2−α +u.

Thus we have completed the proof of Theorem 1 in section 1.

3 Graphs and Numerical Results

We give some graphs and numerical results to show the linear connection between the order
of the fractional calculus and the fractal dimensions of graphs of the generalized Weierstrass

function. Let λ = 2,α = 0.5, f (t) = sin
( t

2

)
+ cos

(
2t +

π
2

)
and

W ∗(t) = ∑
j≥1

λ−α j f (λ jt). (3.1)

Fig.1 shows the graph of f (t) and Fig.2 shows the graph of W∗(t).
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Fig.3 shows the graph of g∗(t): the fractional integral of W∗(t) of order 1/3 and Fig.4 shows
the graph of m∗(t): the fractional derivative of W∗(t) of order 1/6,
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Let u and v be 0.1, 0.2, 0.3, 0.4, respectively. Table 1 gives the Box dimension of graphs of
g∗(t) and m∗(t).

Table 1
v dimB Γ(g∗, I) u dimB Γ(m∗, I)
0 1.5 0 1.5
0.1 1.3853 0.1 1.5834
0.2 1.2795 0.2 1.6787
0.3 1.1804 0.3 1.7774
0.4 1.0769 0.4 1.8612

Fig.5 shows the connection between v and dimB Γ(g∗, I) and Fig.6 shows the connection between
u and dimB Γ(m∗, I).
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4 Conclusions

To sum up, we have the following conclusions: Let W∗(t) be defined as (1.3), g∗(t) be the
fractional integral of W∗(t) and m∗(t) be the fractional derivative of W∗(t). Then, for sufficiently
large λ > 1,0 < α ,v < 1,α + v < 1 and 0 < u < α < 1, it holds

dimB Γ(g∗, I) = dimB Γ(W ∗, I)− v;

dimB Γ(m∗, I) = dimB Γ(W ∗, I)+u.
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